Plant-Dominant Low-Protein Diet for Conservative Management of Chronic Kidney Disease

Kamyar Kalantar-Zadeh, Shivam Joshi, Rebecca Schlueter, Joanne Cooke, Amanda Brown-Tortorici, Meghan Donnelly, Sherry Schulman, Wei-Ling Lau, Connie M Rhee, Elani Streja, Ekamol Tantisattamo, Antoney J Ferrey, Ramy Hanna, Joline L T Chen, Shaista Malik, Danh V Nguyen, Susan T Crowley, Csaba P Kovesdy, Kamyar Kalantar-Zadeh, Shivam Joshi, Rebecca Schlueter, Joanne Cooke, Amanda Brown-Tortorici, Meghan Donnelly, Sherry Schulman, Wei-Ling Lau, Connie M Rhee, Elani Streja, Ekamol Tantisattamo, Antoney J Ferrey, Ramy Hanna, Joline L T Chen, Shaista Malik, Danh V Nguyen, Susan T Crowley, Csaba P Kovesdy

Abstract

Chronic kidney disease (CKD) affects >10% of the adult population. Each year, approximately 120,000 Americans develop end-stage kidney disease and initiate dialysis, which is costly and associated with functional impairments, worse health-related quality of life, and high early-mortality rates, exceeding 20% in the first year. Recent declarations by the World Kidney Day and the U.S. Government Executive Order seek to implement strategies that reduce the burden of kidney failure by slowing CKD progression and controlling uremia without dialysis. Pragmatic dietary interventions may have a role in improving CKD outcomes and preventing or delaying dialysis initiation. Evidence suggests that a patient-centered plant-dominant low-protein diet (PLADO) of 0.6–0.8 g/kg/day composed of >50% plant-based sources, administered by dietitians trained in non-dialysis CKD care, is promising and consistent with the precision nutrition. The scientific premise of the PLADO stems from the observations that high protein diets with high meat intake not only result in higher cardiovascular disease risk but also higher CKD incidence and faster CKD progression due to increased intraglomerular pressure and glomerular hyperfiltration. Meat intake increases production of nitrogenous end-products, worsens uremia, and may increase the risk of constipation with resulting hyperkalemia from the typical low fiber intake. A plant-dominant, fiber-rich, low-protein diet may lead to favorable alterations in the gut microbiome, which can modulate uremic toxin generation and slow CKD progression, along with reducing cardiovascular risk. PLADO is a heart-healthy, safe, flexible, and feasible diet that could be the centerpiece of a conservative and preservative CKD-management strategy that challenges the prevailing dialysis-centered paradigm.

Keywords: plant-dominant; low-protein; dietary protein intake; glomerular hyperfiltration.

Conflict of interest statement

K. Kalantar-Zadeh has received honoraria and/or support from Abbott, Abbvie, ACI Clinical (Cara Therapeutics), Akebia, Alexion, Amgen, Ardelyx, ASN (American Society of Nephrology), Astra-Zeneca, Aveo, BBraun, Chugai, Cytokinetics, Daiichi, DaVita, Fresenius, Genentech, Haymarket Media, Hofstra Medical School, IFKF (International Federation of Kidney Foundations), ISH (International Society of Hemodialysis), International Society of Renal Nutrition & Metabolism (ISRNM), JSDT (Japanese Society of Dialysis Therapy), Hospira, Kabi, Keryx, Kissei, Novartis, OPKO, NIH (National Institutes of Health), NKF (National Kidney Foundations), Pfizer, Regulus, Relypsa, Resverlogix, Dr Schaer, Sandoz, Sanofi, Shire, VA (Veterans’ Affairs), Vifor, UpToDate, ZS-Pharma. No relevant sources of conflict of interest have been declared by other authors.

Figures

Figure 1
Figure 1
Effects of a plant-dominant low-protein diet on afferent arteriole contraction leading to reduced intra-glomerular pressure and nephron longevity (adapted from Kalantar-Zadeh and Fouque, N Engl J Med 2017) [25]..
Figure 2
Figure 2
Meta-analysis of the randomized controlled trials with low protein diet suggesting efficacy of diet in lowering the risk of kidney failure. This meta-analysis includes six (out of 16) randomized control trials of low protein diet (adapted from Rhee et al., J Cachexia Sarcopenia Muscle 2018) [28].
Figure 3
Figure 3
Overview of the plant-dominant low-protein diet (PLADO) for nutritional management of CKD, based on a total dietary intake of 0.6–0.8 g/kg/day with >50% plant-based sources, preferentially unprocessed foods, relatively low dietary sodium intake 4 g/day if no edema occurs with well controlled hypertension), higher dietary fiber of at least 25–30 g/day, and adequate dietary energy intake of 30–35 Cal/kg/day. Weight is based on the ideal body weight. Note that serum B12 should be monitored after three years of vegan dieting.
Figure 4
Figure 4
An algorithm and steps for the approach to the nutritional management of patients with CKD. Note that in addition to direct dietary assessments, periodic 24-h urine collections should be used to estimate dietary protein, sodium, and potassium intakes in order to assess adherence to dietary recommendations (adapted from the Supplementary-Appendix-Figure S4. Under Kalantar-Zadeh and Fouque, N Engl J Med. 2017) [25]. * Comprehensive metabolic and glycemic panels include electrolytes, SUN, creatinine, glucose, hemoglobin A1c, liver function tests, and the lipid panel. † The full equation is: DPI = 6:25 × UUN + 0:03 × IBW † Add the amount of daily proteinuria in grams if proteinuria >5 g/d. Calculate the creatinine index (24-hr urine creatinine divided by actual weight or IBW if obese) and compare it to the expected value of 1–1.5 g/kg/d for women and 1.5–2 g/kg/day for men. ‡ Dietary supplements can be added to provide additional sources of energy and/or protein including—but not limited to—CKD specific supplements, essential amino-acids, or keto-analogues (ketoacids) of amino-acids. ¶ To ensure adequate DEI of at least 30–35 Cal/kg/d, higher fat intake can be considered, e.g., non-saturated fats, omega 3-rich flaxseed, canola, and olive oil. ‡‡ If worsening uremic signs and symptoms occur, DPI < 0.6 g/kg/d with supplements can be considered. Abbreviations: BMI: body mass index, CKD: chronic kidney disease, d: day, DEI: dietary energy intake, DPI: dietary protein intake; eGFR: estimated glomerular filtration rate, GI: gastrointestinal, HBV: high biologic value, IBW: ideal body weight, ISRNM: International Society of Renal Nutrition and Metabolism, K: potassium; MIS: malnutrition–inflammation score; Na: sodium; Phos.: phosphorus; PTH: parathyroid hormone, PEW: protein energy wasting, SGA: subjective global assessment, SUN: serum urea nitrogen, UUN: urine urea nitrogen.

References

    1. Li P.K., Garcia-Garcia G., Lui S.F., Andreoli S., Fung W.W., Hradsky A., Kumaraswami L., Liakopoulos V., Rakhimova Z., Saadi G., et al. Kidney health for everyone everywhere-from prevention to detection and equitable access to care. Kidney Int. 2020;97:226–232. doi: 10.1016/j.kint.2019.12.002.
    1. Kalantar-Zadeh K., Crowley S.T., Beddhu S., Chen J.L.T., Daugirdas J.T., Goldfarb D.S., Jin A., Kovesdy C.P., Leehey D.J., Moradi H., et al. Renal Replacement Therapy and Incremental Hemodialysis for Veterans with Advanced Chronic Kidney Disease. Semin. Dial. 2017;30:251–261. doi: 10.1111/sdi.12601.
    1. Kalantar-Zadeh K., Moore L.W., Tortorici A.R., Chou J.A., St-Jules D.E., Aoun A., Rojas-Bautista V., Tschida A.K., Rhee C.M., Shah A.A., et al. North American experience with Low protein diet for Non-dialysis-dependent chronic kidney disease. BMC Nephrol. 2016;17:90. doi: 10.1186/s12882-016-0304-9.
    1. Saran R., Shahinian V., Pearsonm A., Tilea A., Steffick D., Wyncott A., Bragg-Gresham J., Heung M., Morgenstern M., Hutton D., et al. Establishing a National Population Health Management System for Kidney Disease: The Veterans Health Administration Renal Information System (VA-REINS) Am. J. Kidney Dis. 2017;5:A3.
    1. Saran R., Li Y., Robinson B., Abbott K.C., Agodoa L.Y., Ayanian J., Bragg-Gresham J., Balkrishnan R., Chen J.L., Cope E., et al. US Renal Data System 2015 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am. J. Kidney Dis. 2016;67(Suppl. 1):S1–S305. doi: 10.1053/j.ajkd.2015.12.014.
    1. Saran R., Li Y., Robinson B., Ayanian J., Balkrishnan R., Bragg-Gresham J., Chen J.T., Cope E., Gipson D., He K., et al. US Renal Data System 2014 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am. J. Kidney Dis. 2015;66(Suppl. 1):S1–S305. doi: 10.1053/j.ajkd.2015.05.001.
    1. Wang V., Maciejewski M.L., Patel U.D., Stechuchak K.M., Hynes D.M., Weinberger M. Comparison of outcomes for veterans receiving dialysis care from VA and non-VA providers. BMC Health Serv. Res. 2013;13:26. doi: 10.1186/1472-6963-13-26.
    1. Streja E., Kovesdy C.P., Soohoo M., Obi Y., Rhee C.M., Park C., Chen J.L.T., Nakata T., Nguyen D.V., Amin A.N., et al. Dialysis Provider and Outcomes among United States Veterans Who Transition to Dialysis. Clin. J. Am. Soc. Nephrol. 2018;13:1055–1062. doi: 10.2215/CJN.12951117.
    1. Kalantar-Zadeh K., Wightman A., Liao S. Ensuring Choice for People with Kidney Failure—Dialysis, Supportive Care, and Hope. N. Engl. J. Med. 2020 in press.
    1. Kurella Tamura M., Covinsky K.E., Chertow G.M., Yaffe K., Landefeld C.S., McCulloch C.E. Functional status of elderly adults before and after initiation of dialysis. N. Engl. J. Med. 2009;361:1539–1547. doi: 10.1056/NEJMoa0904655.
    1. Kalantar-Zadeh K., Li P.K. Strategies to prevent kidney disease and its progression. Nat. Rev. Nephrol. 2020;16:129–130. doi: 10.1038/s41581-020-0253-1.
    1. Moore L.W., Kalantar-Zadeh K. Implementing the “Advancing American Kidney Health Initiative” by Leveraging Nutritional and Dietary Management of Kidney Patients. J. Ren. Nutr. 2019;29:357–360. doi: 10.1053/j.jrn.2019.07.004.
    1. Ko G.J., Kalantar-Zadeh K., Goldstein-Fuchs J., Rhee C.M. Dietary Approaches in the Management of Diabetic Patients with Kidney Disease. Nutrients. 2017;9:824. doi: 10.3390/nu9080824.
    1. Moore L.W., Byham-Gray L.D., Scott Parrott J., Rigassio-Radler D., Mandayam S., Jones S.L., Mitch W.E., Osama Gaber A. The mean dietary protein intake at different stages of chronic kidney disease is higher than current guidelines. Kidney Int. 2013;83:724–732. doi: 10.1038/ki.2012.420.
    1. Pasiakos S.M., Lieberman H.R., Fulgoni V.L., 3rd Higher-protein diets are associated with higher HDL cholesterol and lower BMI and waist circumference in US adults. J. Nutr. 2015;145:605–614. doi: 10.3945/jn.114.205203.
    1. Athinarayanan S.J., Adams R.N., Hallberg S.J., McKenzie A.L., Bhanpuri N.H., Campbell W.W., Volek J.S., Phinney S.D., McCarter J.P. Long-Term Effects of a Novel Continuous Remote Care Intervention Including Nutritional Ketosis for the Management of Type 2 Diabetes: A 2-Year Non-randomized Clinical Trial. Front. Endocrinol. 2019;10:348. doi: 10.3389/fendo.2019.00348.
    1. Ko G.-J., Rhee C.M., Kalantar-Zadeh K., Joshi S. The Impact of High Protein Diets on Kidney Health and Longevity. J. Am. Soc. Nephrol. 2020 in press.
    1. Kamper A.L., Strandgaard S. Long-Term Effects of High-Protein Diets on Renal Function. Annu. Rev. Nutr. 2017;37:347–369. doi: 10.1146/annurev-nutr-071714-034426.
    1. Kalantar-Zadeh K., Kramer H.M., Fouque D. High-protein diet is bad for kidney health: Unleashing the taboo. Nephrol. Dial. Transplant. 2020;35:1–4. doi: 10.1093/ndt/gfz216.
    1. Kime P. VA Eyes Keto Diet-Based Diabetes Treatment, But Questions Remain. [(accessed on 27 July 2019)];2019 Available online: .
    1. Joshi S., Ostfeld R.J., McMacken M. The Ketogenic Diet for Obesity and Diabetes-Enthusiasm Outpaces Evidence. JAMA Intern. Med. 2019;179:1163–1164. doi: 10.1001/jamainternmed.2019.2633.
    1. Esmeijer K., Geleijnse J.M., de Fijter J.W., Kromhout D., Hoogeveen E.K. Dietary protein intake and kidney function decline after myocardial infarction: The Alpha Omega Cohort. Nephrol. Dial. Transplant. 2019 doi: 10.1093/ndt/gfz015.
    1. Jhee J.H., Kee Y.K., Park S., Kim H., Park J.T., Han S.H., Kang S.W., Yoo T.H. High-protein diet with renal hyperfiltration is associated with rapid decline rate of renal function: A community-based prospective cohort study. Nephrol. Dial. Transplant. 2020;35:98–106. doi: 10.1093/ndt/gfz115.
    1. Malhotra R., Lipworth L., Cavanaugh K.L., Young B.A., Tucker K.L., Carithers T.C., Taylor H.A., Correa A., Kabagambe E.K., Ikizler T.A. Protein Intake and Long-term Change in Glomerular Filtration Rate in the Jackson Heart Study. J. Ren. Nutr. 2018;28:245–250. doi: 10.1053/j.jrn.2017.11.008.
    1. Kalantar-Zadeh K., Fouque D. Nutritional Management of Chronic Kidney Disease. N. Engl. J. Med. 2017;377:1765–1776. doi: 10.1056/NEJMra1700312.
    1. Fouque D., Laville M., Boissel J.P., Chifflet R., Labeeuw M., Zech P.Y. Controlled low protein diets in chronic renal insufficiency: Meta-analysis. BMJ. 1992;304:216–220. doi: 10.1136/bmj.304.6821.216.
    1. Chewcharat A., Takkavatakarn K., Wongrattanagorn S., Panrong K., Kittiskulnam P., Eiam-Ong S., Susantitaphong P. The Effects of Restricted Protein Diet Supplemented with Ketoanalogue on Renal Function, Blood Pressure, Nutritional Status, and Chronic Kidney Disease-Mineral and Bone Disorder in Chronic Kidney Disease Patients: A Systematic Review and Meta-Analysis. J. Ren. Nutr. 2019 doi: 10.1053/j.jrn.2019.07.005.
    1. Rhee C.M., Ahmadi S.F., Kovesdy C.P., Kalantar-Zadeh K. Low-protein diet for conservative management of chronic kidney disease: A systematic review and meta-analysis of controlled trials. J. Cachexia Sarcopenia Muscle. 2018;9:235–245. doi: 10.1002/jcsm.12264.
    1. Jiang Z., Zhang X., Yang L., Li Z., Qin W. Effect of restricted protein diet supplemented with keto analogues in chronic kidney disease: A systematic review and meta-analysis. Int. Urol. Nephrol. 2016;48:409–418. doi: 10.1007/s11255-015-1170-2.
    1. Metzger M., Yuan W.L., Haymann J.P., Flamant M., Houillier P., Thervet E., Boffa J.J., Vrtovsnik F., Froissart M., Bankir L., et al. Association of a Low-Protein Diet With Slower Progression of CKD. Kidney Int Rep. 2018;3:105–114. doi: 10.1016/j.ekir.2017.08.010.
    1. Tantisattamo E., Dafoe D.C., Reddy U.G., Ichii H., Rhee C.M., Streja E., Landman J., Kalantar-Zadeh K. Current Management of Patients with Acquired Solitary Kidney. Kidney Int. Rep. 2019;4:1205–1218. doi: 10.1016/j.ekir.2019.07.001.
    1. Tuttle K.R., Bruton J.L., Perusek M.C., Lancaster J.L., Kopp D.T., DeFronzo R.A. Effect of strict glycemic control on renal hemodynamic response to amino acids and renal enlargement in insulin-dependent diabetes mellitus. N. Engl. J. Med. 1991;324:1626–1632. doi: 10.1056/NEJM199106063242304.
    1. Kalantar-Zadeh K., Moore L.W. Does Kidney Longevity Mean Healthy Vegan Food and Less Meat or Is Any Low-Protein Diet Good Enough? J. Ren. Nutr. 2019;29:79–81. doi: 10.1053/j.jrn.2019.01.008.
    1. Joshi S., Shah S., Kalantar-Zadeh K. Adequacy of Plant-Based Proteins in Chronic Kidney Disease. J. Ren. Nutr. 2019;29:112–117. doi: 10.1053/j.jrn.2018.06.006.
    1. Rosman J.B., ter Wee P.M., Meijer S., Piers-Becht T.P., Sluiter W.J., Donker A.J. Prospective randomised trial of early dietary protein restriction in chronic renal failure. Lancet. 1984;2:1291–1296. doi: 10.1016/S0140-6736(84)90818-3.
    1. Rosman J.B., Langer K., Brandl M., Piers-Becht T.P., van der Hem G.K., ter Wee P.M., Donker A.J. Protein-restricted diets in chronic renal failure: A four year follow-up shows limited indications. Kidney Int. Suppl. 1989;27:S96–S102.
    1. Ihle B.U., Becker G.J., Whitworth J.A., Charlwood R.A., Kincaid-Smith P.S. The effect of protein restriction on the progression of renal insufficiency. N. Engl. J. Med. 1989;321:1773–1777. doi: 10.1056/NEJM198912283212601.
    1. Lindenau K., Abendroth K., Kokot F., Vetter K., Rehse C., Frohling P.T. Therapeutic effect of keto acids on renal osteodystrophy. A prospective controlled study. Nephron. 1990;55:133–135. doi: 10.1159/000185940.
    1. Williams P.S., Stevens M.E., Fass G., Irons L., Bone J.M. Failure of dietary protein and phosphate restriction to retard the rate of progression of chronic renal failure: A prospective, randomized, controlled trial. QJM. 1991;81:837–855. doi: 10.1007/BF00874008.
    1. Locatelli F., Alberti D., Graziani G., Buccianti G., Redaelli B., Giangrande A. Prospective, randomised, multicentre trial of effect of protein restriction on progression of chronic renal insufficiency. Northern Italian Cooperative Study Group. Lancet. 1991;337:1299–1304. doi: 10.1016/0140-6736(91)92977-A.
    1. Klahr S., Levey A.S., Beck G.J., Caggiula A.W., Hunsicker L., Kusek J.W., Striker G. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N. Engl. J. Med. 1994;330:877–884. doi: 10.1056/NEJM199403313301301.
    1. Montes-Delgado R., Guerrero Riscos M.A., Garcia-Luna P.P., Martin Herrera C., Pereira Cunill J.L., Garrido Vazquez M., Lopez Munoz I., Suarez Garcia M.J., Martin-Espejo J.L., Soler Junco M.L., et al. Treatment with low-protein diet and caloric supplements in patients with chronic kidney failure in predialysis. Comparative study. Rev. Clin. Esp. 1998;198:580–586.
    1. Malvy D., Maingourd C., Pengloan J., Bagros P., Nivet H. Effects of severe protein restriction with ketoanalogues in advanced renal failure. J. Am. Coll. Nutr. 1999;18:481–486. doi: 10.1080/07315724.1999.10718887.
    1. Teplan V., Schuck O., Knotek A., Hajny J., Horackova M., Skibova J., Maly J. Effects of low-protein diet supplemented with ketoacids and erythropoietin in chronic renal failure: A long-term metabolic study. Ann. Transplant. 2001;6:47–53.
    1. Prakash S., Pande D.P., Sharma S., Sharma D., Bal C.S., Kulkarni H. Randomized, double-blind, placebo-controlled trial to evaluate efficacy of ketodiet in predialytic chronic renal failure. J. Ren. Nutr. 2004;14:89–96. doi: 10.1053/j.jrn.2004.01.008.
    1. Brunori G., Viola B.F., Parrinello G., De Biase V., Como G., Franco V., Garibotto G., Zubani R., Cancarini G.C. Efficacy and safety of a very-low-protein diet when postponing dialysis in the elderly: A prospective randomized multicenter controlled study. Am. J. Kidney Dis. 2007;49:569–580. doi: 10.1053/j.ajkd.2007.02.278.
    1. Mircescu G., Garneata L., Stancu S.H., Capusa C. Effects of a supplemented hypoproteic diet in chronic kidney disease. J. Ren. Nutr. 2007;17:179–188. doi: 10.1053/j.jrn.2006.12.012.
    1. Cianciaruso B., Pota A., Pisani A., Torraca S., Annecchini R., Lombardi P., Capuano A., Nazzaro P., Bellizzi V., Sabbatini M. Metabolic effects of two low protein diets in chronic kidney disease stage 4-5--a randomized controlled trial. Nephrol. Dial. Transplant. 2008;23:636–644. doi: 10.1093/ndt/gfm576.
    1. Di Iorio B.R., Cucciniello E., Martino R., Frallicciardi A., Tortoriello R., Struzziero G. Acute and persistent antiproteinuric effect of a low-protein diet in chronic kidney disease. G. Ital. Nefrol. 2009;26:608–615.
    1. Jiang N., Qian J., Sun W., Lin A., Cao L., Wang Q., Ni Z., Wan Y., Linholm B., Axelsson J., et al. Better preservation of residual renal function in peritoneal dialysis patients treated with a low-protein diet supplemented with keto acids: A prospective, randomized trial. Nephrol. Dial. Transplant. 2009;24:2551–2558. doi: 10.1093/ndt/gfp085.
    1. Jiang N., Qian J., Lin A., Fang W., Zhang W., Cao L., Wang Q., Ni Z., Yao Q. Low-protein diet supplemented with keto acids is associated with suppression of small-solute peritoneal transport rate in peritoneal dialysis patients. Int. J. Nephrol. 2011;2011:542704. doi: 10.4061/2011/542704.
    1. Garneata L., Stancu A., Dragomir D., Stefan G., Mircescu G. Ketoanalogue-Supplemented Vegetarian Very Low-Protein Diet and CKD Progression. J. Am. Soc. Nephrol. 2016;27:2164–2176. doi: 10.1681/ASN.2015040369.
    1. Pasiakos S.M., Agarwal S., Lieberman H.R., Fulgoni V.L., 3rd Sources and Amounts of Animal, Dairy, and Plant Protein Intake of US Adults in 2007–2010. Nutrients. 2015;7:7058–7069. doi: 10.3390/nu7085322.
    1. Jia Y., Hwang S.Y., House J.D., Ogborn M.R., Weiler H.A., Karmin O., Aukema H.M. Long-term high intake of whole proteins results in renal damage in pigs. J. Nutr. 2010;140:1646–1652. doi: 10.3945/jn.110.123034.
    1. Joshi S., Hashmi S., Shah S., Kalantar-Zadeh K. Plant-based diets for prevention and management of chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2020;29:16–21. doi: 10.1097/MNH.0000000000000574.
    1. Tantisattamo E., Hanna R.M., Reddy U.G., Ichii H., Dafoe D.C., Danovitch G.M., Kalantar-Zadeh K. Novel options for failing allograft in kidney transplanted patients to avoid or defer dialysis therapy. Curr. Opin. Nephrol. Hypertens. 2020;29:80–91. doi: 10.1097/MNH.0000000000000572.
    1. Joshi S., McMacken M., Kalantar-Zadeh K. Plant-Based Diets for Kidney Disease: A Guide for Clinicians. Am. J. Kidney Dis. 2020 in press.
    1. Chauveau P., Lasseur C. Plant-based Protein Intake and Kidney Function in Diabetic Patients. Kidney Int. Rep. 2019;4:638–639. doi: 10.1016/j.ekir.2019.03.013.
    1. Campbell T.M., Liebman S.E. Plant-based dietary approach to stage 3 chronic kidney disease with hyperphosphataemia. BMJ Case Rep. 2019;12 doi: 10.1136/bcr-2019-232080.
    1. Moorthi R.N., Vorland C.J., Hill Gallant K.M. Diet and Diabetic Kidney Disease: Plant Versus Animal Protein. Curr. Diab. Rep. 2017;17:15. doi: 10.1007/s11892-017-0843-x.
    1. Clegg D.J., Hill Gallant K.M. Plant-Based Diets in CKD. Clin. J. Am. Soc. Nephrol. 2019;14:141–143. doi: 10.2215/CJN.08960718.
    1. Kontessis P., Jones S., Dodds R., Trevisan R., Nosadini R., Fioretto P., Borsato M., Sacerdoti D., Viberti G. Renal, metabolic and hormonal responses to ingestion of animal and vegetable proteins. Kidney Int. 1990;38:136–144. doi: 10.1038/ki.1990.178.
    1. Lin J., Hu F.B., Curhan G.C. Associations of diet with albuminuria and kidney function decline. Clin. J. Am. Soc. Nephrol. 2010;5:836–843. doi: 10.2215/CJN.08001109.
    1. Kim H., Caulfield L.E., Garcia-Larsen V., Steffen L.M., Grams M.E., Coresh J., Rebholz C.M. Plant-Based Diets and Incident CKD and Kidney Function. Clin. J. Am. Soc. Nephrol. 2019;14:682–691. doi: 10.2215/CJN.12391018.
    1. Haring B., Selvin E., Liang M., Coresh J., Grams M.E., Petruski-Ivleva N., Steffen L.M., Rebholz C.M. Dietary Protein Sources and Risk for Incident Chronic Kidney Disease: Results From the Atherosclerosis Risk in Communities (ARIC) Study. J. Ren Nutr. 2017;27:233–242. doi: 10.1053/j.jrn.2016.11.004.
    1. Chen X., Wei G., Jalili T., Metos J., Giri A., Cho M.E., Boucher R., Greene T., Beddhu S. The Associations of Plant Protein Intake with All-Cause Mortality in CKD. Am. J. Kidney Dis. 2016;67:423–430. doi: 10.1053/j.ajkd.2015.10.018.
    1. Koppe L., Fouque D. The Role for Protein Restriction in Addition to Renin-Angiotensin-Aldosterone System Inhibitors in the Management of CKD. Am. J. Kidney Dis. 2019;73:248–257. doi: 10.1053/j.ajkd.2018.06.016.
    1. Pignanelli M., Bogiatzi C., Gloor G., Allen-Vercoe E., Reid G., Urquhart B.L., Ruetz K.N., Velenosi T.J., Spence J.D. Moderate Renal Impairment and Toxic Metabolites Produced by the Intestinal Microbiome: Dietary Implications. J. Ren. Nutr. 2018 doi: 10.1053/j.jrn.2018.05.007.
    1. Fogelman A.M. TMAO is both a biomarker and a renal toxin. Circ. Res. 2015;116:396–397. doi: 10.1161/CIRCRESAHA.114.305680.
    1. McFarlane C., Ramos C.I., Johnson D.W., Campbell K.L. Prebiotic, Probiotic, and Synbiotic Supplementation in Chronic Kidney Disease: A Systematic Review and Meta-analysis. J. Ren. Nutr. 2018 doi: 10.1053/j.jrn.2018.08.008.
    1. Black A.P., Anjos J.S., Cardozo L., Carmo F.L., Dolenga C.J., Nakao L.S., de Carvalho Ferreira D., Rosado A., Carraro Eduardo J.C., Mafra D. Does Low-Protein Diet Influence the Uremic Toxin Serum Levels From the Gut Microbiota in Nondialysis Chronic Kidney Disease Patients? J. Ren. Nutr. 2018;28:208–214. doi: 10.1053/j.jrn.2017.11.007.
    1. Angeloco L.R.N., Arces de Souza G.C., Almeida Romao E., Garcia Chiarello P. Alkaline Diet and Metabolic Acidosis: Practical Approaches to the Nutritional Management of Chronic Kidney Disease. J. Ren. Nutr. 2018;28:215–220. doi: 10.1053/j.jrn.2017.10.006.
    1. Moorthi R.N., Armstrong C.L., Janda K., Ponsler-Sipes K., Asplin J.R., Moe S.M. The effect of a diet containing 70% protein from plants on mineral metabolism and musculoskeletal health in chronic kidney disease. Am. J. Nephrol. 2014;40:582–591. doi: 10.1159/000371498.
    1. Watanabe M.T., Barretti P., Caramori J.C.T. Dietary Intervention in Phosphatemia Control-Nutritional Traffic Light Labeling. J. Ren. Nutr. 2018;28:e45–e47. doi: 10.1053/j.jrn.2018.04.005.
    1. Watanabe M.T., Barretti P., Caramori J.C.T. Attention to Food Phosphate and Nutrition Labeling. J. Ren. Nutr. 2018;28:e29–e31. doi: 10.1053/j.jrn.2017.12.013.
    1. Demirci B.G., Tutal E., Eminsoy I.O., Kulah E., Sezer S. Dietary Fiber Intake: Its Relation with Glycation End Products and Arterial Stiffness in End-Stage Renal Disease Patients. J. Ren. Nutr. 2018 doi: 10.1053/j.jrn.2018.08.007.
    1. Chiavaroli L., Mirrahimi A., Sievenpiper J.L., Jenkins D.J., Darling P.B. Dietary fiber effects in chronic kidney disease: A systematic review and meta-analysis of controlled feeding trials. Eur. J. Clin. Nutr. 2015;69:761–768. doi: 10.1038/ejcn.2014.237.
    1. Parpia A.S., L’Abbe M., Goldstein M., Arcand J., Magnuson B., Darling P.B. The Impact of Additives on the Phosphorus, Potassium, and Sodium Content of Commonly Consumed Meat, Poultry, and Fish Products Among Patients With Chronic Kidney Disease. J. Ren. Nutr. 2018;28:83–90. doi: 10.1053/j.jrn.2017.08.013.
    1. Picard K. Potassium Additives and Bioavailability: Are We Missing Something in Hyperkalemia Management? J. Ren. Nutr. 2018 doi: 10.1053/j.jrn.2018.10.003.
    1. Hirahatake K.M., Jacobs D.R., Gross M.D., Bibbins-Domingo K.B., Shlipak M.G., Mattix-Kramer H., Odegaard A.O. The Association of Serum Carotenoids, Tocopherols, and Ascorbic Acid with Rapid Kidney Function Decline: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. J. Ren. Nutr. 2018 doi: 10.1053/j.jrn.2018.05.008.
    1. Rapa S.F., Di Iorio B.R., Campiglia P., Heidland A., Marzocco S. Inflammation and Oxidative Stress in Chronic Kidney Disease-Potential Therapeutic Role of Minerals, Vitamins and Plant-Derived Metabolites. Int. J. Mol. Sci. 2019;21:263. doi: 10.3390/ijms21010263.
    1. Mills K.T., Chen J., Yang W., Appel L.J., Kusek J.W., Alper A., Delafontaine P., Keane M.G., Mohler E., Ojo A., et al. Sodium Excretion and the Risk of Cardiovascular Disease in Patients With Chronic Kidney Disease. JAMA. 2016;315:2200–2210. doi: 10.1001/jama.2016.4447.
    1. Lee S.W., Kim Y.S., Kim Y.H., Chung W., Park S.K., Choi K.H., Ahn C., Oh K.H. Dietary Protein Intake, Protein Energy Wasting, and the Progression of Chronic Kidney Disease: Analysis from the KNOW-CKD Study. Nutrients. 2019;11:121. doi: 10.3390/nu11010121.
    1. Morris A., Krishnan N., Kimani P.K., Lycett D. Effect of Dietary Potassium Restriction on Serum Potassium, Disease Progression, and Mortality in Chronic Kidney Disease: A Systematic Review and Meta-Analysis. J. Ren. Nutr. 2019 doi: 10.1053/j.jrn.2019.09.009.
    1. Noori N., Kalantar-Zadeh K., Kovesdy C.P., Bross R., Benner D., Kopple J.D. Association of dietary phosphorus intake and phosphorus to protein ratio with mortality in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2010;5:683–692. doi: 10.2215/CJN.08601209.
    1. St-Jules D.E., Goldfarb D.S., Sevick M.A. Nutrient Non-equivalence: Does Restricting High-Potassium Plant Foods Help to Prevent Hyperkalemia in Hemodialysis Patients? J. Ren. Nutr. 2016;26:282–287. doi: 10.1053/j.jrn.2016.02.005.
    1. Cupisti A., D’Alessandro C., Gesualdo L., Cosola C., Gallieni M., Egidi M.F., Fusaro M. Non-Traditional Aspects of Renal Diets: Focus on Fiber, Alkali and Vitamin K1 Intake. Nutrients. 2017;9:444. doi: 10.3390/nu9050444.
    1. Evenepoel P., Meijers B.K. Dietary fiber and protein: Nutritional therapy in chronic kidney disease and beyond. Kidney Int. 2012;81:227–229. doi: 10.1038/ki.2011.394.
    1. Xu H., Huang X., Riserus U., Krishnamurthy V.M., Cederholm T., Arnlov J., Lindholm B., Sjogren P., Carrero J.J. Dietary fiber, kidney function, inflammation, and mortality risk. Clin. J. Am. Soc. Nephrol. 2014;9:2104–2110. doi: 10.2215/CJN.02260314.
    1. Krishnamurthy V.M., Wei G., Baird B.C., Murtaugh M., Chonchol M.B., Raphael K.L., Greene T., Beddhu S. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease. Kidney Int. 2012;81:300–306. doi: 10.1038/ki.2011.355.
    1. Kalantar-Zadeh K., Ikizler T.A. Let them eat during dialysis: An overlooked opportunity to improve outcomes in maintenance hemodialysis patients. J. Ren. Nutr. 2013;23:157–163. doi: 10.1053/j.jrn.2012.11.001.
    1. Cupisti A., Kovesdy C.P., D’Alessandro C., Kalantar-Zadeh K. Dietary Approach to Recurrent or Chronic Hyperkalaemia in Patients with Decreased Kidney Function. Nutrients. 2018;10:261. doi: 10.3390/nu10030261.
    1. Kalantar-Zadeh K. Patient education for phosphorus management in chronic kidney disease. Patient Prefer. Adher. 2013;7:379–390. doi: 10.2147/PPA.S43486.
    1. Kalantar-Zadeh K., Block G., McAllister C.J., Humphreys M.H., Kopple J.D. Appetite and inflammation, nutrition, anemia and clinical outcome in hemodialysis patients. Am. J. Clin. Nutr. 2004;80:299–307. doi: 10.1093/ajcn/80.2.299.
    1. Guebre-Egziabher F., Debard C., Drai J., Denis L., Pesenti S., Bienvenu J., Vidal H., Laville M., Fouque D. Differential dose effect of fish oil on inflammation and adipose tissue gene expression in chronic kidney disease patients. Nutrition. 2013;29:730–736. doi: 10.1016/j.nut.2012.10.011.
    1. Kalantar-Zadeh K., Braglia A., Chow J., Kwon O., Kuwae N., Colman S., Cockram D.B., Kopple J.D. An anti-inflammatory and antioxidant nutritional supplement for hypoalbuminemic hemodialysis patients: A pilot/feasibility study. J. Ren. Nutr. 2005;15:318–331. doi: 10.1016/j.jrn.2005.04.004.
    1. Rattanasompattikul M., Molnar M.Z., Lee M.L., Dukkipati R., Bross R., Jing J., Kim Y., Voss A.C., Benner D., Feroze U., et al. Anti-Inflammatory and Anti-Oxidative Nutrition in Hypoalbuminemic Dialysis Patients (AIONID) study: Results of the pilot-feasibility, double-blind, randomized, placebo-controlled trial. J. Cachexia Sarcopenia Muscle. 2013;4:247–257. doi: 10.1007/s13539-013-0115-9.
    1. Soohoo M., Ahmadi S.F., Qader H., Streja E., Obi Y., Moradi H., Rhee C.M., Kim T.H., Kovesdy C.P., Kalantar-Zadeh K. Association of serum vitamin B12 and folate with mortality in incident hemodialysis patients. Nephrol. Dial. Transplant. 2017;32:1024–1032. doi: 10.1093/ndt/gfw090.
    1. Li X.S., Wang Z., Cajka T., Buffa J.A., Nemet I., Hurd A.G., Gu X., Skye S.M., Roberts A.B., Wu Y., et al. Untargeted metabolomics identifies trimethyllysine, a TMAO-producing nutrient precursor, as a predictor of incident cardiovascular disease risk. JCI Insight. 2018;3 doi: 10.1172/jci.insight.99096.
    1. Koeth R.A., Lam-Galvez B.R., Kirsop J., Wang Z., Levison B.S., Gu X., Copeland M.F., Bartlett D., Cody D.B., Dai H.J., et al. l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. J. Clin. Investig. 2019;129:373–387. doi: 10.1172/JCI94601.
    1. Smits L.P., Kootte R.S., Levin E., Prodan A., Fuentes S., Zoetendal E.G., Wang Z., Levison B.S., Cleophas M.C.P., Kemper E.M., et al. Effect of Vegan Fecal Microbiota Transplantation on Carnitine- and Choline-Derived Trimethylamine-N-Oxide Production and Vascular Inflammation in Patients With Metabolic Syndrome. J. Am. Heart Assoc. 2018;7 doi: 10.1161/JAHA.117.008342.
    1. Vaziri N.D., Goshtasbi N., Yuan J., Jellbauer S., Moradi H., Raffatellu M., Kalantar-Zadeh K. Uremic plasma impairs barrier function and depletes the tight junction protein constituents of intestinal epithelium. Am. J. Nephrol. 2012;36:438–443. doi: 10.1159/000343886.
    1. Lau W.L., Kalantar-Zadeh K., Vaziri N.D. The Gut as a Source of Inflammation in Chronic Kidney Disease. Nephron. 2015;130:92–98. doi: 10.1159/000381990.
    1. Vaziri N.D., Yuan J., Rahimi A., Ni Z., Said H., Subramanian V.S. Disintegration of colonic epithelial tight junction in uremia: A likely cause of CKD-associated inflammation. Nephrol. Dial. Transplant. 2012;27:2686–2693. doi: 10.1093/ndt/gfr624.
    1. Vaziri N.D., Yuan J., Nazertehrani S., Ni Z., Liu S. Chronic kidney disease causes disruption of gastric and small intestinal epithelial tight junction. Am. J. Nephrol. 2013;38:99–103. doi: 10.1159/000353764.
    1. Magnusson M., Magnusson K.E., Sundqvist T., Denneberg T. Increased intestinal permeability to differently sized polyethylene glycols in uremic rats: Effects of low- and high-protein diets. Nephron. 1990;56:306–311. doi: 10.1159/000186158.
    1. Magnusson M., Magnusson K.E., Sundqvist T., Denneberg T. Impaired intestinal barrier function measured by differently sized polyethylene glycols in patients with chronic renal failure. Gut. 1991;32:754–759. doi: 10.1136/gut.32.7.754.
    1. Lau W.L., Liu S.M., Pahlevan S., Yuan J., Khazaeli M., Ni Z., Chan J.Y., Vaziri N.D. Role of Nrf2 dysfunction in uremia-associated intestinal inflammation and epithelial barrier disruption. Dig. Dis. Sci. 2015;60:1215–1222. doi: 10.1007/s10620-014-3428-4.
    1. Wang F., Jiang H., Shi K., Ren Y., Zhang P., Cheng S. Gut bacterial translocation is associated with microinflammation in end-stage renal disease patients. Nephrology. 2012;17:733–738. doi: 10.1111/j.1440-1797.2012.01647.x.
    1. Shi K., Wang F., Jiang H., Liu H., Wei M., Wang Z., Xie L. Gut bacterial translocation may aggravate microinflammation in hemodialysis patients. Dig. Dis. Sci. 2014;59:2109–2117. doi: 10.1007/s10620-014-3202-7.
    1. Feroze U., Kalantar-Zadeh K., Sterling K.A., Molnar M.Z., Noori N., Benner D., Shah V., Dwivedi R., Becker K., Kovesdy C.P., et al. Examining associations of circulating endotoxin with nutritional status, inflammation, and mortality in hemodialysis patients. J. Ren. Nutr. 2012;22:317–326. doi: 10.1053/j.jrn.2011.05.004.
    1. Szeto C.C., Kwan B.C., Chow K.M., Lai K.B., Chung K.Y., Leung C.B., Li P.K. Endotoxemia is related to systemic inflammation and atherosclerosis in peritoneal dialysis patients. Clin. J. Am. Soc. Nephrol. 2008;3:431–436. doi: 10.2215/CJN.03600807.
    1. Rossi M., Campbell K.L., Johnson D.W., Stanton T., Vesey D.A., Coombes J.S., Weston K.S., Hawley C.M., McWhinney B.C., Ungerer J.P., et al. Protein-bound uremic toxins, inflammation and oxidative stress: A cross-sectional study in stage 3-4 chronic kidney disease. Arch. Med. Res. 2014;45:309–317. doi: 10.1016/j.arcmed.2014.04.002.
    1. McIntyre C.W., Harrison L.E., Eldehni M.T., Jefferies H.J., Szeto C.C., John S.G., Sigrist M.K., Burton J.O., Hothi D., Korsheed S., et al. Circulating endotoxemia: A novel factor in systemic inflammation and cardiovascular disease in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2011;6:133–141. doi: 10.2215/CJN.04610510.
    1. Lau W.L., Savoj J., Nakata M.B., Vaziri N.D. Altered microbiome in chronic kidney disease: Systemic effects of gut-derived uremic toxins. Clin. Sci. 2018;132:509–522. doi: 10.1042/CS20171107.
    1. Lai S., Molfino A., Testorio M., Perrotta A.M., Currado A., Pintus G., Pietrucci D., Unida V., La Rocca D., Biocca S., et al. Effect of Low-Protein Diet and Inulin on Microbiota and Clinical Parameters in Patients with Chronic Kidney Disease. Nutrients. 2019;11:3006. doi: 10.3390/nu11123006.
    1. National Kidney Foundation (NKF) Plant-Based Diet and Kidney Health. [(accessed on 27 June 2020)];2019 Available online: .
    1. Wang M., Chou J., Chang Y., Lau W.L., Reddy U., Rhee C.M., Chen J., Hao C., Kalantar-Zadeh K. The role of low protein diet in ameliorating proteinuria and deferring dialysis initiation: What is old and what is new. Panminerva Med. 2017;59:157–165. doi: 10.23736/S0031-0808.16.03264-X.
    1. Hebert L.A., Kusek J.W., Greene T., Agodoa L.Y., Jones C.A., Levey A.S., Breyer J.A., Faubert P., Rolin H.A., Wang S.R. Effects of blood pressure control on progressive renal disease in blacks and whites. Modification of Diet in Renal Disease Study Group. Hypertension. 1997;30:428–435. doi: 10.1161/01.HYP.30.3.428.
    1. Kramer H., Jimenez E.Y., Brommage D., Vassalotti J., Montgomery E., Steiber A., Schofield M. Medical Nutrition Therapy for Patients with Non-Dialysis-Dependent Chronic Kidney Disease: Barriers and Solutions. J. Acad. Nutr. Diet. 2018;118:1958–1965. doi: 10.1016/j.jand.2018.05.023.
    1. Sugimoto M., Asakura K., Masayasu S., Sasaki S. Relationship of nutrition knowledge and self-reported dietary behaviors with urinary excretion of sodium and potassium: Comparison between dietitians and nondietitians. Nutr. Res. 2016;36:440–451. doi: 10.1016/j.nutres.2015.12.012.
    1. Kalantar-Zadeh K., Moore L.W. Impact of Nutrition and Diet on COVID-19 Infection and Implications for Kidney Health and Kidney Disease Management. J. Ren. Nutr. 2020;30:179–181. doi: 10.1053/j.jrn.2020.03.006.
    1. Kelly J.T., Campbell K.L., Hoffmann T., Reidlinger D.P. Patient Experiences of Dietary Management in Chronic Kidney Disease: A Focus Group Study. J. Ren. Nutr. 2018;28:393–402. doi: 10.1053/j.jrn.2017.07.008.
    1. Department of Veterans Affairs Chronic Kidney Disease Prevention, Early Recognition, and Management, Veterans Health Administration Transmittal Sheet. [(accessed on 27 June 2020)];2020 Available online: .
    1. Kalantar-Zadeh K., Tortorici A.R., Chen J.L., Kamgar M., Lau W.L., Moradi H., Rhee C.M., Streja E., Kovesdy C.P. Dietary restrictions in dialysis patients: Is there anything left to eat? Semin. Dial. 2015;28:159–168. doi: 10.1111/sdi.12348.
    1. Noori N., Kovesdy C.P., Bross R., Lee M., Oreopoulos A., Benner D., Mehrotra R., Kopple J.D., Kalantar-Zadeh K. Novel equations to estimate lean body mass in maintenance hemodialysis patients. Am. J. Kidney Dis. 2011;57:130–139. doi: 10.1053/j.ajkd.2010.10.003.
    1. Noori N., Kopple J.D., Kovesdy C.P., Feroze U., Sim J.J., Murali S.B., Luna A., Gomez M., Luna C., Bross R., et al. Mid-Arm Muscle Circumference and Quality of Life and Survival in Maintenance Hemodialysis Patients. Clin. J. Am. Soc. Nephrol. 2010;5:2258–2268. doi: 10.2215/CJN.02080310.
    1. Kalantar-Zadeh K., Dunne E., Nixon K., Kahn K., Lee G.H., Kleiner M., Luft F.C. Near infra-red interactance for nutritional assessment of dialysis patients. Nephrol. Dial. Transplant. 1999;14:169–175. doi: 10.1093/ndt/14.1.169.
    1. Kalantar-Zadeh K., Block G., Kelly M.P., Schroepfer C., Rodriguez R.A., Humphreys M.H. Near infra-red interactance for longitudinal assessment of nutrition in dialysis patients. J. Ren. Nutr. 2001;11:23–31. doi: 10.1016/S1051-2276(01)91938-7.
    1. Kalantar-Zadeh K., Kuwae N., Wu D.Y., Shantouf R.S., Fouque D., Anker S.D., Block G., Kopple J.D. Associations of body fat and its changes over time with quality of life and prospective mortality in hemodialysis patients. Am. J. Clin. Nutr. 2006;83:202–210. doi: 10.1093/ajcn/83.2.202.
    1. Kalantar-Zadeh K., Kopple J.D., Block G., Humphreys M.H. A malnutrition-inflammation score is correlated with morbidity and mortality in maintenance hemodialysis patients. Am. J. Kidney Dis. 2001;38:1251–1263. doi: 10.1053/ajkd.2001.29222.
    1. Rambod M., Kovesdy C.P., Kalantar-Zadeh K. Malnutrition-Inflammation Score for risk stratification of patients with CKD: Is it the promised gold standard? Nat. Clin. Pract. Nephrol. 2008;4:354–355. doi: 10.1038/ncpneph0834.
    1. Rambod M., Bross R., Zitterkoph J., Benner D., Pithia J., Colman S., Kovesdy C.P., Kopple J.D., Kalantar-Zadeh K. Association of Malnutrition-Inflammation Score with quality of life and mortality in hemodialysis patients: A 5-year prospective cohort study. Am. J. Kidney Dis. 2009;53:298–309. doi: 10.1053/j.ajkd.2008.09.018.
    1. Molnar M.Z., Keszei A., Czira M.E., Rudas A., Ujszaszi A., Haromszeki B., Kosa J.P., Lakatos P., Sarvary E., Beko G., et al. Evaluation of the malnutrition-inflammation score in kidney transplant recipients. Am. J. Kidney Dis. 2010;56:102–111. doi: 10.1053/j.ajkd.2010.02.350.
    1. Bross R., Chandramohan G., Kovesdy C.P., Oreopoulos A., Noori N., Golden S., Benner D., Kopple J.D., Kalantar-Zadeh K. Comparing Body Composition Assessment Tests in Long-term Hemodialysis Patients. Am. J. Kidney Dis. 2010 doi: 10.1053/j.ajkd.2009.12.031.
    1. Heimburger O., Qureshi A.R., Blaner W.S., Berglund L., Stenvinkel P. Hand-grip muscle strength, lean body mass, and plasma proteins as markers of nutritional status in patients with chronic renal failure close to start of dialysis therapy. Am. J. Kidney Dis. 2000;36:1213–1225. doi: 10.1053/ajkd.2000.19837.
    1. Kalantar-Zadeh K., Amin A.N. Toward more accurate detection and risk stratification of chronic kidney disease. JAMA. 2012;307:1976–1977. doi: 10.1001/jama.2012.4623.
    1. Genoni A., Lo J., Lyons-Wall P., Devine A. Compliance, Palatability and Feasibility of PALEOLITHIC and Australian Guide to Healthy Eating Diets in Healthy Women: A 4-Week Dietary Intervention. Nutrients. 2016;8:481. doi: 10.3390/nu8080481.
    1. Rocco M.V., Dwyer J.T., Larive B., Greene T., Cockram D.B., Chumlea W.C., Kusek J.W., Leung J., Burrowes J.D., McLeroy S.L., et al. The effect of dialysis dose and membrane flux on nutritional parameters in hemodialysis patients: Results of the HEMO Study. Kidney Int. 2004;65:2321–2334. doi: 10.1111/j.1523-1755.2004.00647.x.
    1. Weisbord S.D., Fried L.F., Arnold R.M., Rotondi A.J., Fine M.J., Levenson D.J., Switzer G.E. Development of a symptom assessment instrument for chronic hemodialysis patients: The Dialysis Symptom Index. J. Pain Symptom Manag. 2004;27:226–240. doi: 10.1016/j.jpainsymman.2003.07.004.
    1. Atkinson M.J., Wishart P.M., Wasil B.I., Robinson J.W. The Self-Perception and Relationships Tool (S-PRT): A novel approach to the measurement of subjective health-related quality of life. Health Qual Life Outcomes. 2004;2:36. doi: 10.1186/1477-7525-2-36.
    1. Kalantar-Zadeh K., Kovesdy C.P., Bross R., Benner D., Noori N., Murali S.B., Block T., Norris J., Kopple J.D., Block G. Design and development of a dialysis food frequency questionnaire. J. Ren. Nutr. 2011;21:257–262. doi: 10.1053/j.jrn.2010.05.013.
    1. Sumida K., Molnar M.Z., Potukuchi P.K., Thomas F., Lu J.L., Yamagata K., Kalantar-Zadeh K., Kovesdy C.P. Constipation and risk of death and cardiovascular events. Atherosclerosis. 2019;281:114–120. doi: 10.1016/j.atherosclerosis.2018.12.021.
    1. Sumida K., Molnar M.Z., Potukuchi P.K., Thomas F., Lu J.L., Matsushita K., Yamagata K., Kalantar-Zadeh K., Kovesdy C.P. Constipation and Incident CKD. J. Am. Soc. Nephrol. 2017;28:1248–1258. doi: 10.1681/ASN.2016060656.
    1. Kistler B.M., Moore L.W., Benner D., Biruete A., Boaz M., Brunori G., Chen J., Drechsler C., Guebre-Egziabher F., Hensley M.K., et al. The International Society of Renal Nutrition and Metabolism Commentary on the National Kidney Foundation and Academy of Nutrition and Dietetics KDOQI Clinical Practice Guideline for Nutrition in Chronic Kidney Disease. J. Ren. Nutr. 2020 in press.
    1. Wang D.D., Hu F.B. Precision nutrition for prevention and management of type 2 diabetes. Lancet Diabetes Endocrinol. 2018;6:416–426. doi: 10.1016/S2213-8587(18)30037-8.
    1. McMacken M., Shah S. A plant-based diet for the prevention and treatment of type 2 diabetes. J. Geriatr. Cardiol. 2017;14:342–354. doi: 10.11909/j.issn.1671-5411.2017.05.009.
    1. Wright N., Wilson L., Smith M., Duncan B., McHugh P. The BROAD study: A randomised controlled trial using a whole food plant-based diet in the community for obesity, ischaemic heart disease or diabetes. Nutr. Diabetes. 2017;7:e256. doi: 10.1038/nutd.2017.3.
    1. Tuso P.J., Ismail M.H., Ha B.P., Bartolotto C. Nutritional update for physicians: Plant-based diets. Perm. J. 2013;17:61–66. doi: 10.7812/TPP/12-085.
    1. Fulgoni V., 3rd, Drewnowski A. An Economic Gap Between the Recommended Healthy Food Patterns and Existing Diets of Minority Groups in the US National Health and Nutrition Examination Survey 2013-2014. Front. Nutr. 2019;6:37. doi: 10.3389/fnut.2019.00037.

Source: PubMed

3
구독하다