40 Years of Percutaneous Coronary Intervention: History and Future Directions

John Canfield, Hana Totary-Jain, John Canfield, Hana Totary-Jain

Abstract

The field of interventional cardiology has evolved significantly since the first percutaneous transluminal coronary angioplasty was performed 40 years ago. This evolution began with a balloon catheter mounted on a fixed wire and has progressed into bare-metal stents (BMS), first-generation drug-eluting stents (DES), second- and third-generation biodegradable polymer-based DES, and culminates with the advent of bioabsorbable stents, which are currently under development. Each step in technological advancement has improved outcomes, while new persisting challenges arise, caused by the stent scaffolds, the polymers employed, and the non-selective cytostatic and cytotoxic drugs eluted from the stents. Despite the promising technological advances made in stent technology, managing the balance between reductions in target lesion revascularization, stent thrombosis, and bleeding remain highly complex issues. This review summarizes the evolution of percutaneous coronary intervention with a focus on vascular dysfunction triggered by the non-selective drugs eluted from various stents. It also provides an overview of the mechanism of action of the drugs currently used in DES. We also discuss the efforts made in developing novel cell-selective drugs capable of inhibiting vascular smooth muscle cell (VSMC) proliferation, migration, and infiltration of inflammatory cells while allowing for complete reendothelialization. Lastly, in the era of precision medicine, considerations of patients' genetic variance associated with myocardial infarction and in-stent restenosis are discussed. The combination of personalized medicine and improved stent platform with cell-selective drugs has the potential to solve the remaining challenges and improve the care of coronary artery disease patients.

Keywords: angioplasty; coronary artery disease; percutaneous intervention; reendothelialization; restenosis; stent.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Evolutionary history of percutaneous coronary intervention (PCI). 1 BMS: Bare-metal stent. 2 DES: Drug-eluting stent.
Figure 2
Figure 2
Graphic schematic depicting the cell-selective therapy capable of preventing restenosis and allowing for reendothelialization. Balloon injury and control green fluorescent protein (GFP) treated rat coronary artery results in neotintimal hyperplasia, infiltration of inflammatory cells, and an increased risk of thrombosis, accompanied by a severe reduction in reendothelialization and loss of endothelial cell-dependent vasodilation. Balloon injury and non-cell selective p27 treated rat coronary artery decreased neointimal hyperplasia and inflammation, but increased thrombosis due to decreased reendothelialization endothelial cell-dependent vasodilation. However, balloon injury and treatment with the cell-selective p27-126TS decreased neotintimal hyperplasia and inflammation, but also allowed for complete reendothelialization and effective endothelial cell-dependent vasodilation and greatly diminished the risk of thrombosis. EC: endothelial cell; CMV: Cytomegalovirus.
Figure 3
Figure 3
Treatment with p27-126TS prevents restenosis and allows for complete reendothelialization of the vascular wall. (AD). Representative images of uninjured (A), or balloon injured rat carotid arteries treated with GFP (B), p27 (C), or p27-126TS (D) followed by hematoxylin and eosin (H&E) stain. Original magnification 10×, scale bars represent 500 μM. (EH) Representative images of uninjured (E), or balloon injured rat carotid arteries treated with GFP (F), p27 (G), or p27-126TS (H) immunostained for vascular endothelial cell marker vascular endothelial-cadherin (VE-Cadherin). White arrows indicate VE-Cadherin positive endothelial cells. (IL) Representative images of uninjured (I), or balloon injured rat carotid arteries treated with GFP (J), p27 (K), or p27-126TS (L) immunostained for the pan-inflammatory marker CD45. (EL) Nuclei were counterstained with DAPI. Original magnification 60×, scale bars represent 100 μM.

References

    1. Benjamin E.J., Blaha M.J., Chiuve S.E., Cushman M., Das S.R., Deo R., de Ferranti S.D., Floyd J., Fornage M., Gillespie C., et al. Heart disease and stroke statistics-2017 update: A report from the American heart association. Circulation. 2017;135:e146–e603. doi: 10.1161/CIR.0000000000000485.
    1. American Heart Association (AHA) Projections of Cardiovascular Disease Prevalence and Costs: 2015–2035. American Heart Association; Dallas, TX, USA: 2016. pp. 1–54.
    1. Laslett L.J., Alagona P., Jr., Clark B.A., 3rd, Drozda J.P., Jr., Saldivar F., Wilson S.R., Poe C., Hart M. The worldwide environment of cardiovascular disease: Prevalence, diagnosis, therapy, and policy issues: A report from the American college of cardiology. J. Am. Coll. Cardiol. 2012;60:S1–S49. doi: 10.1016/j.jacc.2012.11.002.
    1. Stefanini G.G., Holmes D.R., Jr. Drug-eluting coronary-artery stents. N. Engl. J. Med. 2013;368:254–265. doi: 10.1056/NEJMra1210816.
    1. Gruntzig A. Transluminal dilatation of coronary-artery stenosis. Lancet. 1978;311:1093. doi: 10.1016/S0140-6736(78)90500-7.
    1. Sigwart U., Puel J., Mirkovitch V., Joffre F., Kappenberger L. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N. Engl. J. Med. 1987;316:701–706. doi: 10.1056/NEJM198703193161201.
    1. Serruys P.W., Strauss B.H., Beatt K.J., Bertrand M.E., Puel J., Rickards A.F., Meier B., Goy J.J., Vogt P., Kappenberger L., et al. Angiographic follow-up after placement of a self-expanding coronary-artery stent. N. Engl. J. Med. 1991;324:13–17. doi: 10.1056/NEJM199101033240103.
    1. Fischman D.L., Leon M.B., Baim D.S., Schatz R.A., Savage M.P., Penn I., Detre K., Veltri L., Ricci D., Nobuyoshi M., et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent restenosis study investigators. N. Engl. J. Med. 1994;331:496–501. doi: 10.1056/NEJM199408253310802.
    1. Hoffmann R., Mintz G.S., Dussaillant G.R., Popma J.J., Pichard A.D., Satler L.F., Kent K.M., Griffin J., Leon M.B. Patterns and mechanisms of in-stent restenosis. A serial intravascular ultrasound study. Circulation. 1996;94:1247–1254. doi: 10.1161/01.CIR.94.6.1247.
    1. Santulli G., Totary-Jain H. Tailoring mTOR-based therapy: Molecular evidence and clinical challenges. Pharmacogenomics. 2013;14:1517–1526. doi: 10.2217/pgs.13.143.
    1. Poon M., Marx S.O., Gallo R., Badimon J.J., Taubman M.B., Marks A.R. Rapamycin inhibits vascular smooth muscle cell migration. J. Clin. Investig. 1996;98:2277–2283. doi: 10.1172/JCI119038.
    1. Morris R.E., Cao W., Huang X., Gregory C.R., Billingham M.E., Rowan R., Shorthouse R.A. Rapamycin (Sirolimus) inhibits vascular smooth muscle DNA synthesis in vitro and suppresses narrowing in arterial allografts and in balloon-injured carotid arteries: Evidence that rapamycin antagonizes growth factor action on immune and nonimmune cells. Transpl. Proc. 1995;27:430–431.
    1. Gallo R., Padurean A., Jayaraman T., Marx S., Roque M., Adelman S., Chesebro J., Fallon J., Fuster V., Marks A., et al. Inhibition of intimal thickening after balloon angioplasty in porcine coronary arteries by targeting regulators of the cell cycle. Circulation. 1999;99:2164–2170. doi: 10.1161/01.CIR.99.16.2164.
    1. Moses J.W., Leon M.B., Popma J.J., Fitzgerald P.J., Holmes D.R., O’Shaughnessy C., Caputo R.P., Kereiakes D.J., Williams D.O., Teirstein P.S., et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N. Engl. J. Med. 2003;349:1315–1323. doi: 10.1056/NEJMoa035071.
    1. Weisz G., Leon M.B., Holmes D.R., Jr., Kereiakes D.J., Clark M.R., Cohen B.M., Ellis S.G., Coleman P., Hill C., Shi C., et al. Two-year outcomes after sirolimus-eluting stent implantation: Results from the sirolimus-eluting stent in de novo native coronary lesions (sirius) trial. J. Am. Coll. Cardiol. 2006;47:1350–1355. doi: 10.1016/j.jacc.2005.11.077.
    1. Weisz G., Leon M.B., Holmes D.R., Jr., Kereiakes D.J., Popma J.J., Teirstein P.S., Cohen S.A., Wang H., Cutlip D.E., Moses J.W. Five-year follow-up after sirolimus-eluting stent implantation results of the sirius (sirolimus-eluting stent in de-novo native coronary lesions) trial. J. Am. Coll. Cardiol. 2009;53:1488–1497. doi: 10.1016/j.jacc.2009.01.050.
    1. Stone G.W., Ellis S.G., Cox D.A., Hermiller J., O’Shaughnessy C., Mann J.T., Turco M., Caputo R., Bergin P., Greenberg J., et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N. Engl. J. Med. 2004;350:221–231. doi: 10.1056/NEJMoa032441.
    1. Stone G.W., Moses J.W., Ellis S.G., Schofer J., Dawkins K.D., Morice M.C., Colombo A., Schampaert E., Grube E., Kirtane A.J., et al. Safety and efficacy of sirolimus- and paclitaxel-eluting coronary stents. N. Engl. J. Med. 2007;356:998–1008. doi: 10.1056/NEJMoa067193.
    1. Stettler C., Wandel S., Allemann S., Kastrati A., Morice M.C., Schomig A., Pfisterer M.E., Stone G.W., Leon M.B., de Lezo J.S., et al. Outcomes associated with drug-eluting and bare-metal stents: A collaborative network meta-analysis. Lancet. 2007;370:937–948. doi: 10.1016/S0140-6736(07)61444-5.
    1. Otsuka F., Finn A.V., Yazdani S.K., Nakano M., Kolodgie F.D., Virmani R. The importance of the endothelium in atherothrombosis and coronary stenting. Nat. Rev. Cardiol. 2012;9:439–453. doi: 10.1038/nrcardio.2012.64.
    1. Tomey M., Mehran R. Dual antiplatelet therapy dilemmas: Duration and choice of antiplatelets in acute coronary syndromes. Curr. Cardiol. Rep. 2013;15:405. doi: 10.1007/s11886-013-0405-z.
    1. Levine G.N., Bates E.R., Bittl J.A., Brindis R.G., Fihn S.D., Fleisher L.A., Granger C.B., Lange R.A., Mack M.J., Mauri L., et al. 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2016;68:1082–1115. doi: 10.1016/j.jacc.2016.03.513.
    1. Otsuka F., Byrne R.A., Yahagi K., Mori H., Ladich E., Fowler D.R., Kutys R., Xhepa E., Kastrati A., Virmani R., et al. Neoatherosclerosis: Overview of histopathologic findings and implications for intravascular imaging assessment. Eur. Heart J. 2015;36:2147–2159. doi: 10.1093/eurheartj/ehv205.
    1. Toyota T., Shiomi H., Morimoto T., Kimura T. Meta-analysis of long-term clinical outcomes of everolimus-eluting stents. Am. J. Cardiol. 2015;116:187–194. doi: 10.1016/j.amjcard.2015.03.059.
    1. Palmerini T., Benedetto U., Biondi-Zoccai G., Della Riva D., Bacchi-Reggiani L., Smits P.C., Vlachojannis G.J., Jensen L.O., Christiansen E.H., Berencsi K., et al. Long-term safety of drug-eluting and bare-metal stents: Evidence from a comprehensive network meta-analysis. J. Am. Coll. Cardiol. 2015;65:2496–2507. doi: 10.1016/j.jacc.2015.04.017.
    1. Bonaa K.H., Mannsverk J., Wiseth R., Aaberge L., Myreng Y., Nygard O., Nilsen D.W., Klow N.E., Uchto M., Trovik T., et al. Drug-eluting or bare-metal stents for coronary artery disease. N. Engl. J. Med. 2016;375:1242–1252. doi: 10.1056/NEJMoa1607991.
    1. Jensen L.O., Thayssen P., Christiansen E.H., Maeng M., Ravkilde J., Hansen K.N., Hansen H.S., Krusell L., Kaltoft A., Tilsted H.H., et al. Safety and efficacy of everolimus-versus sirolimus-eluting stents: 5-year results from SORT OUT IV. J. Am. Coll. Cardiol. 2016;67:751–762. doi: 10.1016/j.jacc.2015.11.051.
    1. Piccolo R., Stefanini G.G., Franzone A., Spitzer E., Blochlinger S., Heg D., Juni P., Windecker S. Safety and efficacy of resolute zotarolimus-eluting stents compared with everolimus-eluting stents: A meta-analysis. Circ. Cardiovasc. Interv. 2015;8:e002223. doi: 10.1161/CIRCINTERVENTIONS.114.002223.
    1. Ormiston J.A., Serruys P.W., Regar E., Dudek D., Thuesen L., Webster M.W., Onuma Y., Garcia-Garcia H.M., McGreevy R., Veldhof S. A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): A prospective open-label trial. Lancet. 2008;371:899–907. doi: 10.1016/S0140-6736(08)60415-8.
    1. Dudek D., Onuma Y., Ormiston J.A., Thuesen L., Miquel-Hebert K., Serruys P.W. Four-year clinical follow-up of the absorb everolimus-eluting bioresorbable vascular scaffold in patients with de novo coronary artery disease: The absorb trial. EuroIntervention. 2012;7:1060–1061. doi: 10.4244/EIJV7I9A168.
    1. Ellis S.G., Kereiakes D.J., Metzger D.C., Caputo R.P., Rizik D.G., Teirstein P.S., Litt M.R., Kini A., Kabour A., Marx S.O., et al. Everolimus-eluting bioresorbable scaffolds for coronary artery disease. N. Engl. J. Med. 2015;373:1905–1915. doi: 10.1056/NEJMoa1509038.
    1. Serruys P.W., Chevalier B., Sotomi Y., Cequier A., Carrie D., Piek J.J., Van Boven A.J., Dominici M., Dudek D., McClean D., et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): A 3 year, randomised, controlled, single-blind, multicentre clinical trial. Lancet. 2016;388:2479–2491. doi: 10.1016/S0140-6736(16)32050-5.
    1. Toyota T., Morimoto T., Shiomi H., Yoshikawa Y., Yaku H., Yamashita Y., Kimura T. Very late scaffold thrombosis of bioresorbable vascular scaffold: Systematic review and a meta-analysis. JACC Cardiovasc. Interv. 2017;10:27–37. doi: 10.1016/j.jcin.2016.10.027.
    1. Guagliumi G., Sirbu V., Musumeci G., Gerber R., Biondi-Zoccai G., Ikejima H., Ladich E., Lortkipanidze N., Matiashvili A., Valsecchi O., et al. Examination of the in vivo mechanisms of late drug-eluting stent thrombosis: Findings from optical coherence tomography and intravascular ultrasound imaging. JACC Cardiovasc. Interv. 2012;5:12–20. doi: 10.1016/j.jcin.2011.09.018.
    1. Vorpahl M., Yazdani S.K., Nakano M., Ladich E., Kolodgie F.D., Finn A.V., Virmani R. Pathobiology of stent thrombosis after drug-eluting stent implantation. Curr. Pharm. Des. 2010;16:4064–4071. doi: 10.2174/138161210794454879.
    1. Nakazawa G., Finn A.V., Joner M., Ladich E., Kutys R., Mont E.K., Gold H.K., Burke A.P., Kolodgie F.D., Virmani R. Delayed arterial healing and increased late stent thrombosis at culprit sites after drug-eluting stent placement for acute myocardial infarction patients: An autopsy study. Circulation. 2008;118:1138–1145. doi: 10.1161/CIRCULATIONAHA.107.762047.
    1. Luscher T.F., Steffel J., Eberli F.R., Joner M., Nakazawa G., Tanner F.C., Virmani R. Drug-eluting stent and coronary thrombosis: Biological mechanisms and clinical implications. Circulation. 2007;115:1051–1058. doi: 10.1161/CIRCULATIONAHA.106.675934.
    1. Finn A.V., Joner M., Nakazawa G., Kolodgie F., Newell J., John M.C., Gold H.K., Virmani R. Pathological correlates of late drug-eluting stent thrombosis: Strut coverage as a marker of endothelialization. Circulation. 2007;115:2435–2441. doi: 10.1161/CIRCULATIONAHA.107.693739.
    1. Nakazawa G., Nakano M., Otsuka F., Wilcox J.N., Melder R., Pruitt S., Kolodgie F.D., Virmani R. Evaluation of polymer-based comparator drug-eluting stents using a rabbit model of iliac artery atherosclerosis. Circ. Cardiovasc. Interv. 2011;4:38–46. doi: 10.1161/CIRCINTERVENTIONS.110.957654.
    1. Garg S., Bourantas C., Serruys P.W. New concepts in the design of drug-eluting coronary stents. Nat. Rev. Cardiol. 2013;10:248–260. doi: 10.1038/nrcardio.2013.13.
    1. Alpert J.S., Kern K.B., Ewy G.A. The risk of stent thrombosis after coronary arterial stent implantation. Am. J. Med. 123:479–480. doi: 10.1016/j.amjmed.2010.02.007.
    1. Santulli G., Wronska A., Uryu K., Diacovo T.G., Gao M., Marx S.O., Kitajewski J., Chilton J.M., Akat K.M., Tuschl T., et al. A selective microrna-based strategy inhibits restenosis while preserving endothelial function. J. Clin. Investig. 2014;124:4102–4114. doi: 10.1172/JCI76069.
    1. Guo H., Ingolia N.T., Weissman J.S., Bartel D.P. Mammalian micrornas predominantly act to decrease target mRNA levels. Nature. 2010;466:835–840. doi: 10.1038/nature09267.
    1. Ambros V. The functions of animal micrornas. Nature. 2004;431:350–355. doi: 10.1038/nature02871.
    1. Parker L.H., Schmidt M., Jin S.W., Gray A.M., Beis D., Pham T., Frantz G., Palmieri S., Hillan K., Stainier D.Y., et al. The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation. Nature. 2004;428:754–758. doi: 10.1038/nature02416.
    1. Nichol D., Stuhlmann H. EGFL7: A unique angiogenic signaling factor in vascular development and disease. Blood. 2012;119:1345–1352. doi: 10.1182/blood-2011-10-322446.
    1. Campagnolo L., Leahy A., Chitnis S., Koschnick S., Fitch M.J., Fallon J.T., Loskutoff D., Taubman M.B., Stuhlmann H. EGFL7 is a chemoattractant for endothelial cells and is up-regulated in angiogenesis and arterial injury. Am. J. Pathol. 2005;167:275–284. doi: 10.1016/S0002-9440(10)62972-0.
    1. Consortium C.A.D., Deloukas P., Kanoni S., Willenborg C., Farrall M., Assimes T.L., Thompson J.R., Ingelsson E., Saleheen D., Erdmann J., et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013;45:25–33.
    1. Lee C.R., Sriramoju V.B., Cervantes A., Howell L.A., Varunok N., Madan S., Hamrick K., Polasek M.J., Lee J.A., Clarke M., et al. Clinical outcomes and sustainability of using CYP2C19 genotype-guided antiplatelet therapy after percutaneous coronary intervention. Circ. Genom. Precis. Med. 2018;11:e002069.
    1. Ladapo J.A., Budoff M.J., Azarmina P., Sharp D., Baker A., Maniet B., Herman L., Monane M. Economic outcomes of a precision medicine blood test to assess obstructive coronary artery disease: Results from the preset registry. Manag. Care. 2018;27:34–40.

Source: PubMed

3
구독하다