Comparative Efficacy of Lobeglitazone Versus Pioglitazone on Albuminuria in Patients with Type 2 Diabetes Mellitus

Kyung-Soo Kim, Sangmo Hong, Hong-Yup Ahn, Cheol-Young Park, Kyung-Soo Kim, Sangmo Hong, Hong-Yup Ahn, Cheol-Young Park

Abstract

Introduction: The aim of this analysis was to evaluate the efficacy of lobeglitazone on albuminuria at 24 weeks of follow-up in patients with type 2 diabetes mellitus (T2DM) compared with pioglitazone using data from a randomized, double-blinded phase III trial.

Methods: In the phase III trial, patients who were inadequately controlled with metformin received 0.5 mg of lobeglitazone or 15 mg of pioglitazone for 24 weeks. Post hoc, exploratory analysis was used to investigate mean changes from baseline in the urine albumin-creatinine ratio (UACR) between the lobeglitazone (N = 104) and pioglitazone (N = 101) treatment groups.

Results: After 24 weeks of treatment, UACR was slightly decreased in the lobeglitazone group (- 4.3 mg/g creatinine [Cr]) compared to baseline and slightly increased in the pioglitazone group (5.2 mg/g Cr), with no change in the estimated glomerular filtration rate in either group; this difference was not statistically significant (P = 0.476). The incidence of new-onset microalbuminuria (2.4%) and the progression of albuminuria by > 1 stage (2.9%) in the lobeglitazone group were lower than the respective values in the pioglitazone group (6.8 and 6.1%, respectively). Of the patients in the lobeglitazone group, 50% exhibited regression to normoalbuminuria, compared to 39.3% of the patients in the pioglitazone. In subjects in the lobeglitazone group with micro- and macroalbuminuria, UACR tended to be more decreased and HbA1c was more reduced compared to those with normoalbuminuria (P = 0.014).

Conclusion: Lobeglitazone had a tendency to improve albuminuria in patients with T2DM and had comparable effects on albuminuria as pioglitazone which has demonstrated beneficial effects.

Trial registration: ClinicalTrials.gov identifier, NCT01106131.

Keywords: Albuminuria; Diabetes mellitus, type 2; Pioglitazone; Thiazolidinediones.

Figures

Fig. 1
Fig. 1
Mean changes from baseline in the urine albumin-creatinine ratio (UACR) at end of the follow-up period (week 24). Cr Creatinine
Fig. 2
Fig. 2
Boxplot of mean changes in glycated hemoglobin (HbA1c) at end of the follow-up period (week 24) according to albuminuria categories (a) and estimated glomerular filtration rate (eGFR) (b)

References

    1. Kim KS, Park SW, Cho YW, Kim SK. Higher prevalence and progression rate of chronic kidney disease in elderly patients with type 2 diabetes mellitus. Diabetes Metab J. 2018;42:224–232. doi: 10.4093/dmj.2017.0065.
    1. Kim MK, Ko SH, Kim BY, et al. 2019 Clinical practice guidelines for type 2 diabetes mellitus in Korea. Diabetes Metab J. 2019;43:398–406. doi: 10.4093/dmj.2019.0137.
    1. Hur KY, Kim MK, Ko SH, et al. Metformin treatment for patients with diabetes and chronic kidney disease: a Korean Diabetes Association and Korean Society of Nephrology Consensus Statement. Diabetes Metab J. 2020;44:3–10. doi: 10.4093/dmj.2020.0004.
    1. Ritz E. Clinical manifestations and natural history of diabetic kidney disease. Med Clin North Am. 2013;97:19–29. doi: 10.1016/j.mcna.2012.10.008.
    1. American Diabetes Association. 11. Microvascular complications and foot care: standards of medical care in diabetes—2020. Diabetes Care. 2020;43(Suppl 1):S135–S151.
    1. Kim GS, Park JH, Won JC. The role of glucagon-like peptide 1 receptor agonists and sodium-glucose cotransporter 2 inhibitors in reducing cardiovascular events in patients with type 2 diabetes. Endocrinol Metab (Seoul). 2019;34:106–116. doi: 10.3803/EnM.2019.34.2.106.
    1. Rhee EJ, Kim HC, Kim JH, et al. 2018 Guidelines for the management of dyslipidemia in Korea. J Lipid Atheroscler. 2019;8:78–131. doi: 10.12997/jla.2019.8.2.78.
    1. Cho EH, Kim SW. Soluble dipeptidyl peptidase-4 levels are associated with decreased renal function in patients with type 2 diabetes mellitus. Diabetes Metab J. 2019;43:97–104. doi: 10.4093/dmj.2018.0030.
    1. National Kidney Foundation KDOQI clinical practice guideline for diabetes and CKD: 2012 update. Am J Kidney Dis. 2012;60:850–886. doi: 10.1053/j.ajkd.2012.07.005.
    1. Tuttle KR, Bakris GL, Bilous RW, et al. Diabetic kidney disease: a report from an ADA consensus conference. Diabetes Care. 2014;37:2864–2883. doi: 10.2337/dc14-1296.
    1. Ninomiya T, Perkovic V, de Galan BE, et al. Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. J Am Soc Nephrol. 2009;20:1813–1821. doi: 10.1681/ASN.2008121270.
    1. Sandsmark DK, Messé SR, Zhang X, et al. Proteinuria, but not eGFR, predicts stroke risk in chronic kidney disease: chronic renal insufficiency cohort study. Stroke. 2015;46:2075–2080. doi: 10.1161/STROKEAHA.115.009861.
    1. Choi YM, Kwon HS, Choi KM, Lee WY, Hong EG. Short-term effects of beraprost sodium on the markers for cardiovascular risk prediction in type 2 diabetic patients with microalbuminuria. Endocrinol Metab (Seoul). 2019;34:398–405. doi: 10.3803/EnM.2019.34.4.398.
    1. Yki-Järvinen H. Thiazolidinediones. N Engl J Med. 2004;351:1106–1118. doi: 10.1056/NEJMra041001.
    1. Kim KS, Lee BW, Kim YJ, Lee DH, Cha BS, Park CY. Nonalcoholic fatty liver disease and diabetes: part II: treatment. Diabetes Metab J. 2019;43:127–143. doi: 10.4093/dmj.2019.0034.
    1. American Diabetes Association. 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes—2020. Diabetes Care. 2020;43(Suppl 1):S98–S110.
    1. Nakamura T, Ushiyama C, Shimada N, Hayashi K, Ebihara I, Koide H. Comparative effects of pioglitazone, glibenclamide, and voglibose on urinary endothelin-1 and albumin excretion in diabetes patients. J Diabetes Compl. 2000;14:250–254. doi: 10.1016/S1056-8727(00)00124-0.
    1. Bakris G, Viberti G, Weston WM, Heise M, Porter LE, Freed MI. Rosiglitazone reduces urinary albumin excretion in type II diabetes. J Hum Hypertens. 2003;17:7–12. doi: 10.1038/sj.jhh.1001444.
    1. Schernthaner G, Matthews DR, Charbonnel B, Hanefeld M, Brunetti P, Quartet [corrected] Study Group. Efficacy and safety of pioglitazone versus metformin in patients with type 2 diabetes mellitus: a double-blind, randomized trial. J Clin Endocrinol Metab. 2004;89:6068–76.
    1. Bakris GL, Ruilope LM, McMorn SO, et al. Rosiglitazone reduces microalbuminuria and blood pressure independently of glycemia in type 2 diabetes patients with microalbuminuria. J Hypertens. 2006;24:2047–2055. doi: 10.1097/01.hjh.0000244955.39491.88.
    1. Kim SG, Kim DM, Woo JT, et al. Efficacy and safety of lobeglitazone monotherapy in patients with type 2 diabetes mellitus over 24-weeks: a multicenter, randomized, double-blind, parallel-group, placebo controlled trial. PLoS ONE. 2014;9:e92843. doi: 10.1371/journal.pone.0092843.
    1. Jin SM, Park CY, Cho YM, et al. Lobeglitazone and pioglitazone as add-ons to metformin for patients with type 2 diabetes: a 24-week, multicentre, randomized, double-blind, parallel-group, active-controlled, phase III clinical trial with a 28-week extension. Diabetes Obes Metab. 2015;17:599–602. doi: 10.1111/dom.12435.
    1. Sarafidis PA, Stafylas PC, Georgianos PI, Saratzis AN, Lasaridis AN. Effect of thiazolidinediones on albuminuria and proteinuria in diabetes: a meta-analysis. Am J Kidney Dis. 2010;55:835–847. doi: 10.1053/j.ajkd.2009.11.013.
    1. Lee JY, Cho Y, Lee M, et al. Clinical efficacy of the novel thiazolidinedione lobeglitazone in patients with type 2 diabetes. Diabetes Metab. 2018;44:452–455. doi: 10.1016/j.diabet.2017.11.005.
    1. Lee YH, Kim JH, Kim SR, et al. Lobeglitazone, a novel thiazolidinedione, improves non-alcoholic fatty liver disease in type 2 diabetes: its efficacy and predictive factors related to responsiveness. J Korean Med Sci. 2017;32:60–69. doi: 10.3346/jkms.2017.32.1.60.
    1. Choung S, Joung KH, You BR, Park SK, Kim HJ, Ku BJ. Treatment with lobeglitazone attenuates hepatic steatosis in diet-induced obese mice. PPAR Res. 2018;2018:4292509. doi: 10.1155/2018/4292509.
    1. Lim S, Lee KS, Lee JE, et al. Effect of a new PPAR-gamma agonist, lobeglitazone, on neointimal formation after balloon injury in rats and the development of atherosclerosis. Atherosclerosis. 2015;243:107–119. doi: 10.1016/j.atherosclerosis.2015.08.037.
    1. Kim KM, Jin HJ, Lee SY, et al. Effects of lobeglitazone, a new thiazolidinedione, on osteoblastogenesis and bone mineral density in mice. Endocrinol Metab (Seoul). 2017;32:389–395. doi: 10.3803/EnM.2017.32.3.389.
    1. Lim S, Kim KM, Kim SG, et al. Effects of lobeglitazone, a novel thiazolidinedione, on bone mineral density in patients with type 2 diabetes mellitus over 52 weeks. Diabetes Metab J. 2017;41:377–385. doi: 10.4093/dmj.2017.41.5.377.
    1. Kwon MJ, Lee YJ, Jung HS, et al. The direct effect of lobeglitazone, a new thiazolidinedione, on pancreatic beta cells: a comparison with other thiazolidinediones. Diabetes Res Clin Pract. 2019;151:209–223. doi: 10.1016/j.diabres.2019.04.006.
    1. Matthews DR, Charbonnel BH, Hanefeld M, Brunetti P, Schernthaner G. Long-term therapy with addition of pioglitazone to metformin compared with the addition of gliclazide to metformin in patients with type 2 diabetes: a randomized, comparative study. Diabetes Metab Res Rev. 2005;21:167–174. doi: 10.1002/dmrr.478.
    1. Kim JW, Kim JR, Yi S, et al. Tolerability and pharmacokinetics of lobeglitazone (CKD-501), a peroxisome proliferator-activated receptor-γ agonist: a single- and multiple-dose, double-blind, randomized control study in healthy male Korean subjects. Clin Ther. 2011;33:1819–1830. doi: 10.1016/j.clinthera.2011.09.023.
    1. Sarafidis PA, Bakris GL. Protection of the kidney by thiazolidinediones: an assessment from bench to bedside. Kidney Int. 2006;70:1223–1233. doi: 10.1038/sj.ki.5001620.
    1. Sarafidis PA, Grekas DM. Insulin resistance and oxidant stress: an interrelation with deleterious renal consequences? J Cardiometab Syndr. 2007;2:139–142. doi: 10.1111/j.1559-4564.2007.06666.x.
    1. Ko GJ, Kang YS, Han SY, et al. Pioglitazone attenuates diabetic nephropathy through an anti-inflammatory mechanism in type 2 diabetic rats. Nephrol Dial Transplant. 2008;23:2750–2760. doi: 10.1093/ndt/gfn157.
    1. Arima S, Kohagura K, Takeuchi K, et al. Biphasic vasodilator action of troglitazone on the renal microcirculation. J Am Soc Nephrol. 2002;13:342–349.
    1. Sarafidis PA, Lasaridis AN. Insulin resistance and endothelin: another pathway for renal injury in patients with the cardiometabolic syndrome? J Cardiometab Syndr. 2008;3:183–187. doi: 10.1111/j.1559-4572.2008.00009.x.
    1. Nicholas SB, Kawano Y, Wakino S, Collins AR, Hsueh WA. Expression and function of peroxisome proliferator-activated receptor-gamma in mesangial cells. Hypertension. 2001;37:722–727. doi: 10.1161/01.HYP.37.2.722.
    1. Guo B, Koya D, Isono M, Sugimoto T, Kashiwagi A, Haneda M. Peroxisome proliferator-activated receptor-gamma ligands inhibit TGF-beta 1-induced fibronectin expression in glomerular mesangial cells. Diabetes. 2004;53:200–208. doi: 10.2337/diabetes.53.1.200.
    1. Bae KH, Seo JB, Jung YA, et al. Lobeglitazone, a novel peroxisome proliferator-activated receptor γ agonist, attenuates renal fibrosis caused by unilateral ureteral obstruction in mice. Endocrinol Metab (Seoul). 2017;32:115–300. doi: 10.3803/EnM.2017.32.1.115.

Source: PubMed

3
구독하다