FADS Genetic Variants in Taiwanese Modify Association of DHA Intake and Its Proportions in Human Milk

Wen-Chieh Wu, Hung-Chih Lin, Wen-Ling Liao, Yueh-Ying Tsai, An-Chyi Chen, Hsiang-Chun Chen, Hsiang-Yu Lin, Li-Na Liao, Pei-Min Chao, Wen-Chieh Wu, Hung-Chih Lin, Wen-Ling Liao, Yueh-Ying Tsai, An-Chyi Chen, Hsiang-Chun Chen, Hsiang-Yu Lin, Li-Na Liao, Pei-Min Chao

Abstract

Our objective was to determine how docosahexaenoic acid (DHA) proportions in human milk are modulated by maternal FADS gene variants and dietary intake in Taiwanese women. Inclusion criteria included being healthy, 20-40 y old, having had a full-term baby that they intended to breast feed for at least 1 month, and willingness to participate in this study. Intake of DHA was assessed by food frequency questionnaire and fatty acids were analyzed in human milk samples collected 3-4 weeks postpartum. Based on multiple linear regression of data from 164 mothers that completed this study, there was 0.28% (FA%) reduction in milk DHA in high versus low genetic risk (stratified by whether minor allele numbers were ≥ 3 in rs1535 and rs174448) and 0.45% reduction in low versus high intake (stratified by whether DHA intake reached 200 mg/d). There was a significant gene-diet interaction; mothers with low genetic risk only had high milk DHA proportions with high DHA intake, whereas for mothers with high genetic risk, dietary effects were quite limited. Therefore, for FADS single nucleotide polymorphism in Taiwanese women, increasing DHA intake did not correct low milk DHA proportions in those with a high-risk genotype. Diet only conferred benefits to those with a low-risk genotype. Trial registration: This trial was retrospectively registered (Feb 12, 2019) in ClinicalTrials.gov (No. NCT03842891, https://ichgcp.net/clinical-trials-registry/NCT03842891).

Keywords: DHA; FADS gene; fish; human milk; single nucleotide polymorphism.

Conflict of interest statement

The authors declare no potential conflict of interest.

Figures

Figure 1
Figure 1
Stratified analysis by groups of genetic risk and total DHA intake statuses. Adjusted means and their 95% CIs of human milk DHA were obtained from the multiple linear regression model with consideration of age, body mass index , parity, and duration of pregnancy. LG: low genetic risk (minor allele number = 3 in rs1535 and rs174448); HG: high genetic risk (minor allele number ≤ 2 in rs1535 and rs174448); LI: low DHA intake (

References

    1. Bradbury J. Docosahexaenoic acid (DHA): An ancient nutrient for the modern human brain. Nutrients. 2011;3:529–554. doi: 10.3390/nu3050529.
    1. Martinez M. Tissue levels of polyunsaturated fatty acids during early human development. J. Pediatr. 1992;120:S129–S138. doi: 10.1016/S0022-3476(05)81247-8.
    1. Molloy C., Doyle L.W., Makrides M., Anderson P.J. Docosahexaenoic acid and visual functioning in preterm infants: A review. Neuropsychol. Rev. 2012;22:425–437. doi: 10.1007/s11065-012-9216-z.
    1. Echeverría F., Valenzuela R., Catalina Hernandez-Rodas M., Valenzuela A. Docosahexaenoic acid (DHA), a fundamental fatty acid for the brain: New dietary sources. Prostaglandins Leukot. Essent. Fatty Acids. 2017;124:1–10. doi: 10.1016/j.plefa.2017.08.001.
    1. Salem N., Litman B., Kim H.Y., Gawrisch K. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids. 2001;36:945–959. doi: 10.1007/s11745-001-0805-6.
    1. Jasani B., Simmer K., Patole S.K., Rao S.C. Long chain polyunsaturated fatty acid supplementation in infants born at term. Cochrane Database Syst. Rev. 2017;3:CD000376. doi: 10.1002/14651858.CD000376.pub4.
    1. World Health Organization. [(accessed on 10 Oct 2019)]; Available online:
    1. Brenna J.T., Varamini B., Jensen R.G., Diersen-Schade D.A., Boettcher J.A., Arterburn L.M. Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am. J. Clin. Nutr. 2007;85:1457–1464. doi: 10.1093/ajcn/85.6.1457.
    1. Innis S.M. Human milk: Maternal dietary lipids and infant development. Proc. Nutr. Soc. 2007;66:397–404. doi: 10.1017/S0029665107005666.
    1. Koletzko B., Boey C.C., Campoy C., Carlson S.E., Chang N., Guillermo-Tuazon M.A., Joshi S., Prell C., Quak S.H., Sjarif D.R., et al. Current information and Asian perspectives on long-chain polyunsaturated fatty acids in pregnancy, lactation, and infancy: Systematic review and practice recommendations from an early nutrition academy workshop. Ann. Nutr. Metab. 2014;65:49–80. doi: 10.1159/000365767.
    1. Innis S.M., Gilley J., Werker J. Are human milk long-chain polyunsaturated fatty acids related to visual and neural development in breast-fed term infants? J. Pediatr. 2001;139:532–538. doi: 10.1067/mpd.2001.118429.
    1. Jensen C.L., Voigt R.G., Prager T.C., Zou Y.L., Fraley J.K., Rozelle J.C., Turcich M.R., Llorente A.M., Anderson R.E., Heird W.C. Effects of maternal docosahexaenoic acid intake on visual function and neurodevelopment in breastfed term infants. Am. J. Clin. Nutr. 2005;82:125–132. doi: 10.1093/ajcn/82.1.125.
    1. Lemaitre R.N., Tanaka T., Tang W., Manichaikul A., Foy M., Kabagambe E.K., Nettleton J.A., King I.B., Weng L.C., Bhattacharya S., et al. Genetic loci associated with plasma phospholipid n-3 fatty acids: A meta-analysis of genome-wide association studies from the CHARGE Consortium. PLoS Genet. 2011;7:e1002193. doi: 10.1371/journal.pgen.1002193.
    1. Tanaka T., Shen J., Abecasis G.R., Kisialiou A., Ordovas J.M., Guralnik J.M., Singleton A., Bandinelli S., Cherubini A., Arnett D., et al. Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI study. PLoS Genet. 2009;5:e1000338. doi: 10.1371/journal.pgen.1000338.
    1. Rzehak P., Heinrich J., Klopp N., Schaeffer L., Hoff S., Wolfram G., Illig T., Linseisen J. Evidence for an association between genetic variants of the fatty acid desaturase 1 fatty acid desaturase 2 (FADS1 FADS2) gene cluster and the fatty acid composition of erythrocyte membranes. Br. J. Nutr. 2009;101:20–26. doi: 10.1017/S0007114508992564.
    1. Xie L., Innis S.M. Genetic variants of the FADS1 FADS2 gene cluster are associated with altered (n-6) and (n-3) essential fatty acids in plasma and erythrocyte phospholipids in women during pregnancy and in breast milk during lactation. J. Nutr. 2008;138:2222–2228. doi: 10.3945/jn.108.096156.
    1. Moltó-Puigmartí C., Plat J., Mensink R.P., Müller A., Jansen E., Zeegers M.P., Thijs C. FADS1FADS2 gene variants modify the association between fish intake and the docosahexaenoic acid proportions in human milk. Am. J. Clin. Nutr. 2010;91:1368–1376. doi: 10.3945/ajcn.2009.28789.
    1. Lattka E., Rzehak P., Szabó É., Jakobik V., Weck M., Weyermann M., Grallert H., Rothenbacher D., Heinrich J., Brenner H., et al. Genetic variants in the FADS gene cluster are associated with arachidonic acid concentrations of human breast milk at 1.5 and 6 mo postpartum and influence the course of milk dodecanoic, tetracosenoic, and trans-9-octadecenoic acid concentrations over the duration of lactation. Am. J. Clin. Nutr. 2011;93:382–391.
    1. Ding Z., Liu G.L., Li X., Chen X.Y., Wu Y.X., Cui C.C., Zhang X., Yang G., Xie L. Association of polyunsaturated fatty acids in breast milk with fatty acid desaturase gene polymorphisms among Chinese lactating mothers. Prostaglandins Leukot. Essent. Fatty Acids. 2016;109:66–71. doi: 10.1016/j.plefa.2016.03.009.
    1. Moltó-Puigmartí C., Castellote A.I., López-Sabater M.C. Conjugated linoleic acid determination in human milk by fast-gas chromatography. Anal. Chim. Acta. 2007;602:122–130. doi: 10.1016/j.aca.2007.09.011.
    1. Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A., Bender D., Maller J., Sklar F., de Bakker P.I., Daly M.J., et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007;81:559–575. doi: 10.1086/519795.
    1. Harsløf L.B., Larsen L.H., Ritz C., Hellgren L.I., Michaelsen K.F., Vogel U., Lauritzen L. FADS genotype and diet are important determinants of DHA status: A cross-sectional study in Danish infants. Am. J. Clin. Nutr. 2013;97:1403–1410. doi: 10.3945/ajcn.113.058685.
    1. Koletzko B., Lattka E., Zeilinger S., Illig T., Steer C.D. Genetic variants of the fatty acid desaturase gene cluster predict amounts of red blood cell docosahexaenoic and other polyunsaturated fatty acids in pregnant women: Findings from the Avon Longitudinal Study of Parents and Children. Am. J. Clin. Nutr. 2011;93:211–219. doi: 10.3945/ajcn.110.006189.
    1. Steer C.D., Hibbeln J.R., Golding J., Davey Smith G. Polyunsaturated fatty acid levels in blood during pregnancy, at birth and at 7 years: Their associations with two common FADS2 polymorphisms. Hum. Mol. Genet. 2012;21:1504–1512. doi: 10.1093/hmg/ddr588.
    1. Chen C.H., Yang J.H., Chiang C.W., Hsiung C.N., Wu P.E., Chang L.C., Chu H.W., Chang J., Song I.W., Yang S.L., et al. Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project. Hum. Mol. Genet. 2016;25:5321–5331. doi: 10.1093/hmg/ddw346.
    1. Zhao Y.B., Zhang Y., Zhang Q.C., Li H.J., Cui Y.Q., Xu Z., Jin L., Zhou H., Zhu H. Ancient DNA reveals that the genetic structure of the northern Han Chinese was shaped prior to 3,000 years ago. PLoS ONE. 2015;10:e0125676. doi: 10.1371/journal.pone.0125676.
    1. Merino D.M., Johnston H., Clarke S., Roke K., Nielsen D., Badawi A., El-Sohemy A., Ma D.W., Mutch D.M. Polymorphisms in FADS1 and FADS2 alter desaturase activity in young Caucasian and Asian adults. Mol. Genet. Metab. 2011;103:171–178. doi: 10.1016/j.ymgme.2011.02.012.
    1. Park W.J., Kothapalli K.S., Reardon H.T., Lawrence P., Qian S.B., Brenna J.T. A novel FADS1 isoform potentiates FADS2-mediated production of eicosanoid precursor fatty acids. J. Lipid Res. 2012;53:1502–1512. doi: 10.1194/jlr.M025312.
    1. Wu T.C., Lau B.H., Chen P.H., Wu L.T., Tang R.B. Fatty acid composition of Taiwanese human milk. J. Chin. Med. Assoc. 2010;73:581–588. doi: 10.1016/S1726-4901(10)70127-1.
    1. Huang H.L., Chuang L.T., Li H.H., Lin C.P., Glew R.H. Docosahexaenoic acid in maternal and neonatal plasma phospholipids and milk lipids of Taiwanese women in Kinmen: Fatty acid composition of maternal blood, neonatal blood and breast milk. Lipids Health Dis. 2013;12:27. doi: 10.1186/1476-511X-12-27.
    1. Yuhas R., Pramuk K., Lien E.L. Human milk fatty acid composition from nine countries varies most in DHA. Lipids. 2006;41:851–858. doi: 10.1007/s11745-006-5040-7.
    1. Calder P.C., Krauss-Etschmann S., de Jong E.C., Dupont C., Frick J.S., Frokiaer H., Heinrich J., Garn H., Koletzko S., Lack G., et al. Early nutrition and immunity-progress and perspectives. Br. J. Nutr. 2006;96:774–790.
    1. Clandinin M.T., Chappell J.E., Heim T., Swyer P.R., Chance GW. Fatty acid utilization in perinatal de novo synthesis of tissues. Early Hum. Dev. 1981;5:355–366. doi: 10.1016/0378-3782(81)90016-5.
    1. Hartwig F.P., Davies N.M., Horta B.L., Ahluwalia T.S., Bisgaard H., Bønnelykke K., Caspi A., Moffitt T.E., Poulton R., Sajjad A., et al. Effect modification of FADS2 polymorphisms on the association between breastfeeding and intelligence: Results from a collaborative meta-analysis. Int. J. Epidemiol. 2019;48:45–57. doi: 10.1093/ije/dyy273.
    1. Koletzko B. Human milk lipids. Ann. Nutr. Metab. 2016;69(Suppl. 2):28–40. doi: 10.1159/000452819.
    1. Innis S.M. Dietary (n-3) fatty acids and brain development. J. Nutr. 2007;137:855–859. doi: 10.1093/jn/137.4.855.
    1. Hashimoto M., Hossain S., Al Mamun A., Matsuzaki K., Arai H. Docosahexaenoic acid: One molecule diverse functions. Crit. Rev. Biotechnol. 2017;37:579–597. doi: 10.1080/07388551.2016.1207153.
    1. Caspi A., Williams B., Kim-Cohen J., Craig I.W., Milne B.J., Poulton R., Schalkwyk L.C., Taylor A., Werts H., Moffitt T.E. Moderation of breastfeeding effects on the IQ by genetic variation in fatty acid metabolism. Proc. Natl. Acad. Sci. USA. 2007;104:18860–18865. doi: 10.1073/pnas.0704292104.
    1. Steer C.D., Davey S.G., Emmett P.M., Hibbeln J.R., Golding J. FADS2 polymorphisms modify the effect of breastfeeding on child IQ. PLoS ONE. 2010;5:e11570. doi: 10.1371/journal.pone.0011570.
    1. Morales E., Bustamante M., Gonzalez J.R., Guxens M., Torrent M., Mendez M., Garcia-Esteban R., Julvez J., Forns J., Vrijheid M., et al. Genetic variants of the FADS gene cluster and ELOVL gene family, colostrums LC-PUFA levels, breastfeeding, and child cognition. PLoS ONE. 2011;6:e17181. doi: 10.1371/journal.pone.0017181.
    1. Valentine C.J., Morrow G., Pennell M., Morrow A.L., Hodge A., Haban-Bartz A., Collins K., Rogers L.K. Randomized controlled trial of docosahexaenoic acid supplementation in Midwestern U.S. human milk donors. Breastfeed Med. 2013;8:86–91. doi: 10.1089/bfm.2011.0126.
    1. Valentine C.J., Dingess K.A., Kleiman J., Morrow A.L., Rogers L.K. A randomized trial of maternal docosahexaenoic acid supplementation to reduce inflammation in extremely preterm infants. J. Pediatr. Gastroenterol. Nutr. 2019;69:388–392. doi: 10.1097/MPG.0000000000002375.

Source: PubMed

3
구독하다