mTOR as a Key Regulator in Maintaining Skeletal Muscle Mass

Mee-Sup Yoon, Mee-Sup Yoon

Abstract

Maintenance of skeletal muscle mass is regulated by the balance between anabolic and catabolic processes. Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase, and is known to play vital roles in protein synthesis. Recent findings have continued to refine our understanding of the function of mTOR in maintaining skeletal muscle mass. mTOR controls the anabolic and catabolic signaling of skeletal muscle mass, resulting in the modulation of muscle hypertrophy and muscle wastage. This review will highlight the fundamental role of mTOR in skeletal muscle growth by summarizing the phenotype of skeletal-specific mTOR deficiency. In addition, the evidence that mTOR is a dual regulator of anabolism and catabolism in skeletal muscle mass will be discussed. A full understanding of mTOR signaling in the maintenance of skeletal muscle mass could help to develop mTOR-targeted therapeutics to prevent muscle wasting.

Keywords: atrophy; hypertrophy; mTOR; sarcopenia; skeletal muscle.

Figures

Figure 1
Figure 1
The summary of the regulation of mTORC1 activity in skeletal muscles. Multiple factors and pathways affect mTORC1 activity to regulate skeletal muscle mass. mTORC1 is activated by IGF-I/insulin, mechanical stimulation and amino acids (blue lines) and inhibited by glucocorticoids and myostatin (red lines). Activated mTORC1 increases protein synthesis in skeletal muscle.

References

    1. Aguilar V., Alliouachene S., Sotiropoulos A., Sobering A., Athea Y., Djouadi F., et al. . (2007). S6 kinase deletion suppresses muscle growth adaptations to nutrient availability by activating AMP kinase. Cell Metab. 5, 476–487. 10.1016/j.cmet.2007.05.006
    1. Allen D. L., Cleary A. S., Hanson A. M., Lindsay S. F., Reed J. M. (2010). CCAAT/enhancer binding protein-δ expression is increased in fast skeletal muscle by food deprivation and regulates myostatin transcription in vitro. Am. J. Physiol. Regul. Integr. Compar. Physiol. 299, R1592–R1601. 10.1152/ajpregu.00247.2010
    1. Amirouche A., Durieux A. C., Banzet S., Koulmann N., Bonnefoy R., Mouret C., et al. . (2009). Down-regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle. Endocrinology 150, 286–294. 10.1210/en.2008-0959
    1. Barton-Davis E. R., Shoturma D. I., Musaro A., Rosenthal N., Sweeney H. L. (1998). Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proc. Natl. Acad. Sci. U.S.A. 95, 15603–15607. 10.1073/pnas.95.26.15603
    1. Bentzinger C. F., Romanino K., Cloetta D., Lin S., Mascarenhas J. B., Oliveri F., et al. (2008). Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab. 8, 411–424. 10.1016/j.cmet.2008.10.002
    1. Bjedov I., Toivonen J. M., Kerr F., Slack C., Jacobson J., Foley A., et al. . (2010). Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 11, 35–46. 10.1016/j.cmet.2009.11.010
    1. Braun T. P., Marks D. L. (2015). The regulation of muscle mass by endogenous glucocorticoids. Front. Physiol. 6:12. 10.3389/fphys.2015.00012
    1. Castets P., Lin S., Rion N., Di Fulvio S., Romanino K., Guridi M., et al. . (2013). Sustained activation of mTORC1 in skeletal muscle inhibits constitutive and starvation-induced autophagy and causes a severe, late-onset myopathy. Cell Metab. 17, 731–744. 10.1016/j.cmet.2013.03.015
    1. Chale-Rush A., Morris E. P., Kendall T. L., Brooks N. E., Fielding R. A. (2009). Effects of chronic overload on muscle hypertrophy and mTOR signaling in young adult and aged rats. J. Gerontol. A Biol. Sci. Med. Sci. 64, 1232–1239. 10.1093/gerona/glp146
    1. Coleman M. E., DeMayo F., Yin K. C., Lee H. M., Geske R., Montgomery C., et al. . (1995). Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J. Biol. Chem. 270, 12109–12116. 10.1074/jbc.270.20.12109
    1. Cuthbertson D., Smith K., Babraj J., Leese G., Waddell T., Atherton P., et al. . (2005). Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J. 19, 422–424. 10.1096/fj.04-2640fje
    1. Deane C. S., Hughes D. C., Sculthorpe N., Lewis M. P., Stewart C. E., Sharples A. P. (2013). Impaired hypertrophy in myoblasts is improved with testosterone administration. J. Steroid Biochem. Mol. Biol. 138, 152–161. 10.1016/j.jsbmb.2013.05.005
    1. DeYoung M. P., Horak P., Sofer A., Sgroi D., Ellisen L. W. (2008). Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev. 22, 239–251. 10.1101/gad.1617608
    1. Dibble C. C., Manning B. D. (2013). Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat. Cell Biol. 15, 555–564. 10.1038/ncb2763
    1. Drummond M. J., Dreyer H. C., Pennings B., Fry C. S., Dhanani S., Dillon E. L., et al. . (2008). Skeletal muscle protein anabolic response to resistance exercise and essential amino acids is delayed with aging. J. Appl. Physiol. 104, 1452–1461. 10.1152/japplphysiol.00021.2008
    1. Fang Y., Vilella-Bach M., Bachmann R., Flanigan A., Chen J. (2001). Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294, 1942–1945. 10.1126/science.1066015
    1. Florini J. R., Ewton D. Z., Roof S. L. (1991). Insulin-like growth factor-I stimulates terminal myogenic differentiation by induction of myogenin gene expression. Mol. Endocrinol. 5, 718–724. 10.1210/mend-5-5-718
    1. Fry C. S., Drummond M. J., Glynn E. L., Dickinson J. M., Gundermann D. M., Timmerman K. L., et al. . (2011). Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skelet. Muscle 1:11. 10.1186/2044-5040-1-11
    1. Ge Y., Sun Y., Chen J. (2011). IGF-II is regulated by microRNA-125b in skeletal myogenesis. J. Cell Biol. 192, 69–81. 10.1083/jcb.201007165
    1. Glass D. J. (2003). Molecular mechanisms modulating muscle mass. Trends Mol. Med. 9, 344–350. 10.1016/S1471-4914(03)00138-2
    1. Glass D. J. (2005). Skeletal muscle hypertrophy and atrophy signaling pathways. Int. J. Biochem. Cell Biol. 37, 1974–1984. 10.1016/j.biocel.2005.04.018
    1. Gong Z., Kennedy O., Sun H., Wu Y., Williams G. A., Klein L., et al. . (2014). Reductions in serum IGF-1 during aging impair health span. Aging Cell 13, 408–418. 10.1111/acel.12188
    1. Guertin D. A., Stevens D. M., Thoreen C. C., Burds A. A., Kalaany N. Y., Moffat J., et al. (2006). Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev. Cell 11, 859–871. 10.1016/j.devcel.2006.10.007
    1. Hornberger T. A. (2011). Mechanotransduction and the regulation of mTORC1 signaling in skeletal muscle. Int. J. Biochem. Cell Biol. 43, 1267–1276. 10.1016/j.biocel.2011.05.007
    1. Hornberger T. A., Chu W. K., Mak Y. W., Hsiung J. W., Huang S. A., Chien S. (2006). The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle. Proc. Natl. Acad. Sci. U.S.A. 103, 4741–4746. 10.1073/pnas.0600678103
    1. Hornberger T. A., Stuppard R., Conley K. E., Fedele M. J., Fiorotto M. L., Chin E. R., et al. . (2004). Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism. Biochem. J. 380, 795–804. 10.1042/bj20040274
    1. Huang J., Manning B. D. (2008). The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J. 412, 179–190. 10.1042/BJ20080281
    1. Izumiya Y., Hopkins T., Morris C., Sato K., Zeng L., Viereck J., et al. . (2008). Fast/Glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice. Cell Metab. 7, 159–172. 10.1016/j.cmet.2007.11.003
    1. Jacobs B. L., You J. S., Frey J. W., Goodman C. A., Gundermann D. M., Hornberger T. A. (2013). Eccentric contractions increase the phosphorylation of tuberous sclerosis complex-2 (TSC2) and alter the targeting of TSC2 and the mechanistic target of rapamycin to the lysosome. J. Physiol. 591, 4611–4620. 10.1113/jphysiol.2013.256339
    1. Johnson S. C., Martin G. M., Rabinovitch P. S., Kaeberlein M. (2013a). Preserving youth: does rapamycin deliver? Sci. Transl. Med. 5:211fs40. 10.1126/scitranslmed.3007316
    1. Johnson S. C., Rabinovitch P. S., Kaeberlein M. (2013b). mTOR is a key modulator of ageing and age-related disease. Nature 493, 338–345. 10.1038/nature11861
    1. Korolchuk V. I., Saiki S., Lichtenberg M., Siddiqi F. H., Roberts E. A., Imarisio S., et al. . (2011). Lysosomal positioning coordinates cellular nutrient responses. Nat. Cell Biol. 13, 453–460. 10.1038/ncb2204
    1. Laplante M., Sabatini D. M. (2012). mTOR signaling in growth control and disease. Cell 149, 274–293. 10.1016/j.cell.2012.03.017
    1. Lee S. J. (2007). Quadrupling muscle mass in mice by targeting TGF-beta signaling pathways. PLoS ONE 2:e789. 10.1371/journal.pone.0000789
    1. Leger B., Derave W., De Bock K., Hespel P., Russell A. P. (2008). Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation. Rejuvenat. Res. 11, 163B–175B. 10.1089/rej.2007.0588
    1. Li M., Verdijk L. B., Sakamoto K., Ely B., van Loon L. J., Musi N. (2012). Reduced AMPK-ACC and mTOR signaling in muscle from older men, and effect of resistance exercise. Mech. Ageing Dev. 133, 655–664. 10.1016/j.mad.2012.09.001
    1. Lipina C., Kendall H., McPherron A. C., Taylor P. M., Hundal H. S. (2010). Mechanisms involved in the enhancement of mammalian target of rapamycin signalling and hypertrophy in skeletal muscle of myostatin-deficient mice. FEBS Lett. 584, 2403–2408. 10.1016/j.febslet.2010.04.039
    1. Lokireddy S., Mouly V., Butler-Browne G., Gluckman P. D., Sharma M., Kambadur R., et al. . (2011). Myostatin promotes the wasting of human myoblast cultures through promoting ubiquitin-proteasome pathway-mediated loss of sarcomeric proteins. Am. J. Physiol. Cell Physiol. 301, C1316–C1324. 10.1152/ajpcell.00114.2011
    1. Ma K., Mallidis C., Artaza J., Taylor W., Gonzalez-Cadavid N., Bhasin S. (2001). Characterization of 5'-regulatory region of human myostatin gene: regulation by dexamethasone in vitro. Am. J. Physiol. Endocrinol. Metab. 281, E1128–E1136.
    1. Ma K., Mallidis C., Bhasin S., Mahabadi V., Artaza J., Gonzalez-Cadavid N., et al. . (2003). Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression. Am. J. Physiol. Endocrinol. Metab. 285, E363–E371. 10.1152/ajpendo.00487.2002
    1. Ma X. M., Blenis J. (2009). Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 10, 307–318. 10.1038/nrm2672
    1. Manning B. D., Cantley L. C. (2007). AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274. 10.1016/j.cell.2007.06.009
    1. Markofski M. M., Dickinson J. M., Drummond M. J., Fry C. S., Fujita S., Gundermann D. M., et al. . (2015). Effect of age on basal muscle protein synthesis and mTORC1 signaling in a large cohort of young and older men and women. Exp. Gerontol. 65, 1–7. 10.1016/j.exger.2015.02.015
    1. Matsumoto A., Pasut A., Matsumoto M., Yamashita R., Fung J., Monteleone E., et al. . (2017). mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature 541, 228–232. 10.1038/nature21034
    1. McCarthy J. J., Esser K. A. (2010). Anabolic and catabolic pathways regulating skeletal muscle mass. Curr. Opin. Clin. Nutr. Metab. Care 13, 230–235. 10.1097/MCO.0b013e32833781b5
    1. McFarlane C., Plummer E., Thomas M., Hennebry A., Ashby M., Ling N., et al. . (2006). Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism. J. Cell. Physiol. 209, 501–514. 10.1002/jcp.20757
    1. McPherron A. C., Lawler A. M., Lee S. J. (1997). Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387, 83–90. 10.1038/387083a0
    1. Meijsing S. H., Pufall M. A., So A. Y., Bates D. L., Chen L., Yamamoto K. R. (2009). DNA binding site sequence directs glucocorticoid receptor structure and activity. Science 324, 407–410. 10.1126/science.1164265
    1. Menconi M., Fareed M., O'Neal P., Poylin V., Wei W., Hasselgren P. O. (2007). Role of glucocorticoids in the molecular regulation of muscle wasting. Crit. Care Med. 35, S602–S608. 10.1097/01.CCM.0000279194.11328.77
    1. Menon S., Dibble C. C., Talbott G., Hoxhaj G., Valvezan A. J., Takahashi H., et al. . (2014). Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 156, 771–785. 10.1016/j.cell.2013.11.049
    1. Munck A., Guyre P. M., Holbrook N. J. (1984). Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr. Rev. 5, 25–44. 10.1210/edrv-5-1-25
    1. Musaro A., McCullagh K., Paul A., Houghton L., Dobrowolny G., Molinaro M., et al. . (2001). Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat. Genet. 27, 195–200. 10.1038/84839
    1. O'Neil T. K., Duffy L. R., Frey J. W., Hornberger T. A. (2009). The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J. Physiol. 587, 3691–3701. 10.1113/jphysiol.2009.173609
    1. Pallafacchina G., Calabria E., Serrano A. L., Kalhovde J. M., Schiaffino S. (2002). A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proc. Natl. Acad. Sci. U.S.A. 99, 9213–9218. 10.1073/pnas.142166599
    1. Parkington J. D., LeBrasseur N. K., Siebert A. P., Fielding R. A. (1985). Contraction-mediated mTOR, p70S6k, and ERK1/2 phosphorylation in aged skeletal muscle. J. Appl. Physiol. 97, 243–248.
    1. Passtoors W. M., Beekman M., Deelen J., van der Breggen Maier A. B., Guigas B., et al. . (2013). Gene expression analysis of mTOR pathway: association with human longevity. Aging Cell 12, 24–31. 10.1111/acel.12015
    1. Pelosi L., Giacinti C., Nardis C., Borsellino G., Rizzuto E., Nicoletti C., et al. . (2007). Local expression of IGF-1 accelerates muscle regeneration by rapidly modulating inflammatory cytokines and chemokines. FASEB J. 21, 1393–1402. 10.1096/fj.06-7690com
    1. Powers R. W., III., Kaeberlein M., Caldwell S. D., Kennedy B. K., Fields S. (2006). Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev. 20, 174–184. 10.1101/gad.1381406
    1. Rabinovsky E. D., Gelir E., Gelir S., Lui H., Kattash M., DeMayo F. J., et al. . (2003). Targeted expression of IGF-1 transgene to skeletal muscle accelerates muscle and motor neuron regeneration. FASEB J. 17 53–55. 10.1096/fj.02-0183fje
    1. Ramos F. J., Chen S. C., Garelick M. G., Dai D. F., Liao C. Y., Schreiber K. H., et al. . (2012). Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci. Transl. Med. 4:144ra103. 10.1126/scitranslmed.3003802
    1. Risson V., Mazelin L., Roceri M., Sanchez H., Moncollin V., Corneloup C., et al. . (2009). Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. J. Cell Biol. 187, 859–874. 10.1083/jcb.200903131
    1. Robida-Stubbs S., Glover-Cutter K., Lamming D. W., Mizunuma M., Narasimhan S. D., Neumann-Haefelin E., et al. . (2012). TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab. 15, 713–724. 10.1016/j.cmet.2012.04.007
    1. Rommel C., Clarke B. A., Zimmermann S., Nunez L., Rossman R., Reid K., et al. . (1999). Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science 286, 1738–1741. 10.1126/science.286.5445.1738
    1. Sakuma K., Aoi W., Yamaguchi A. (2014). The intriguing regulators of muscle mass in sarcopenia and muscular dystrophy. Front. Aging Neurosci. 6:230. 10.3389/fnagi.2014.00230
    1. Sancak Y., Bar-Peled L., Zoncu R., Markhard A. L., Nada S., Sabatini D. M. (2010). Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303. 10.1016/j.cell.2010.02.024
    1. Sancak Y., Peterson T. R., Shaul Y. D., Lindquist R. A., Thoreen C. C., Bar-Peled L., et al. . (2008). The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–1501. 10.1126/science.1157535
    1. Sandri M., Barberi L., Bijlsma A. Y., Blaauw B., Dyar K. A., Milan G., et al. . (2013). Signalling pathways regulating muscle mass in ageing skeletal muscle: the role of the IGF1-Akt-mTOR-FoxO pathway. Biogerontology 14, 303–323. 10.1007/s10522-013-9432-9
    1. Sarbassov D. D., Ali S. M., Sabatini D. M. (2005). Growing roles for the mTOR pathway. Curr. Opin. Cell Biol. 17, 596–603. 10.1016/j.ceb.2005.09.009
    1. Sartori R., Gregorevic P., Sandri M. (2014). TGFbeta and BMP signaling in skeletal muscle: potential significance for muscle-related disease. Trends Endocrinol. Metab. 25, 464–471. 10.1016/j.tem.2014.06.002
    1. Sartori R., Milan G., Patron M., Mammucari C., Blaauw B., Abraham R., et al. . (2009). Smad2 and 3 transcription factors control muscle mass in adulthood. Am. J. Physiol. Cell Physiol. 296, C1248–C1257. 10.1152/ajpcell.00104.2009
    1. Saxton R. A., Sabatini D. M. (2017). mTOR signaling in growth, metabolism, and disease. Cell 169, 361–371. 10.1016/j.cell.2017.02.004
    1. Schakman O., Gilson H., Thissen J. P. (2008). Mechanisms of glucocorticoid-induced myopathy. J. Endocrinol. 197, 1–10. 10.1677/JOE-07-0606
    1. Schiaffino S., Mammucari C. (2011). Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet. Muscle 1:4. 10.1186/2044-5040-1-4
    1. Sharples A. P., Al-Shanti N., Hughes D. C., Lewis M. P., Stewart C. E. (2013). The role of insulin-like-growth factor binding protein 2 (IGFBP2) and phosphatase and tensin homologue (PTEN) in the regulation of myoblast differentiation and hypertrophy. Growth Horm. IGF Res. 23, 53–61. 10.1016/j.ghir.2013.03.004
    1. Shimizu N., Yoshikawa N., Ito N., Maruyama T., Suzuki Y., Takeda S., et al. . (2011). Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metab. 13, 170–182. 10.1016/j.cmet.2011.01.001
    1. Song Z., Moore D. R., Hodson N., Ward C., Dent J. R., O'Leary M. F., et al. . (2017). Resistance exercise initiates mechanistic target of rapamycin (mTOR) translocation and protein complex co-localisation in human skeletal muscle. Sci. Rep. 7:5028. 10.1038/s41598-017-05483-x
    1. Spangenburg E. E., Le Roith D., Ward C. W., Bodine S. C. (2008). A functional insulin-like growth factor receptor is not necessary for load-induced skeletal muscle hypertrophy. J. Physiol. 586, 283–291. 10.1113/jphysiol.2007.141507
    1. Sun Y., Ge Y., Drnevich J., Zhao Y., Band M., Chen J. (2010). Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis. J. Cell Biol. 189, 1157–1169. 10.1083/jcb.200912093
    1. Timmerman K. L., Lee J. L., Fujita S., Dhanani S., Dreyer H. C., Fry C. S., et al. (2010). Pharmacological vasodilation improves insulin-stimulated muscle protein anabolism but not glucose utilization in older adults. Diabetes 59, 2764–2771. 10.2337/db10-0415
    1. Trendelenburg A. U., Meyer A., Rohner D., Boyle J., Hatakeyama S., Glass D. J. (2009). Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am. J. Physiol. Cell Physiol. 296, C1258–C1270. 10.1152/ajpcell.00105.2009
    1. Um S. H., Frigerio F., Watanabe M., Picard F., Joaquin M., Sticker M., et al. . (2004). Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431, 200–205. 10.1038/nature02866
    1. Vandenburgh H. H., Karlisch P., Shansky J., Feldstein R. (1991). Insulin and IGF-I induce pronounced hypertrophy of skeletal myofibers in tissue culture. Am. J. Physiol. 260, C475–C484.
    1. Walston J. D. (2012). Sarcopenia in older adults. Curr. Opin. Rheumatol. 24, 623–627. 10.1097/BOR.0b013e328358d59b
    1. Wang X., Devaiah S. P., Zhang W., Welti R. (2006). Signaling functions of phosphatidic acid. Prog. Lipid Res. 45, 250–278. 10.1016/j.plipres.2006.01.005
    1. Welle S., Burgess K., Mehta S. (2009). Stimulation of skeletal muscle myofibrillar protein synthesis, p70 S6 kinase phosphorylation, and ribosomal protein S6 phosphorylation by inhibition of myostatin in mature mice. Am. J. Physiol. Endocrinol. Metab. 296, E567–E572. 10.1152/ajpendo.90862.2008
    1. Winbanks C. E., Weeks K. L., Thomson R. E., Sepulveda P. V., Beyer C., Qian H., et al. . (2012). Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin. J. Cell Biol. 197, 997–1008. 10.1083/jcb.201109091
    1. Xie Y., Zhang P., Espinoza D., Perry B., Rahnert J., Zheng B., et al. (2017). Glucocorticoid-induced inhibition of AKT leads to CREB phosphorylation and increased myostatin expression via a PDE/cAMP/PKA pathway in skeletal muscle. FASEB J. 31:929.922.
    1. Yoon M. S., Du G., Backer J. M., Frohman M. A., Chen J. (2011). Class III PI-3-kinase activates phospholipase D in an amino acid-sensing mTORC1 pathway. J. Cell Biol. 195, 435–447. 10.1083/jcb.201107033
    1. Yoon M. S., Rosenberger C. L., Wu C., Truong N., Sweedler J. V., Chen J. (2015). Rapid mitogenic regulation of the mTORC1 inhibitor, DEPTOR, by phosphatidic acid. Mol. Cell 58, 549–556. 10.1016/j.molcel.2015.03.028
    1. You J. S., Lincoln H. C., Kim C. R., Frey J. W., Goodman C. A., Zhong X. P., et al. . (2014). The role of diacylglycerol kinase zeta and phosphatidic acid in the mechanical activation of mammalian target of rapamycin (mTOR) signaling and skeletal muscle hypertrophy. J. Biol. Chem. 289, 1551–1563. 10.1074/jbc.M113.531392
    1. Zhang Y., Yu B., He J., Chen D. (2016). From nutrient to MicroRNA: a novel insight into cell signaling involved in skeletal muscle development and disease. Int. J. Biol. Sci. 12, 1247–1261. 10.7150/ijbs.16463

Source: PubMed

3
구독하다