A review on methods for diagnosis of breast cancer cells and tissues

Ziyu He, Zhu Chen, Miduo Tan, Sauli Elingarami, Yuan Liu, Taotao Li, Yan Deng, Nongyue He, Song Li, Juan Fu, Wen Li, Ziyu He, Zhu Chen, Miduo Tan, Sauli Elingarami, Yuan Liu, Taotao Li, Yan Deng, Nongyue He, Song Li, Juan Fu, Wen Li

Abstract

Breast cancer has seriously been threatening physical and mental health of women in the world, and its morbidity and mortality also show clearly upward trend in China over time. Through inquiry, we find that survival rate of patients with early-stage breast cancer is significantly higher than those with middle- and late-stage breast cancer, hence, it is essential to conduct research to quickly diagnose breast cancer. Until now, many methods for diagnosing breast cancer have been developed, mainly based on imaging and molecular biotechnology examination. These methods have great contributions in screening and confirmation of breast cancer. In this review article, we introduce and elaborate the advances of these methods, and then conclude some gold standard diagnostic methods for certain breast cancer patients. We lastly discuss how to choose the most suitable diagnostic methods for breast cancer patients. In general, this article not only summarizes application and development of these diagnostic methods, but also provides the guidance for researchers who work on diagnosis of breast cancer.

Conflict of interest statement

The authors have no conflict of interest.

© 2020 The Authors. Cell Proliferation published by John Wiley & Sons Ltd.

Figures

Figure 1
Figure 1
Schematic diagram of MRI
Figure 2
Figure 2
Technical principle of fluorescence in situ hybridization
Figure 3
Figure 3
Schematics of cell‐based aptamer selection. 147 (Reproduced with permission from Copyright 2014, American Chemical Society)
Figure 4
Figure 4
Flow chart of microarray technology. 162 (Reproduced with permission from Copyright 2012, Rajnish Kumar)
Figure 5
Figure 5
Schematic diagram for NGS
Figure 6
Figure 6
Schematic diagram of MethyLight
Figure 7
Figure 7
Schematic diagram of immunohistochemical principle
Figure 8
Figure 8
Isolation of individual droplets by flow cytomtry. 121 (Reproduced with permission from Copyright 2020, American Chemical Society)

References

    1. DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics, 2019. CA Cancer J Clin. 2018;69(6):438‐451.
    1. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115‐132.
    1. Feng R‐M, Zong Y‐N, Cao S‐M, et al. Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics? Cancer Commun. 2019;29(1):22.
    1. Tao ZQ, Shi A, Lu C, et al. Breast cancer: epidemiology and etiology. Cell Biochem Biophys. 2015;72(2):333‐338.
    1. DeSantis CE, Ma J, Jemal A. Trends in stage at diagnosis for young breast cancer patients in the United States. Breast Cancer Res Treat. 2019;173(3):743‐747.
    1. McPherson K, Steel CM, Dixon JM. ABC of breast diseases: breast cancer–epidemiology, risk factors, and genetics. BMJ. 2000;321(7261):624‐628.
    1. Zografos GC, Panou M, Panou N. Common risk factors of breast and ovarian cancer: recent view. Int J Gynecol Cancer. 2004;14(5):721‐740.
    1. Robson M, Im S‐A, Senkus E, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377(6):523‐533.
    1. Tuttle TM, Habermann EB, Grund EH, et al. Increasing use of contralateral prophylactic mastectomy for breast cancer patients: a trend toward more aggressive surgical treatment. J Clin Oncol. 2007;25(33):5203‐5209.
    1. Bonneau C, Gurard‐Levin ZA, Andre F, et al. Predictive and prognostic value of the TauProtein in breast cancer. Anticancer Res. 2015;35(10):5179‐5184.
    1. Jafari SH, Saadatpour Z, Salmaninejad A, et al. Breast cancer diagnosis: imaging techniques and biochemical markers. J Cell Physiol. 2018;233(7):5200‐5213.
    1. Weaver O, Leung JWT. Biomarkers and imaging of breast cancer. Am J Roentgenol. 2018;210(2):271‐278.
    1. Marchiò C, Reis‐Filho JS. Molecular diagnosis in breast cancer. Diagn Pathol. 2008;14(5):202‐213.
    1. Pareja F, Marchiò C, Reis‐Filho JS. Molecular diagnosis in breast cancer. Diagn Histopathol. 2018;24(2):71‐82.
    1. Berse B, Lynch JA. Molecular diagnostic testing in breast cancer. Semin Oncol Nurs. 2015;31(2):108‐121.
    1. Ayer T. Inverse optimization for assessing emerging technologies in breast cancer screening. Ann Oper Res. 2015;230(1):57‐85.
    1. Weigel S, Decker T, Korsching E, et al. Calcifications in digital mammographic screening: improvement of early detection of invasive breast cancers? Radiology. 2010;255(3):738‐745.
    1. Tse GM, Tan P‐H, Pang ALM, et al. Calcification in breast lesions: pathologists’ perspective. J Clin Pathol. 2007;61(2):145‐151.
    1. Covington MF, Pizzitola VJ, Lorans R, et al. The future of contrast‐enhanced mammography. Am J Roentgenol. 2018;210(2):292‐300.
    1. Chong A, Weinstein SP, McDonald ES, Conant EF. Digital breast tomosynthesis: concepts and clinical practice. Radiology. 2019;292(1):1‐14.
    1. Fallenberg EM, Schmitzberger FF, Amer H, et al. Contrast‐enhanced spectral mammography vs. mammography and MRI – clinical performance in a multi‐reader evaluation. Eur Radiol. 2017;27(7):2752‐2764.
    1. Sorin V, Yagil Y, Yosepovich A, et al. Contrast‐enhanced spectral mammography in women with intermediate breast cancer risk and dense breasts. Am J Roentgenol. 2018;211(5):W267‐W274.
    1. Skaane P, Sebuødegård S, Bandos AI, et al. Performance of breast cancer screening using digital breast tomosynthesis: results from the prospective population‐based Oslo Tomosynthesis Screening Trial. Breast Cancer Res Treat. 2018;169(3):489‐496.
    1. Katzen J, Dodelzon K. A review of computer aided detection in mammography. Clin Imaging. 2018;52:305‐309.
    1. Danala G, Patel B, Aghaei F, et al. Classification of breast masses using a computer‐aided diagnosis scheme of contrast enhanced digital mammograms. Ann Biomed Eng. 2018;46(9):1419‐1431.
    1. Benedikt RA, Boatsman JE, Swann CA, et al. Concurrent computer‐aided detection improves reading time of digital breast tomosynthesis and maintains interpretation performance in a multireader multicase study. Am J Roentgenol. 2018;210(3):685‐694.
    1. Monticciolo DL, Newell MS, Hendrick RE, et al. Breast cancer screening for average‐risk women: recommendations from the ACR commission on breast imaging. J Am Coll Radiol. 2017;14(9):1137‐1143.
    1. Ha R, Kim H, Mango V, et al. Ultrasonographic features and clinical implications of benign palpable breast lesions in young women. Ultrasonography. 2014;34(1):66‐70.
    1. Zhang H, Shi Q, Gu J, et al. Combined value of virtual touch tissue quantification and conventional sonographic features for differentiating benign and malignant thyroid nodules smaller than 10 mm. J Ultrasound Med. 2014;33(2):257‐264.
    1. Helal MH, Mansour SM, Salaleldin LA, et al. The impact of contrast‐enhanced spectral mammogram (CESM) and three‐dimensional breast ultrasound (3DUS) on the characterization of the disease extend in cancer patients. Br J Radiol. 2018;91(1087):20170977.
    1. Yang GCH, Fried KO. Most thyroid cancers detected by sonography lack intranodular vascularity on color doppler imaging: review of the literature and sonographic‐pathologic correlations for 698 thyroid neoplasms. J Ultrasound Med. 2017;36(1):89‐94.
    1. Krouskop TA, Wheeler TM, Kallel F, et al. Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging. 1998;20(4):260‐274.
    1. Shi X‐Q, Li J, Qian L, et al. Correlation between elastic parameters and collagen fibre features in breast lesions. Clin Radiol. 2018;73(6):595.e1‐595.e7.
    1. Signore G, Nifosì R, Albertazzi L, Storti B, Bizzarri R. Polarity‐sensitive coumarins tailored to live cell imaging. J Am Chem Soc. 2010;132(4):1276‐1288.
    1. Wang Y, Nasief HG, Kohn S, et al. Three‐dimensional ultrasound elasticity imaging on an automated breast volume scanning system. Ultrason Imaging. 2017;39(6):369‐392.
    1. Park AY, Seo BK, Cha SH, et al. An innovative ultrasound technique for evaluation of tumor vascularity in breast cancers: superb micro‐vascular imaging. J Breast Cancer. 2016;19(2):210.
    1. Machado P, Eisenbrey JR, Stanczak M, et al. Characterization of breast microcalcifications using a new ultrasound image‐processing technique. J Ultrasound Med. 2019;38(7):1733‐1738.
    1. Machado P, Eisenbrey JR, Stanczak M, et al. Ultrasound detection of microcalcifications in surgical breast specimens. Ultrasound Med Biol. 2018;44(6):1286‐1290.
    1. Riedl CC, Luft N, Bernhart C, et al. Triple‐modality screening trial for familial breast cancer underlines the importance of magnetic resonance imaging and questions the role of mammography and ultrasound regardless of patient mutation status, age, and breast density. J Clin Oncol. 2015;33(10):1128‐1135.
    1. Orguc S, Basara I, Coskun T. Diffusion‐weighted MR imaging of the breast: comparison of apparent diffusion coefficient values of normal breast tissue with benign and malignant breast lesions. Singapore Med J. 2012;53(11):737‐743.
    1. Bougias H, Ghiatas A, Priovolos D, Veliou K, Christou A. Whole‐lesion apparent diffusion coefficient (ADC) metrics as a marker of breast tumour characterization‐comparison between ADC value and ADC entropy. Br J Radiol. 2016;89(1068):20160304.
    1. Rabasco P, Caivano R, Simeon V, et al. Can diffusion‐weighted imaging and related apparent diffusion coefficient be a prognostic value in women with breast cancer? Cancer Invest. 2017;35(2):92‐99.
    1. Wojcinski S, Farrokh H, Wiskirchen G, et al. The automated breast volume scanner (ABVS): initial experiences in lesion detection compared with conventional handheld B‐mode ultrasound: a pilot study of 50 cases. Int J Womens Health. 2011;3(1);337.
    1. Moy L, Noz ME, Maguire GQ Jr, et al. Role of fusion of prone FDG‐PET and magnetic resonance imaging of the breasts in the evaluation of breast cancer. Breast J. 2010;16(4):369‐376.
    1. Guindalini RSC, Zheng Y, Abe H, et al. Intensive surveillance with biannual dynamic contrast‐enhanced magnetic resonance imaging downstages breast cancer in BRCA1 mutation carriers. Clin Cancer Res. 2019;25(6):1786‐1794.
    1. Clauser P, Marcon M, Dietzel M, et al. A new method to reduce false positive results in breast MRI by evaluation of multiple spectral regions in proton MR‐spectroscopy. Eur J Radiol. 2017;92:51‐57.
    1. He D, Mustafi D, Fan X, et al. Magnetic resonance spectroscopy detects differential lipid composition in mammary glands on low fat, high animal fat versus high fructose diets. PLoS ONE. 2018;13(1):e0190929.
    1. Bohte AE, Nelissen JL, Runge JH, et al. Breast magnetic resonance elastography: a review of clinical work and future perspectives. NMR Biomed. 2018;31(10):e3932.
    1. Plecha DM, Faulhaber P. PET/MRI of the breast. Eur J Radiol. 2017;94:A26‐A34.
    1. Albano D, Bosio G, Orlando E, et al. Role of fluorine‐18‐fluorodeoxyglucose positron emission tomography/computed tomography in evaluating breast mucosa‐associated lymphoid tissue lymphoma: a case series. Hematol Oncol. 2017;35(4):884‐889.
    1. Jin LD, Zhao WH, Zhang J, et al. Evaluation of the diagnostic value of circulating tumor cells with CytoSorter®CTC capture system in patients with breast cancer. Cancer Med. 2020;9:1638‐1647.
    1. Ma F, Guan Y, Yi Z, et al. Assessing tumor heterogeneity using ctDNA to predict and monitor therapeutic response in metastatic breast cancer. Int J Cancer. 2020;146(5):1359‐1368.
    1. Zhou YU, Xu H, Wang H, et al. Detection of breast cancer‐derived exosomes using the horseradish peroxidase‐mimicking DNAzyme as an aptasensor. Analyst. 2020;145(1):107‐114.
    1. Ni Q, Stevic I, Pan C, et al. Different signatures of miR‐16, miR‐30b and miR‐93 in exosomes from breast cancer and DCIS patients. Sci Rep. 2018;8(1):12974.
    1. Shao M, Ma H, Wan X, et al. Survival analysis for long noncoding RNAs identifies TP53TG1 as an antioncogenic target for the breast cancer. J Cell Physiol. 2020. 10.1002/jcp.29517
    1. Liang D, Liu H, Yang Q, et al. Long noncoding RNA RHPN1‐AS1, induced by KDM5B, is involved in breast cancer via sponging miR‐6884‐5p. J Cell Biochem. 2020. 10.1002/jcb.29645
    1. Sun H, Wang G, Peng Y, et al. H19 lncRNA mediates 17β‐estradiol‐induced cell proliferation in MCF‐7 breast cancer cells. Oncol Rep. 2015;33(6):3045‐3052.
    1. Li W, Jia M, Wang J, et al. Association of MMP9‐1562C/T and MMP13‐77A/G polymorphisms with non‐small cell lung cancer in southern Chinese population. Biomolecules. 2019;9(3):107.
    1. Lü L, Sun J, Shi P, et al. Identification of circular RNAs as a promising new class of diagnostic biomarkers for human breast cancer. Oncotarget. 2017;8(27):44096‐44107.
    1. Yan L, Zheng M, Wang H. Circular RNA hsa_circ_0072309 inhibits proliferation and invasion of breast cancer cells via targeting miR‐492. Cancer Manag Res. 2019;11:1033‐1041.
    1. Giovannoni SJ, DeLong EF, Olsen GJ, Pace NR. Phylogenetic group‐specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol. 1988;170(2):720‐726.
    1. Furrer D, Jacob S, Caron C, et al. Concordance of HER2 immunohistochemistry and fluorescence in situ hybridization using tissue microarray in breast cancer. Anticancer Res. 2017;37(6):3323‐3329.
    1. Yang W, Klos KS, Zhou X, et al. ErbB2 overexpression in human breast carcinoma is correlated with p21Cip1 up‐regulation and tyrosine‐15 hyperphosphorylation of p34Cdc2. Cancer. 2003;98(6):1123‐1130.
    1. Geiersbach KB, Bridge JA, Dolan M, et al. Comparative performance of breast cancer human epidermal growth factor receptor 2 fluorescence in situ hybridization and brightfield in situ hybridization on college of American pathologists proficiency tests. Arch Pathol Lab Med. 2018;142(10):1254‐1259.
    1. Bhattacharjee A, Bhattacharyya T, Thomas A. Human epidermal growth factor receptor 2 borderline mortality in breast cancer patients: evidence from surveillance, epidemiology, and end results program population‐based study. Clin Epidemiol Glob Health. 2018;6(2):88‐93.
    1. Kim YS, Song MY, Jurng J, Kim BC. Isolation and characterization of DNA aptamers against Escherichia coli using a bacterial cell–systematic evolution of ligands by exponential enrichment approach. Anal Biochem. 2013;436(1):22‐28.
    1. Yuan B, Jiang X, Chen Y, et al. Metastatic cancer cell and tissue‐specific fluorescence imaging using a new DNA aptamer developed by Cell‐SELEX. Talanta. 2017;170(February):56‐62.
    1. Kim MY, Jeong S. In vitro selection of RNA Aptamer and specific targeting of ErbB2 in breast cancer cells. Nucleic Acid Ther. 2011;21(3):173‐178.
    1. Cai S, Li G, Zhang XI, et al. A signal‐on fluorescent aptasensor based on single‐stranded DNA‐sensitized luminescence of terbium (III) for label‐free detection of breast cancer cells. Talanta. 2015;138:225‐230.
    1. Bliss SA, Paul S, Pobiarzyn PW, et al. Evaluation of a developmental hierarchy for breast cancer cells to assess risk‐based patient selection for targeted treatment. Scientific Rep. 2018;8(1):367.
    1. Burns MA. An integrated nanoliter DNA analysis device. Science. 1998;282(5388):484‐487.
    1. Hao S, Ha L, Cheng G, et al. A spontaneous 3D bone‐on‐a‐chip for bone metastasis study of breast cancer cells. Small. 2018;14(12):1702787.
    1. Li C, Ding X, Liu Z, Zhu J. Rapid identification of Candida spp. frequently involved in invasive mycoses by using flow‐through hybridization and Gene Chip (FHGC) technology. J Microbiol Methods. 2017;132:160‐165.
    1. Kim M‐H, Kim E‐H, Jung HS, et al. EX4 stabilizes and activates Nrf2 via PKCδ, contributing to the prevention of oxidative stress‐induced pancreatic beta cell damage. Toxicol Appl Pharmacol. 2017;315:60‐69.
    1. Jiang Z, Slater CM, Zhou Y, et al. LincIN, a novel NF90‐binding long non‐coding RNA, is overexpressed in advanced breast tumors and involved in metastasis. Breast Cancer Res. 2017;19(1):62.
    1. Metzker ML. Sequencing technologies‐the next generation. Nat Rev Genet. 2010;11(1):31‐46.
    1. Dong LI, Wu N, Wang S, et al. Detection of novel germline mutations in six breast cancer predisposition genes by targeted next‐generation sequencing. Hum Mutat. 2018;39(10):1442‐1455.
    1. Liang XU, Vacher S, Boulai A, et al. Targeted next‐generation sequencing identifies clinically relevant somatic mutations in a large cohort of inflammatory breast cancer. Breast Cancer Res. 2018;20(1):88.
    1. Kim ST, Lee WS, Lanman RB, et al. Prospective blinded study of somatic mutation detection in cell‐free DNA utilizing a targeted 54‐gene next generation sequencing panel in metastatic solid tumor patients. Oncotarget. 2015;6(37):40360‐40369.
    1. Wu H, Wang Q, Zhong H, et al. Differentially expressed microRNAs in xosomes of patients with breast cancer revealed by next‐generation sequencing. Oncol Rep. 2020;43:240‐250.
    1. Page K, Guttery DS, Fernandez‐Garcia D, et al. Next Generation sequencing of circulating cell‐free DNA for evaluating mutations and gene amplification in metastatic breast cancer. Clin Chem. 2017;63(2):532‐541.
    1. Scarpitta R, Zanna I, Aretini P, et al. Germline investigation in male breast cancer of DNA repair genes by next‐generation sequencing. Breast Cancer Res Treat. 2019;178(3):557‐564.
    1. Ou‐Yang F, Pan MR, Chang SJ, et al. Identification of CHD4‐beta 1 integrin axis as a prognostic marker in triple‐negative breast cancer using next‐generation sequencing and bioinformatics. Life Sci. 2019;238:116963.
    1. Bae JW, Choi KH, Kim HG, et al. The detection of circulating breast cancer cells in peripheral blood by reverse transcriptase‐polymerase chain reaction. J Korean Med Sci. 2000;15(2):194.
    1. Yin W‐B, Yan M‐G, Fang X, et al. Circulating circular RNA hsa_circ_0001785 acts as a diagnostic biomarker for breast cancer detection. Clin Chim Acta. 2018;487:363‐368.
    1. Guimaraes JC, Zavolan M. Patterns of ribosomal protein expression specify normal and malignant human cells. Genome Biol. 2016;17(1):236.
    1. Mansoori B, Mohammadi A, Gjerstorff MF, et al. miR‐142‐3p is a tumor suppressor that inhibits estrogen receptor expression in ER‐positive breast cancer. J Cell Physiol. 2019;234(9):16043‐16053.
    1. Ryu TY, Kim K, Kim S‐K, et al. SETDB1 regulates SMAD7 expression for breast cancer metastasis. BMB Rep. 2019;52(2):139‐144.
    1. Geyer CE, Tang G, Mamounas EP, et al. 21‐Gene assay as predictor of chemotherapy benefit in HER2‐negative breast cancer. NPJ Breast Cancer. 2018;4(1):37.
    1. Matouk IJ, Raveh E, Abu‐lail R, et al. Oncofetal H19 RNA promotes tumor metastasis. Biochim Biophys Acta Mol Cell Res. 2014;1843(7):1414‐1426.
    1. Szyf M, Pakneshan P, Rabbani SA. DNA methylation and breast cancer. Biochem Pharmacol. 2004;68(6):1187‐1197.
    1. He Z, Tang C, Chen X, et al. Based on magnetic beads to develop the kit for extraction of high‐quality cell‐free DNA from blood of breast cancer patients. Mater Express. 2019;9(8):956‐961.
    1. Ng J, Yu J. Promoter hypermethylation of tumour suppressor genes as potential biomarkers in colorectal cancer. Int J Mol Sci. 2015;16(2):2472‐2496.
    1. Luo Y, Huang J, Tang YI, et al. Regional methylome profiling reveals dynamic epigenetic heterogeneity and convergent hypomethylation of stem cell quiescence‐associated genes in breast cancer following neoadjuvant chemotherapy. Cell Biosci. 2019;9(1):16.
    1. McCullough LE, Chen J, Cho YH, et al. DNA methylation modifies the association between obesity and survival after breast cancer diagnosis. Breast Cancer Res Treat. 2016;156(1):183‐194.
    1. Mastoraki S, Strati A, Tzanikou E, et al. ESR1 methylation: a liquid biopsy‐based epigenetic assay for the follow‐up of patients with metastatic breast cancer receiving endocrine treatment. Clin Cancer Res. 2018;24(6):1500‐1510.
    1. Tuo Y‐L, Ye Y‐F. MGP is downregulated due to promoter methylation in chemoresistant ER+ breast cancer and high MGP expression predicts better survival outcomes. Eur Rev Med Pharmacol Sci. 2017;21(17):3871‐3878.
    1. Yip C‐H, Rhodes A. Estrogen and progesterone receptors in breast cancer. Futur Oncol. 2014;10(14):2293‐2301.
    1. Canas‐Marques R, Schnitt SJ. E‐cadherin immunohistochemistry in breast pathology: uses and pitfalls. Histopathology. 2016;68(1):57‐69.
    1. Maeda I, Kubota M, Ohta J, et al. Effectiveness of computer‐aided diagnosis (CADx) of breast pathology using immunohistochemistry results of core needle biopsy samples for synaptophysin, oestrogen receptor and CK14/p63 for classification of epithelial proliferative lesions of the breast. J Clin Pathol. 2017;70(12):1057‐1062.
    1. Hanley KZ, Birdsong GG, Cohen C, et al. Immunohistochemical detection of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression in breast carcinomas. Cancer Cytopathol. 2009;117(4):279‐288.
    1. Shen Q, Rao Q, Xia Q‐Y, et al. Perivascular epithelioid cell tumor (PEComa) with TFE3 gene rearrangement: clinicopathological, immunohistochemical, and molecular features. Virchows Arch. 2014;465(5):607‐613.
    1. Bogdanovska‐Todorovska M, Kostadinova‐Kunovska S, Jovanovik R, et al. Correlation of immunohistochemistry and fluorescence in situ hybridization for HER‐2 assessment in breast cancer patients: single centre experience. Open Access Maced J Med Sci. 2018;6(4):593‐599.
    1. Suryavanshi M, Mehta A, Jaipuria J, et al. Clinical utility of RT‐PCR in assessing HER 2 gene expression versus traditional IHC and FISH in breast cancer patients. Breast Cancer. 2018;25(4):416‐430.
    1. Wang J, Heng YJ, Eliassen AH, et al. Alcohol consumption and breast tumor gene expression. Breast Cancer Res. 2017;19(1):108.
    1. Toomey S, Eustace AJ, Fay J, et al. Impact of somatic PI3K pathway and ERBB family mutations on pathological complete response (pCR) in HER2‐positive breast cancer patients who received neoadjuvant HER2‐targeted therapies. Breast Cancer Res. 2017;19(1):87.
    1. Moore SC, Matthews CE, Ou Shu X, et al. Estrogen metabolites, and breast cancer risk in postmenopausal Chinese women. J Natl Cancer Inst. 2016;108(10):djw103.
    1. Zhou Y, Meng X, Chen S, et al. IMP1 regulates UCA1‐mediated cell invasion through facilitating UCA1 decay and decreasing the sponge effect of UCA1 for miR‐122‐5p. Breast Cancer Res. 2018;20(1):32.
    1. Liu W‐S, Chan S‐H, Chang H‐T, et al. Isocitrate dehydrogenase 1–snail axis dysfunction significantly correlates with breast cancer prognosis and regulates cell invasion ability. Breast Cancer Res. 2018;20(1):25.
    1. De Francesco EM, Sims AH, Maggiolini M, et al. GPER mediates the angiocrine actions induced by IGF1 through the HIF‐1α/VEGF pathway in the breast tumor microenvironment. Breast Cancer Rese. 2017;19(1):129.
    1. El Ansari R, Craze ML, Miligy I, et al. The amino acid transporter SLC7A5 confers a poor prognosis in the highly proliferative breast cancer subtypes and is a key therapeutic target in luminal B tumours. Breast Cancer Res. 2018;20(1):21.
    1. Saeys Y, Van Gassen S, Lambrecht BN. Computational flow cytometry: helping to make sense of high‐dimensional immunology data. Nat Rev Immunol. 2016;16(7):449‐462.
    1. Li M, Cui P, Li K, et al. Dual‐site fluorescent probe for highly selective and sensitive detection of sulfite and biothiols. Chinese Chem Lett. 2018;29(6):992‐994.
    1. Tang X, Chen Z, Li Y, et al. Compressive sensing‐based electrostatic sensor array signal processing and exhausted abnormal debris detecting. Mech Syst Signal Process. 2018;105:404‐426.
    1. Darjee SM, Bhatt KD, Panchal US, et al. Scrupulous recongnisation of biologically important acids by Fluorescent “turn off‐on” mechanism of thaicalix reduced silver nanoparticles. Sens Bio‐Sensing Res. 2016;28(2):312‐318.
    1. Guo Y, Luo F, Zhang X, et al. TPPU enhanced exercise‐induced EET concentrations to exert cardioprotection in mice after myocardial infarction. J Cell Mol Med. 2018;22(3):1489‐1500.
    1. Huang G, Meng Q‐Q, Zhou W, et al. Design and synthesis of biotinylated dimethylation of alkannin oxime derivatives. Chinese Chem Lett. 2017;28(2):453‐457.
    1. Liu B, Dou C, Guerrero JM. Event‐triggered hybrid control based on multi‐agent system for microgrids. IET Gener Transm Distrib. 2014;8(12):1987‐1997.
    1. Long M, Su H, Liu B. Group controllability of two‐time‐scale multi‐agent networks. J Franklin Inst. 2018;355(13):6045‐6061.
    1. Finak G, Jiang W, Krouse K, et al. High‐throughput flow cytometry data normalization for clinical trials. Cytom Part A. 2014;85(3):277‐286.
    1. Li P, McClements DJ, Decker EA. Application of flow cytometry as novel technology in studying the effect of droplet size on lipid oxidation in oil‐in‐water emulsions. J Agric Food Chem. 2019;68(2):567‐573.
    1. García‐Foncillas J, Alba E, Aranda E, et al. Incorporating BEAMing technology as a liquid biopsy into clinical practice for the management of colorectal cancer patients: an expert taskforce review. Ann Oncol. 2017;28(12):2943‐2949.
    1. Kim H, Lin Q, Glazer PM, et al. The hypoxic tumor microenvironment in vivo selects the cancer stem cell fate of breast cancer cells. Breast Cancer Res. 2018;20(1):16.
    1. Chamberlin T, D’Amato JV, Arendt LM. Obesity reversibly depletes the basal cell population and enhances mammary epithelial cell estrogen receptor alpha expression and progenitor activity. Breast Cancer Res. 2017;19(1):128.
    1. Tu C‐F, Wu M‐Y, Lin Y‐C, et al. FUT8 promotes breast cancer cell invasiveness by remodeling TGF‐β receptor core fucosylation. Breast Cancer Res. 2017;19(1):111.
    1. Xu Y, So C, Lam H‐M, et al. Flow cytometric detection of newly‐formed breast cancer stem cell‐like cells after apoptosis reversal. J Vis Exp. 2019;143:1‐11.
    1. Patel M, Feith M, Janicke B, et al. Evaluation of the impact of imprinted polymer particles on morphology and motility of breast cancer cells by using digital holographic cytometry. Appl. Sci. 2020;10(2):750.
    1. Farghadani R, Rajarajeswaran J, Hashim NBM, et al. A novel β‐diiminato manganeseIII complex as the promising anticancer agent induces G0/G1 cell cycle arrest and triggers apoptosis via mitochondrial‐dependent pathways in MCF‐7 and MDA‐MB‐231 human breast cancer cells. RSC Adv. 2017;7(39):24387‐24398.
    1. Zhong J, Sun D‐S, Wei W, et al. Contrast‐enhanced ultrasound‐guided fine‐needle aspiration for sentinel lymph node biopsy in early‐stage breast cancer. Ultrasound Med Biol. 2018;44(7):1371‐1378.
    1. Donaldson AR, McCarthy C, Goraya S, et al. Breast cancer risk associated with atypical hyperplasia and lobular carcinoma in situ initially diagnosed on core‐needle biopsy. Cancer. 2018;124(3):459‐465.
    1. Zhang JL, Wang JH, Bai AF, et al. The significance of high‐frequency ultrasound‐guided breast mass biopsy in the diagnosis of breast cancer. Eur J Gynaecol Oncol. 2017;38(5):741‐744.
    1. Hu X, Zhou X, Yang H, et al. Axillary ultrasound and fine needle aspiration biopsy in the preoperative diagnosis of axillary metastases in early‐stage breast cancer. Oncol Lett. 2018;15(6):8477‐8483.
    1. Guo W, Hao B, Luo N, et al. Early re‐staging and molecular subtype shift surveillance of locally recurrent or metastatic breast cancer: a new PET/CT integrated precise algorithm. Cancer Lett. 2018;418:221‐229.
    1. Santiago L, Adrada BE, Huang ML, et al. Breast cancer neoplastic seeding in the setting of image‐guided needle biopsies of the breast. Breast Cancer Res Treat. 2017;166(1):29‐39.
    1. Jahanbin B, Soleimani V, Azmoudeh‐Ardalan F. Displaced epithelium in breast pathology: a review. Arch Breast Cancer. 2018;5(4):150‐158.
    1. Fan J, Xie Z‐H, Teng X‐X, et al. Determination of methylene blue by resonance light scattering method using silica nanoparticles as probe. Chinese Chem Lett. 2017;28(5):1104‐1110.
    1. Qin W, Xu C, Zhao Y, et al. Recent progress in small molecule fluorescent probes for nitroreductase. Chinese Chem Lett. 2018;29(10):1451‐1455.
    1. Chen H, Gu Z, An H, et al. Precise nanomedicine for intelligent therapy of cancer. Sci China Chem. 2018;61(12):1503‐1552.
    1. Borin TF, Arbab AS, Gelaleti GB, et al. Melatonin decreases breast cancer metastasis by modulating Rho‐associated kinase protein‐1 expression. J Pineal Res. 2016;60(1):3‐15.
    1. Li T, Yang J, Ali Z, et al. Synthesis of aptamer‐functionalized Ag nanoclusters for MCF‐7 breast cancer cells imaging. Sci China Chem. 2017;60(3):370‐376.
    1. Liu M, Wang Z, Tan T, et al. An aptamer‐based probe for molecular subtyping of breast cancer. Theranostics. 2018;8(20):5772‐5783.
    1. Liu M, Yang T, Chen Z, Wang Z, He N. Differentiating breast cancer molecular subtypes using a DNA aptamer selected against MCF‐7 cells. Biomater Sci. 2018;6(12):3152‐3159.
    1. Tan J, Yang N, Zhong L, et al. A new theranostic system based on endoglin aptamer conjugated fluorescent silica nanoparticles. Theranostics. 2017;7(19):4862‐4876.
    1. Liu M, Khan A, Wang Z, et al. Aptasensors for pesticide detection. Biosens Bioelectron. 2019;130:174‐184.
    1. Huang R, Chen Z, Liu M, et al. The aptamers generated from HepG2 cells. Sci China Chem. 2017;60(6):786‐792.
    1. Xi Z, Huang R, Li Z, et al. Selection of HBsAg‐specific DNA aptamers based on carboxylated magnetic nanoparticles and their application in the rapid and simple detection of hepatitis B virus infection. ACS Appl Mater Interfaces. 2015;7(21):11215‐11223.
    1. Tan Y, Guo Q, Xie Q, et al. Single‐walled carbon nanotubes (SWCNTs)‐assisted cell‐systematic evolution of ligands by exponential enrichment (Cell‐SELEX) for improving screening efficiency. Anal Chem. 2014;86(19):9466‐9472.
    1. Brianese RC, Nakamura KDdM, Almeida FGDSR, et al. BRCA1 deficiency is a recurrent event in early‐onset triple‐negative breast cancer: a comprehensive analysis of germline mutations and somatic promoter methylation. Breast Cancer Res Treat. 2018;167(3):803‐814.
    1. Farman F, Haq F, Muhammad N, et al. Aberrant promoter methylation status is associated with upregulation of the E2F4 gene in breast cancer. Oncol Lett. 2018;15(6):8461‐8469.
    1. Rahman WFWA, Fauzi MH, Jaafar H. Expression of DNA methylation marker of paired‐like homeodomain transcription factor 2 and growth receptors in invasive ductal carcinoma of the breast. Asian Pacific J Cancer Prev. 2014;15(19):8441‐8445.
    1. Pilato B, Pinto R, De Summa S, et al. HOX gene methylation status analysis in patients with hereditary breast cancer. J Hum Genet. 2013;58(1):51‐53.
    1. Heng J, Guo X, Wu W, et al. Integrated analysis of promoter mutation, methylation and expression of AKT1 gene in Chinese breast cancer patients. PLoS ONE. 2017;12(3):e0174022.
    1. Fu D, Ren C, Tan H, et al. Sox17 promoter methylation in plasma DNA is associated with poor survival and can be used as a prognostic factor in breast cancer. Medicine. 2015;94(11):e637.
    1. Spitzwieser M, Entfellner E, Werner B, et al. Hypermethylation of CDKN2A exon 2 in tumor, tumor‐adjacent and tumor‐distant tissues from breast cancer patients. BMC Cancer. 2017;17(1):260.
    1. Zaki SM, Abdel‐Azeez HA, El Nagar MR, et al. Analysis of FHIT gene methylation in egyptian breast cancer women: association with clinicopathological features. Asian Pacific J Cancer Prev. 2015;16(3):1235‐1239.
    1. Hsu C‐H, Peng K‐L, Kang M‐L, et al. TET1 suppresses cancer invasion by activating the tissue inhibitors of metalloproteinases. Cell Rep. 2012;2(3):568‐579.
    1. Liggett TE, Melnikov AA, Marks JR, et al. Methylation patterns in cell‐free plasma DNA reflect removal of the primary tumor and drug treatment of breast cancer patients. Int J Cancer. 2011;128(2):492‐499.
    1. Jezkova E, Zubor P, Kajo K, et al. Impact of RASSF1A gene methylation on the metastatic axillary nodal status in breast cancer patients. Oncol Lett. 2017;14(1):758‐766.
    1. Fujii S, Yamashita S, Yamaguchi T, et al. Pathological complete response of HER2‐positive breast cancer to trastuzumab and chemotherapy can be predicted by HSD17B4 methylation. Oncotarget. 2017;8(12):19039‐19048.
    1. Li D, Li P, Wu J, et al. Methylation of NBPF1 as a novel marker for the detection of plasma cell‐free DNA of breast cancer patients. Clin Chim Acta. 2018;484(7):81‐86.
    1. Tang W, Wang C, Fu F, et al. RhoBTB2 gene in breast cancer is silenced by promoter methylation. Int J Mol Med. 2014;33(3):722‐728.
    1. Kumar R, Sharma A, Tiwari R. Application of microarray in breast cancer: An overview. J Pharm Bioallied Sci. 2012;4(1):21.
    1. Burrai GP, Tanca A, De Miglio MR, et al. Investigation of HER2 expression in canine mammary tumors by antibody‐based, transcriptomic and mass spectrometry analysis: is the dog a suitable animal model for human breast cancer? Tumor Biol. 2015;36(11):9083‐9091.
    1. Nazmeen A, Maiti S, Mandal K, et al. Better predictive value of Cancer Antigen125 (CA125) as biomarker in ovary and breast tumors and its correlation with the histopathological type/grade of the disease. Med Chem. 2017;13(8):796‐804.
    1. Wang W, Xu X, Tian B, et al. The diagnostic value of serum tumor markers CEA, CA19‐9, CA125, CA15‐3, and TPS in metastatic breast cancer. Clin Chim Acta. 2017;470:51‐55.
    1. Nath S, Mukherjee P. MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med. 2014;20(6):332‐342.
    1. Park J, Lee Y. Hypoxia induced phosphorylation of estrogen receptor at serine 118 in the absence of ligand. J Steroid Biochem Mol Biol. 2017;174:146‐152.
    1. Fang F, Flegler AJ, Du P, et al. Expression of cyclophilin B is associated with malignant progression and regulation of genes implicated in the pathogenesis of breast cancer. Am J Pathol. 2009;174(1):297‐308.
    1. Bjöhle J, Bergqvist J, Gronowitz JS, et al. Serum thymidine kinase activity compared with CA 15–3 in locally advanced and metastatic breast cancer within a randomized trial. Breast Cancer Res Treat. 2013;139(3):751‐758.
    1. Yang Z‐M, Ding X‐P, Pen L, et al. Analysis of CEA expression and EGFR mutation status in non‐small cell lung cancers. Asian Pacific J Cancer Prev. 2014;15(8):3451‐3455.

Source: PubMed

3
구독하다