The Impact of N-Acetylcysteine on Autologous Fat Graft: First-in-Human Pilot Study

Piotr Pietruski, Wiktor Paskal, Łukasz Paluch, Adriana M Paskal, Żaneta Nitek, Paweł Włodarski, Jerzy Walecki, Bartłomiej Noszczyk, Piotr Pietruski, Wiktor Paskal, Łukasz Paluch, Adriana M Paskal, Żaneta Nitek, Paweł Włodarski, Jerzy Walecki, Bartłomiej Noszczyk

Abstract

Background: Our goal was to determine whether N-acetylcysteine (NAC) administered to the tumescent solution can reduce oxidative stress and increase autologous fat graft (AFG) viability.

Methods: The study included 15 women with a mean age of 31.8 years (range 23-39 years) who underwent breast asymmetry correction with AFG harvested from both thighs. One thigh was infiltrated with a standard tumescent fluid (control graft) and other with a NAC-enriched tumescent fluid (NAC-treated graft). Each participant had breast MRI imaging before and 6 months after the procedure. Also, adipose tissue samples from each graft were subjected to biochemical analysis, flow cytometric assay and qRT-PCR to determine the markers of oxidative stress, angiogenesis and adipogenesis.

Results: Concentration and activity of superoxide dismutase in the NAC-treated grafts turned out to be significantly higher than in the control grafts, in both fresh (p = 0.041 and p = 0.023, respectively) and frozen samples (p = 0.004 and p = 0.003, respectively). The level of nitric oxide in frozen samples from the control grafts was significantly higher than in the NAC-treated grafts (p = 0.009). iNOS was the only qRT-PCR target showing significant intergroup differences, with higher transcription levels observed in the control grafts (p = 0.027). Breast volumetric analysis demonstrated that the NAC-treated group had a 12.19% lower resorption rate than the control group, although it was found to be statistically insignificant (p = 0.149). No postoperative complications were observed during a 6-month follow-up.

Conclusions: Some results of this study are promising. Further studies on larger groups are needed to determine NAC impact on AFG.

Level of evidence iv: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

Trial registry name: The Impact of N-Acetylcysteine on Volumetric Retention of Autologous Fat Graft for Breast Asymmetry Correction.

Registration identification number: NCT03197103. URL FOR THE REGISTRY: https://ichgcp.net/clinical-trials-registry/NCT03197103?term=acetylcysteine&rank=6.

Keywords: Acetylcysteine; Autologous fat graft; Breast; Lipofilling; Oxidative stress.

Conflict of interest statement

The authors declare that they have no conflict of interest.

© 2020. The Author(s).

Figures

Fig. 1
Fig. 1
Autologous fat graft acquisition and usage framework. a Infiltration of each thigh with either Klein control tumescent solution or solution enriched with NAC. Using the suction-assisted liposuction technique, lipoaspirate from each thigh was collected to a separate canister. b After sedimentation and static decantation, a total of 65 ml of AFG was sent for biochemical, flow cytometric and genetic analyses. c A total of 145 ml of NAC-enriched AFG was implanted to one breast, while the same volume of the control AFG was injected to the other breast
Fig. 2
Fig. 2
Intergroup differences in the concentrations and activity of SOD in fresh and frozen AFGs
Fig. 3
Fig. 3
Intergroup differences in the levels of NO in fresh and frozen AFGs
Fig. 4
Fig. 4
Intergroup differences in the levels of ROS in fresh and frozen AFGs
Fig. 5
Fig. 5
Comparison of flow cytometry results
Fig. 6
Fig. 6
Comparison of iNOS gene expressions
Fig. 7
Fig. 7
Breast appearances after 6 months. No noticeable size difference can be observed

References

    1. Coleman SR. Facial recontouring with lipostructure. Clin Plast Surg. 1997;24:347–367. doi: 10.1016/S0094-1298(20)31069-5.
    1. Strong AL, Cederna PS, Rubin JP, Coleman SR, Levi B. The current state of fat grafting: a review of harvesting, processing, and injection techniques. Plast Reconstr Surg. 2015;136:897–912. doi: 10.1097/PRS.0000000000001590.
    1. Choi M, Small K, Levovitz C, Lee C, Fadl A, Karp NS. The volumetric analysis of fat graft survival in breast reconstruction. Plast Reconstr Surg. 2013;131:185–191. doi: 10.1097/PRS.0b013e3182789b13.
    1. Clauser LC, Tieghi R, Galič M, Carinci F. Structural fat grafting. J Craniofac Surg. 2011;22:1695–1701. doi: 10.1097/SCS.0b013e31822e5d5e.
    1. Coleman SR. Structural fat grafting: more than a permanent filler. Plast Reconstr Surg. 2006;118:108S–120S. doi: 10.1097/01.prs.0000234610.81672.e7.
    1. Gir P, Brown SA, Oni G, Kashefi N, Mojallal A, Rohrich RJ. Fat grafting: evidence-based review on autologous fat harvesting, processing, reinjection, and storage. Plast Reconstr Surg. 2012;130:249–258. doi: 10.1097/PRS.0b013e318254b4d3.
    1. Kaufman MR, Miller TA, Huang C, et al. Autologous fat transfer for facial recontouring: is there science behind the art? Plast Reconstr Surg. 2007;119:2287–2296. doi: 10.1097/01.prs.0000260712.44089.e7.
    1. Wetterau M, Szpalski C, Hazen A, Warren SM. Autologous fat grafting and facial reconstruction. J Craniofac Surg. 2012;23:315–318. doi: 10.1097/SCS.0b013e318241e1de.
    1. Shim YH, Zhang RH. Literature review to optimize the autologous fat transplantation procedure and recent technologies to improve graft viability and overall outcome: a systematic and retrospective analytic approach. Aesth Plast Surg. 2017;41:815–831. doi: 10.1007/s00266-017-0793-3.
    1. Zielins ER, Brett EA, Longaker MT, Wan DC. Autologous fat grafting: the science behind the surgery. Aesthet Surg J. 2016;36:488–496. doi: 10.1093/asj/sjw004.
    1. Groen JW, Negenborn VL, Twisk JW, Ket JC, Mullender MG, Smit JM. Autologous fat grafting in cosmetic breast augmentation: a systematic review on radiological safety, complications, volume retention, and patient/surgeon satisfaction. Aesthet Surg J. 2016;36:993–1007. doi: 10.1093/asj/sjw105.
    1. Sinno S, Wilson S, Brownstone N, Levine SM. Current thoughts on fat grafting: using the evidence to determine fact or fiction. Plast Reconstr Surg. 2016;137:818–824. doi: 10.1097/01.prs.0000479966.52477.8b.
    1. Krastev TK, Beugels J, Hommes J, Piatkowski A, Mathijssen I, van der Hulst R. Efficacy and safety of autologous fat transfer in facial reconstructive surgery: a systematic review and meta-analysis. JAMA Facial Plast Surg. 2018;20:351–360. doi: 10.1001/jamafacial.2018.0102.
    1. Largo RD, Tchang LA, Mele V, et al. Efficacy, safety and complications of autologous fat grafting to healthy breast tissue: a systematic review. J Plast Reconstr Aesthet Surg. 2014;67:437–448. doi: 10.1016/j.bjps.2013.11.011.
    1. Negenborn VL, Groen JW, Smit JM, Niessen FB, Mullender MG. The use of autologous fat grafting for treatment of scar tissue and scar-related conditions: a systematic review. Plast Reconstr Surg. 2016;137:31–43. doi: 10.1097/PRS.0000000000001850.
    1. Wolf GA, Gallego S, Patrón AS, et al. Magnetic resonance imaging assessment of gluteal fat grafts. Aesthet Plast Surg. 2006;30:460–468. doi: 10.1007/s00266-005-0202-1.
    1. Niechajev I, Sevcuk O. Long-term results of fat transplantation: clinical and histologic studies. Plast Reconstr Surg. 1994;94:496–506. doi: 10.1097/00006534-199409000-00012.
    1. Delay E, Garson S, Tousson G, Sinna R. Fat injection to the breast: technique, results, and indications based on 880 procedures over 10 years. Aesthet Surg J. 2009;29:360–376. doi: 10.1016/j.asj.2009.08.010.
    1. Smith P, Adams WP, Jr, Lipschitz AH, et al. Autologous human fat grafting: effect of harvesting and preparation techniques on adipocyte graft survival. Plast Reconstr Surg. 2006;117:1836–1844. doi: 10.1097/01.prs.0000218825.77014.78.
    1. Chajchir A, Benzaquen I. Fat-grafting injection for soft-tissue augmentation. Plast Reconstr Surg. 1989;84:921–934. doi: 10.1097/00006534-198912000-00009.
    1. Herold C, Ueberreiter K, Busche MN, Vogt PM. Autologous fat transplantation: volumetric tools for estimation of volume survival: a systematic review. Aesthet Plast Surg. 2013;37:380–387. doi: 10.1007/s00266-012-0046-4.
    1. Fisher C, Grahovac TL, Schafer ME, Shippert RD, Marra KG, Rubin JP. Comparison of harvest and processing techniques for fat grafting and adipose stem cell isolation. Plast Reconstr Surg. 2013;132:351–361. doi: 10.1097/PRS.0b013e3182958796.
    1. Khouri RK, Rigotti G, Cardoso E, Khouri RK, Jr, Biggs TM. Megavolume autologous fat transfer: part I. Theory and principles. Plast Reconstr Surg. 2014;133:550–557. doi: 10.1097/01.prs.0000438044.06387.2a.
    1. Carpaneda CA, Ribeiro MT. Study of the histologic alterations and viability of the adipose graft in humans. Aesthet Plast Surg. 1993;17:43–47. doi: 10.1007/BF00455048.
    1. Eto H, Kato H, Suga H, Aoi N, Doi K, Kuno S, Yoshimura K. The fate of adipocytes after nonvascularized fat grafting: Evidence of early death and replacement of adipocytes. Plast Reconstr Surg. 2012;129:1081–1092. doi: 10.1097/PRS.0b013e31824a2b19.
    1. Kato H, Mineda K, Eto H, Doi K, Kuno S, Kinoshita K, Kanayama K, Yoshimura K. Degeneration, regeneration and cicatrization after fat grafting: dynamic total tissue remodeling during the first 3 months. Plast Reconstr Surg. 2014;133:303–313. doi: 10.1097/PRS.0000000000000066.
    1. Bourne DA, James IB, Wang SS, Marra KG, Rubin JP. The architecture of fat grafting: what lies beneath the surface. Plast Reconstr Surg. 2016;137:1072–1079. doi: 10.1097/.
    1. Del Vecchio D, Rohrich RJ. A classification of clinical fat grafting: different problems, different solutions. Plast Reconstr Surg. 2012;130:511–522. doi: 10.1097/PRS.0b013e31825dbf8a.
    1. Kontoes P, Gounnaris G. Complications of fat transfer for breast augmentation. Aesthet Plast Surg. 2017;41:1078–1082. doi: 10.1007/s00266-017-0911-2.
    1. Gillis J, Gebremeskel S, Phipps KD, MacNeil LA, Sinal CJ, Johnston B, Hong P, Bezuhly M. Effect of N-acetylcysteine on adipose-derived stem cell and autologous fat graft survival in a mouse model. Plast Reconstr Surg. 2015;136:179–188. doi: 10.1097/PRS.0000000000001443.
    1. Zhan W, Tan SS, Han X, Palmer JA, Mitchell GM, Morrison WA. Indomethacin enhances fat graft retention by up-regulating adipogenic genes and reducing inflammation. Plast Reconstr Surg. 2017;139:1093–1104. doi: 10.1097/PRS.0000000000003255.
    1. Dodd S, Dean O, Copolov DL, Malhi GS, Berk M. N-acetylcysteine for antioxidant therapy: pharmacology and clinical utility. Expert Opin Biol Ther. 2008;8:1955–1962. doi: 10.1517/14728220802517901.
    1. Rushworth GF, Megson IL. Existing and potential therapeutic uses for N-acetylcysteine: the need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol Ther. 2014;141:150–159. doi: 10.1016/j.pharmthera.2013.09.006.
    1. Borgstrom L, Kagedal B, Paulsen O. Pharmacokinetics of N-acetylcysteine in man. Eur J Clin Pharmacol. 1986;31:217–222. doi: 10.1007/BF00606662.
    1. Tascilar O, Cakmak G, Emre A, et al. N-acetylcycsteine attenuates the deleterious effects of radiation therapy on incisional wound healing in rats. Hippokratia. 2014;18:17–23.
    1. Aktunc E, Ozacmak VH, Ozacmak HS, et al. N-acetyl cysteine promotes angiogenesis and clearance of free oxygen radicals, thus improving wound healing in an alloxan-induced diabetic mouse model of incisional wound. Clin Exp Dermatol. 2010;35:902–909. doi: 10.1111/j.1365-2230.2010.03823.x.
    1. Catapano J, Zhang J, Scholl D, et al. N-acetylcysteine prevents retrograde motor neuron death after neonatal peripheral nerve injury. Plast Reconstr Surg. 2017;139:1105e–1115e. doi: 10.1097/PRS.0000000000003257.
    1. Zhu M, Heydarkhan-Hagvall S, Hedrick M, Benhaim P, Zuk P. Manual isolation of adipose-derived stem cells from human lipoaspirates. J Vis Exp. 2013 doi: 10.3791/50585.
    1. Fedorov A, Beichel R, Kalpathy-Cramer J, et al. 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging. 2012;30:1323–1341. doi: 10.1016/j.mri.2012.05.001.
    1. Sari E, Bakar B, Sarkarati B, Bozdogan O, Cavusoglu T. Effectiveness of dimethylsulfoxide on the survival and volume preservation of autologous fat graft tissue: a preliminary study. Aesthet Surg J. 2016;36:58–67. doi: 10.1093/asj/sjv119.
    1. Nguyen A, Pasyk KA, Bouvier TN, Hassett CA, Argenta LC. Comparative study of survival of autologous adipose tissue taken and transplanted by different techniques. Plast Reconstr Surg. 1990;85:378–386. doi: 10.1097/00006534-199003000-00007.
    1. Nishimura T, Hashimoto H, Nakanishi I, Furukawa M. Microvascular angiogenesis and apoptosis in the survival of free fat grafts. Laryngoscope. 2000;110:1333–1338. doi: 10.1097/00005537-200008000-00021.
    1. Bartynski J, Marion M, Wang T. Histopathologic evaluation of adipose autografts in a rabbit ear model. Otolaryngol Head Neck Surg. 1990;102:314–321. doi: 10.1177/019459989010200402.
    1. Farber JL. Mechanisms of cell injury by activated oxygen species. Environ Health Perspect. 1994;102(Supp 10):17–24.

Source: PubMed

3
구독하다