BMI and recommended levels of physical activity in school children

Phillipp Schwarzfischer, Martina Weber, Dariusz Gruszfeld, Piotr Socha, Veronica Luque, Joaquin Escribano, Annick Xhonneux, Elvira Verduci, Benedetta Mariani, Berthold Koletzko, Veit Grote, Phillipp Schwarzfischer, Martina Weber, Dariusz Gruszfeld, Piotr Socha, Veronica Luque, Joaquin Escribano, Annick Xhonneux, Elvira Verduci, Benedetta Mariani, Berthold Koletzko, Veit Grote

Abstract

Background: Physical activity (PA) and its health benefits are a continuous point of discussion. Recommendations for children's daily PA vary between guidelines. To better define the amount of PA necessary to prevent overweight and obesity in children, further research is needed. The present study investigates children's compliance to physical activity guidelines (PAGs) and the association between objectively measured PA and body mass index (BMI).

Methods: Participating children were 11 years old (n = 419) and part of the European CHOP trial, which was conducted in Germany, Belgium, Poland, Spain, Italy. At least 2 days of PA measurements were collected from each child using a SenseWear™ armband. BMI was calculated from children's height and weight. Thresholds of min·day-1 in PA needed to differentiate between normal and excess weight (overweight/obesity) were determined with Receiver Operator Characteristics (ROC) analysis. Additionally, adjusted linear and logistic regressions models were calculated for group differences and effects of a 5, 15 and 60 min·day-1 increases in PA on BMI.

Results: Median time spent in total PA was 462 min·day-1 (25th percentile; 75th percentile: 389; 534) and 75 min·day-1 (41; 115) in moderate to vigorous PA (MVPA). Girls spent 36 min·day-1 less in MVPA than boys and overweight/obese children 24 min·day-1 less than normal weight children (linear regression, p < 0.001). 63.2% of the children met PAGs of 60 min·day-1 in MVPA. The optimal threshold for min·day-1 in MVPA determined with ROC analysis was 46 min·day-1. Comparing 5, 15 and 60 min·day-1 increases in PA revealed that an additional 15 min·day-1 of vigorous PA had the same effect as 60 min·day-1 of MVPA. Sedentary time and light PA showed contrary associations to one another, with light PA being negatively and sedentary time being positively associated with excessive weight.

Conclusions: Current PAGs are met by 2/3 of children and seem appropriate to prevent excess weight in children. An official recommendation of daily 15-20 min of vigorous PA and further reduction of sedentary time could help to fight youth overweight and thus be of potential public health importance.

Trial registration: ClinicalTrials.gov Identifier: NCT00338689 . Registered: June 19, 2006 (retrospectively registered).

Keywords: Accelerometer; Obesity; Physical activity guidelines; Sensewear armband.

Figures

Fig. 1
Fig. 1
Odds Ratios (OR) and 95% confidence intervals of being overweight and/or obese for an increase in different intensities of physical activity, calculated with logistic regression models, adjusted for gender, country, season, education and nationality of parents, age and BMI of mother at birth. Note: ‘min’ stand for 5/15/60 min·day−1 increase in PA and sedentary time, with each line representing a separate model. LPA: light physical activity (1.5–3.9 METs), MPA: moderate physical activity (4–5.9 METs), VPA: vigorous physical (> = 6 METs), MVPA: moderate to vigorous physical activity

References

    1. Janssen I, Leblanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40. doi: 10.1186/1479-5868-7-40.
    1. Reiner M, Niermann C, Jekauc D, Woll A. Long-term health benefits of physical activity--a systematic review of longitudinal studies. BMC Public Health. 2013;13:813. doi: 10.1186/1471-2458-13-813.
    1. World Health Organization Regional Office for Europe. EUR/RC65/9: Physical activity strategy for the WHO European Region 2016–2025. . Accessed 11 Aug 2016.
    1. European Commission. EU Physical Activity Guidelines: Recommended Policy Actions in Support of Health-Enhancing Physical Activity. . Accessed 11 Aug 2016.
    1. World Health Organization. Global recommendations on physical activity for health. . Accessed 11 Aug 2016.
    1. Pate RR, O'Neill JR, Lobelo F. The evolving definition of "sedentary". Exerc Sport Sci Rev. 2008;36(4):173–178. doi: 10.1097/JES.0b013e3181877d1a.
    1. Hinkley T, Salmon J, Okely AD, Crawford D, Hesketh K. Preschoolers' physical activity, screen time, and compliance with recommendations. Med Sci Sports Exerc. 2012;44(3):458–465. doi: 10.1249/MSS.0b013e318233763b.
    1. Biddle SJ, Bennie JA, Bauman AE, Chau JY, Dunstan D, Owen N, et al. Too much sitting and all-cause mortality: is there a causal link? BMC Public Health. 2016;16(1):635. doi: 10.1186/s12889-016-3307-3.
    1. Hallal PC, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelund U, et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet. 2012;380(9838):247–257. doi: 10.1016/S0140-6736(12)60646-1.
    1. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global burden of disease study 2013. Lancet. 2014;384(9945):766–781. doi: 10.1016/S0140-6736(14)60460-8.
    1. Guo SS, Chumlea WC. Tracking of body mass index in children in relation to overweight in adulthood. Am J Clin Nutr. 1999;70(1):145S–148S.
    1. Freedman DS, Khan LK, Dietz WH, Srinivasan SR, Berenson GS. Relationship of childhood obesity to coronary heart disease risk factors in adulthood: the Bogalusa heart study. Pediatrics. 2001;108(3):712–718. doi: 10.1542/peds.108.3.712.
    1. Sothern MS. Obesity prevention in children: physical activity and nutrition. Nutrition (Burbank, Los Angeles County, Calif). 2004; 20(7–8):704–708. doi:10.1016/j.nut.2004.04.007.
    1. Mitchell JA, Pate RR, Espana-Romero V, O'Neill JR, Dowda M, Nader PR. Moderate-to-vigorous physical activity is associated with decreases in body mass index from ages 9 to 15 years. Obesity (Silver Spring) 2013;21(3):E280–E293. doi: 10.1002/oby.20118.
    1. Kwon S, Janz KF, Burns TL, Levy SM. Association between light-intensity physical activity and adiposity in childhood. Pediatr Exerc Sci. 2011;23(2):218. doi: 10.1123/pes.23.2.218.
    1. Treuth MS, Hou N, Young DR, Maynard LM. Accelerometry-measured activity or sedentary time and overweight in rural boys and girls. Obes Res. 2005;13(9):1606–1614. doi: 10.1038/oby.2005.197.
    1. Thompson AM, Campagna PD, Durant M, Murphy RJ, Rehman LA, Wadsworth LA. Are overweight students in grades 3, 7, and 11 less physically active than their healthy weight counterparts? Int J Pediatr Obes. 2009;4(1):28–35. doi: 10.1080/17477160802170050.
    1. Hughes AR, Henderson A, Ortiz-Rodriguez V, Artinou ML, Reilly JJ. Habitual physical activity and sedentary behaviour in a clinical sample of obese children. Int J Obes. 2006;30(10):1494–1500. doi: 10.1038/sj.ijo.0803334.
    1. Oja P, Bull FC, Fogelholm M, Martin BW. Physical activity recommendations for health: what should Europe do? BMC Public Health. 2010;10:10. doi: 10.1186/1471-2458-10-10.
    1. Koletzko B, von Kries R, Closa R, Escribano J, Scaglioni S, Giovannini M, et al. Lower protein in infant formula is associated with lower weight up to age 2 y: a randomized clinical trial. Am J Clin Nutr. 2009;89(6):1836–1845. doi: 10.3945/ajcn.2008.27091.
    1. Andre D, Pelletier R, Farringdon J, Safier S, Talbott W, Stone R, et al. The development of the SenseWear® armband, a revolutionary energy assessment device to assess physical activity and lifestyle. BodyMedia Inc. 2006;
    1. Trost SG, Pate RR, Freedson PS, Sallis JF, Taylor WC. Using objective physical activity measures with youth: how many days of monitoring are needed? Med Sci Sports Exerc. 2000;32(2):426–431. doi: 10.1097/00005768-200002000-00025.
    1. Soric M, Starc G, Borer KT, Jurak G, Kovac M, Strel J, et al. Associations of objectively assessed sleep and physical activity in 11-year old children. Ann Hum Biol. 2015;42(1):31–37. doi: 10.3109/03014460.2014.928367.
    1. Soric M, Misigoj-Durakovic M. Physical activity levels and estimated energy expenditure in overweight and normal-weight 11-year-old children. Acta Paediatr. 2010;99(2):244–250.
    1. Jette M, Sidney K, Blumchen G. Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin Cardiol. 1990;13(8):555–565. doi: 10.1002/clc.4960130809.
    1. Trost SG, Loprinzi PD, Moore R, Pfeiffer KA. Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc. 2011;43(7):1360–1368. doi: 10.1249/MSS.0b013e318206476e.
    1. de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85(9):660–667. doi: 10.2471/BLT.07.043497.
    1. Onis M. WHO child growth standards based on length/height, weight and age. Acta Paediatr. 2006;95(S450):76–85.
    1. Pujadas Botey A, Bayrampour H, Carson V, Vinturache A, Tough S. Adherence to Canadian physical activity and sedentary behaviour guidelines among children 2 to 13 years of age. Prev Med Rep. 2016;3:14–20. doi: 10.1016/j.pmedr.2015.11.012.
    1. Verloigne M, Van Lippevelde W, Maes L, Yıldırım M, Chinapaw M, Manios Y, et al. Levels of physical activity and sedentary time among 10-to 12-year-old boys and girls across 5 European countries using accelerometers: an observational study within the ENERGY-project. Int J Behav Nutr Phys Act. 2012;9(1):1. doi: 10.1186/1479-5868-9-34.
    1. Kahlmeier S, Wijnhoven TM, Alpiger P, Schweizer C, Breda J, Martin BW. National physical activity recommendations: systematic overview and analysis of the situation in European countries. BMC Public Health. 2015;15:133. doi: 10.1186/s12889-015-1412-3.
    1. Belcher BR, Berrigan D, Dodd KW, Emken BA, Chou CP, Spruijt-Metz D. Physical activity in US youth: effect of race/ethnicity, age, gender, and weight status. Med Sci Sports Exerc. 2010;42(12):2211–2221. doi: 10.1249/MSS.0b013e3181e1fba9.
    1. Riddoch CJ, Bo Andersen L, Wedderkopp N, Harro M, Klasson-Heggebo L, Sardinha LB, et al. Physical activity levels and patterns of 9- and 15-yr-old European children. Med Sci Sports Exerc. 2004;36(1):86–92. doi: 10.1249/01.MSS.0000106174.43932.92.
    1. Kreuser F, Kromeyer-Hauschild K, Gollhofer A, Korsten-Reck U, Rottger K. "obese equals lazy?" analysis of the association between weight status and physical activity in children. J Obes. 2013;2013:437017. doi: 10.1155/2013/437017.
    1. Carlin A, Murphy MH, Gallagher AM. Current influences and approaches to promote future physical activity in 11-13 year olds: a focus group study. BMC Public Health. 2015;15(1):1270. doi: 10.1186/s12889-015-2601-9.
    1. Adamo KB, Prince SA, Tricco AC, Connor-Gorber S, Tremblay M. A comparison of indirect versus direct measures for assessing physical activity in the pediatric population: a systematic review. Int J Pediatr Obes. 2009;4(1):2–27. doi: 10.1080/17477160802315010.
    1. Vale S, Trost SG, Duncan MJ, Mota J. Step based physical activity guidelines for preschool-aged children. Prev Med. 2015;70:78–82. doi: 10.1016/j.ypmed.2014.11.008.
    1. Zitouni D, Guinhouya BC. Fuzzy logic for characterizing the moderate intensity of physical activity in children. J Sci Med Sport. 2016;19(2):142–148. doi: 10.1016/j.jsams.2014.12.010.
    1. Katzmarzyk PT, Barreira TV, Broyles ST, Champagne CM, Chaput JP, Fogelholm M, et al. Physical activity, sedentary time, and obesity in an international sample of children. Med Sci Sports Exerc. 2015;47(10):2062–2069. doi: 10.1249/MSS.0000000000000649.
    1. Martinez-Gomez D, Ruiz JR, Ortega FB, Veiga OL, Moliner-Urdiales D, Mauro B, et al. Recommended levels of physical activity to avoid an excess of body fat in European adolescents: the HELENA study. Am J Prev Med. 2010;39(3):203–211. doi: 10.1016/j.amepre.2010.05.003.
    1. Laguna M, Ruiz JR, Lara MT, Aznar S. Recommended levels of physical activity to avoid adiposity in Spanish children. Pediatr Obes. 2013;8(1):62–69. doi: 10.1111/j.2047-6310.2012.00086.x.
    1. Ness AR, Leary SD, Mattocks C, Blair SN, Reilly JJ, Wells J, et al. Objectively measured physical activity and fat mass in a large cohort of children. PLoS Med. 2007;4(3) doi: 10.1371/journal.pmed.0040097.
    1. De Araujo ACC, Roschel H, Picanço AR, do Prado DML, Villares SMF, de Sa pinto AL et al. Similar health benefits of endurance and high-intensity interval training in obese children. PloS one. 2012; 7(8):e42747.
    1. Chastin SF, Palarea-Albaladejo J, Dontje ML, Skelton DA. Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-Metabolic health markers: a novel compositional data analysis approach. PLoS One. 2015;10(10) doi: 10.1371/journal.pone.0139984.
    1. Tremblay MS, Carson V, Chaput JP. Introduction to the Canadian 24-Hour Movement Guidelines for Children and Youth: An Integration of Physical Activity, Sedentary Behaviour, and Sleep. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme. 2016; 41(6 Suppl 3):iii-iv. doi:10.1139/apnm-2016-0203.
    1. United States . Department of Health and Human Services.: 2008 physical activity guidelines for Americans : be active, healthy, and happy! Washington. U.S. Dept. of Health and Human Services: DC; 2008.
    1. Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, Zimmet PZ, et al. Objectively measured light-intensity physical activity is independently associated with 2-h plasma glucose. Diabetes Care. 2007;30(6):1384–1389. doi: 10.2337/dc07-0114.
    1. Calabro MA, Welk GJ, Eisenmann JC. Validation of the SenseWear pro armband algorithms in children. Med Sci Sports Exerc. 2009;41(9):1714–1720. doi: 10.1249/MSS.0b013e3181a071cf.

Source: PubMed

3
구독하다