Erlanger Glaucoma Registry: Effect of a Long-Term Therapy with Statins and Acetyl Salicylic Acid on Glaucoma Conversion and Progression

Nina Thiermeier, Robert Lämmer, Christian Mardin, Bettina Hohberger, Nina Thiermeier, Robert Lämmer, Christian Mardin, Bettina Hohberger

Abstract

Purpose: Drugs with cardiovascular protective properties (statins, acetylsalicylic acid (ASS)) were assumed to have positive effects on patients suffering from glaucoma disease. The present retrospective study aimed to investigate the influence of statins, ASS or a combination of both on the glaucoma conversion and progression rate in glaucoma suspects and glaucoma patients with a 20-year follow-up period. Methods: A retrospective analysis of 199 eyes of 120 patients (63 male, 57 female) of the Erlanger Glaucoma Registry (EGR; ClinicalTrials.gov Identifier: NCT00494923; ISSN 2191-5008, CS-2011) was performed considering systemic therapy with statins, ASS or a combination of both: 107 eyes with ocular hypertension (OHT) and 92 eyes with pre-perimetric primary open-angle glaucoma (pre-POAG). All patients received an ophthalmological examination including morphometric and functional glaucoma diagnostics. Glaucoma conversion was defined as the conversion of OHT to pre-POAG. Glaucoma progression was defined as confirmed visual field loss. Data were shown as percentages. Statistical analysis was performed by Chi-Quadrat tests. Results: 1. Glaucoma conversion/progression was observed in 46.7% of the subjects, additionally in combination with hypercholesterinemia in 76.8%. 2. Statins: 27.3% of eyes under systemic statin therapy showed a conversion/progression. Patients taking statins ≥ 10 years yielded a reduced conversion/progression rate (p = 0.028, non-significant after Bonferroni-Holm). 3. ASS: 34.7% of eyes under systemic ASS therapy showed a conversion/progression. A significantly lower conversion/progression rate was observed after ASS therapy ≥ 12 years (p = 0.017, significant after Bonferroni-Holm). 4. ASS and statins: 25.0% of eyes under combined therapy showed a conversion/progression. A significantly reduced conversion/progression rate was reached after 8 years of combined therapy (p = 0.049, non-significant after Bonferroni-Holm). Conclusions: Patients with ocular hypertension and early glaucoma seem to benefit from adjuvant cardiovascular protective therapy. However, the benefits and disadvantages of treatment with statins and/or ASS should be kept in mind. Thus, a thorough risk-benefit evaluation has to be performed for each patient individually to avoid unwanted side effects.

Keywords: ASS; cholesterol; glaucoma; glaucoma suspect; progression; statins.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Study population, subgrouped according to cholesterol level, glaucoma conversion and progression rate (absolute number).
Figure 2
Figure 2
Effect of statin therapy on glaucoma conversion and glaucoma progression.
Figure 3
Figure 3
Effect of ASS therapy on glaucoma progression and glaucoma conversion rate.
Figure 4
Figure 4
Effect of a combined statin and acetylsalicylic acid therapy on glaucoma conversion and glaucoma progression.

References

    1. Quigley H.A., Broman A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006;90:262–267. doi: 10.1136/bjo.2005.081224.
    1. Flaxman S.R., Bourne R.R.A., Resnikoff S., Ackland P., Braithwaite T., Cicinelli M.V., Das A., Jonas J.B., Keeffe J., Kempen J.H., et al. Global causes of blindness and distance vision impairment 1990–2020: A systematic review and meta-analysis. Lancet Glob. Health. 2017;5:e1221–e1234. doi: 10.1016/S2214-109X(17)30393-5.
    1. Heijl A., Bengtsson B., Oskarsdottir S.E. Prevalence and Severity of Undetected Manifest Glaucoma: Results from the early manifest glaucoma trial screening. Ophthalmology. 2013;120:1541–1545. doi: 10.1016/j.ophtha.2013.01.043.
    1. Schuster A.K., Erb C., Hoffmann E.M., Dietlein T., Pfeiffer N. The Diagnosis and Treatment of Glaucoma. Dtsch. Ärzteblatt Int. 2020;117:225–234. doi: 10.3238/arztebl.2020.0225.
    1. Varma R., Lee P., Goldberg I., Kotak S. An Assessment of the Health and Economic Burdens of Glaucoma. Am. J. Ophthalmol. 2011;152:515–522. doi: 10.1016/j.ajo.2011.06.004.
    1. Wang W., He M., Li Z., Huang W. Epidemiological variations and trends in health burden of glaucoma worldwide. Acta Ophthalmol. 2019;97:e349–e355. doi: 10.1111/aos.14044.
    1. Vohra R., Tsai J.C., Kolko M. The Role of Inflammation in the Pathogenesis of Glaucoma. Surv. Ophthalmol. 2013;58:311–320. doi: 10.1016/j.survophthal.2012.08.010.
    1. McMonnies C. Reactive oxygen species, oxidative stress, glaucoma and hyperbaric oxygen therapy. J. Optom. 2018;11:3–9. doi: 10.1016/j.optom.2017.06.002.
    1. Kumar D.M., Agarwal N. Oxidative Stress in Glaucoma: A Burden of Evidence. J. Glaucoma. 2007;16:334–343. doi: 10.1097/01.ijg.0000243480.67532.1b.
    1. Evangelho K., Mogilevskaya M., Losada-Barragan M., Vargas-Sanchez J.K. Pathophysiology of primary open-angle glaucoma from a neuroinflammatory and neurotoxicity perspective: A review of the literature. Int. Ophthalmol. 2017;39:259–271. doi: 10.1007/s10792-017-0795-9.
    1. Chan K.K.W., Tang F., Tham C.C.Y., Young A.L., Cheung C.Y. Retinal vasculature in glaucoma: A review. BMJ Open Ophthalmol. 2017;1:e000032. doi: 10.1136/bmjophth-2016-000032.
    1. Hohberger B. Neuroimmunological Aspects in Glaucoma. Klin. Mon. Augenheilkd. 2021;238:125–127. doi: 10.1055/a-1264-8139.
    1. Saccà S.C., Gandolfi S., Bagnis A., Manni G., Damonte G., Traverso C.E., Izzotti A. From DNA damage to functional changes of the trabecular meshwork in aging and glaucoma. Ageing Res. Rev. 2016;29:26–41. doi: 10.1016/j.arr.2016.05.012.
    1. Tsai T., Reinehr S., Maliha A.M., Joachim S.C. Immune Mediated Degeneration and Possible Protection in Glaucoma. Front. Neurosci. 2019;13:931. doi: 10.3389/fnins.2019.00931.
    1. Wiggs J.L., Pasquale L.R. Genetics of glaucoma. Hum. Mol. Genet. 2017;26:R21–R27. doi: 10.1093/hmg/ddx184.
    1. Kim M.J., Kim M.J., Kim H.S., Jeoung J.W., Park K.H. Risk factors for open-angle glaucoma with normal baseline intraocular pressure in a young population: The Korea National Health and Nutrition Examination Survey. Clin. Exp. Ophthalmol. 2014;42:825–832. doi: 10.1111/ceo.12347.
    1. Zhao D., Cho J., Kim M.H., Friedman D., Guallar E. Diabetes, Glucose Metabolism, and Glaucoma: The 2005–2008 National Health and Nutrition Examination Survey. PLoS ONE. 2014;9:e112460. doi: 10.1371/journal.pone.0112460.
    1. Wang S., Bao X. Hyperlipidemia, Blood Lipid Level, and the Risk of Glaucoma: A Meta-Analysis. Investig. Opthalmol. Vis. Sci. 2019;60:1028–1043. doi: 10.1167/iovs.18-25845.
    1. Ferrannini E., Cushman W.C. Diabetes and hypertension: The bad companions. Lancet. 2012;380:601–610. doi: 10.1016/S0140-6736(12)60987-8.
    1. Marshall H., Mullany S., Qassim A., Siggs O., Hassall M., Ridge B., Nguyen T., Awadalla M., Andrew N.H., Healey P.R., et al. Cardiovascular Disease Predicts Structural and Functional Progression in Early Glaucoma. Ophthalmology. 2021;128:58–69. doi: 10.1016/j.ophtha.2020.06.067.
    1. Khatri A., Shrestha J.K., Thapa M., Khatri B.K., Kharel M. Severity of primary open-angle glaucoma in patients with hypertension and diabetes. Diabetes Metab. Syndr. Obesity Targets Ther. 2018;11:209–215. doi: 10.2147/DMSO.S160978.
    1. Mozaffarieh M., Grieshaber M.C., Flammer J. Oxygen and blood flow: Players in the pathogenesis of glaucoma. Mol. Vis. 2008;14:224–233.
    1. Flammer J., Konieczka K., Flammer A.J. The primary vascular dysregulation syndrome: Implications for eye diseases. EPMA J. 2013;4:14. doi: 10.1186/1878-5085-4-14.
    1. Lévêque P.-M., Zéboulon P., Brasnu E., Baudouin C., Labbé A. Optic Disc Vascularization in Glaucoma: Value of Spectral-Domain Optical Coherence Tomography Angiography. J. Ophthalmol. 2016;2016:1–9. doi: 10.1155/2016/6956717.
    1. Triolo G., Rabiolo A., Shemonski N.D., Fard A., Di Matteo F., Sacconi R., Bettin P., Magazzeni S., Querques G., Vazquez L.E., et al. Optical Coherence Tomography Angiography Macular and Peripapillary Vessel Perfusion Density in Healthy Subjects, Glaucoma Suspects, and Glaucoma Patients. Investig. Opthalmol. Vis. Sci. 2017;58:5713–5722. doi: 10.1167/iovs.17-22865.
    1. Hohberger B., Lucio M., Schlick S., Wollborn A., Hosari S., Mardin C. OCT-angiography: Regional reduced macula microcirculation in ocular hypertensive and pre-perimetric glaucoma patients. PLoS ONE. 2021;16:e0246469. doi: 10.1371/journal.pone.0246469.
    1. Chung H.S., Harris A., Evans D.W., Kagemann L., Garzozi H.J., Martin B. Vascular Aspects in the Pathophysiology of Glaucomatous Optic Neuropathy. Surv. Ophthalmol. 1999;43:S43–S50. doi: 10.1016/S0039-6257(99)00050-8.
    1. Stein J.D., Newman-Casey P.A., Talwar N., Nan B., Richards J.E., Musch D.C. The Relationship Between Statin Use and Open-Angle Glaucoma. Ophthalmology. 2012;119:2074–2081. doi: 10.1016/j.ophtha.2012.04.029.
    1. McGwin G., McNeal S.F., Owsley C., Girkin C.A., Epstein D., Lee P.P. Statins and Other Cholesterol-Lowering Medications and the Presenceof Glaucoma. Arch. Ophthalmol. 2004;122:822–826. doi: 10.1001/archopht.122.6.822.
    1. Downs J.R., Clearfield M., Weis S., Whitney E., Shapiro D.R., Beere P.A., Langendorfer A., Stein E.A., Kruyer W., Gotto A.M., Jr. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: Results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA. 1998;279:1615–1622. doi: 10.1001/jama.279.20.1615.
    1. Sillesen H., Amarenco P., Hennerici M.G., Callahan A., Goldstein L.B., Zivin J., Messig M., Welch K.M. Atorvastatin Reduces the Risk of Cardiovascular Events in Patients with Carotid Atherosclerosis: A Secondary Analysis of the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial. Stroke. 2008;39:3297–3302. doi: 10.1161/STROKEAHA.108.516450.
    1. Wu A., Khawaja A.P., Pasquale L.R., Stein J.D. A review of systemic medications that may modulate the risk of glaucoma. Eye. 2020;34:12–28. doi: 10.1038/s41433-019-0603-z.
    1. Whigham B., Oddone E.Z., Woolson S., Coffman C., Allingham R.R., Shieh C., Muir K.W. The influence of oral statin medications on progression of glaucomatous visual field loss: A propensity score analysis. Ophthalmic Epidemiol. 2017;25:207–214. doi: 10.1080/09286586.2017.1399427.
    1. Rikitake Y., Liao J.K. Rho GTPases, Statins, and Nitric Oxide. Circ. Res. 2005;97:1232–1235. doi: 10.1161/01.RES.0000196564.18314.23.
    1. Gorabi A.M., Kiaie N., Hajighasemi S., Banach M., Penson P.E., Jamialahmadi T., Sahebkar A. Statin-Induced Nitric Oxide Signaling: Mechanisms and Therapeutic Implications. J. Clin. Med. 2019;8:2051. doi: 10.3390/jcm8122051.
    1. Schmeer C., Isenmann S. Therapeutic Potential of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibitors for the Treatment of Retinal and Eye Diseases. CNS Neurol. Disord. Drug Targets. 2007;6:282–287. doi: 10.2174/187152707781387260.
    1. Wareham L.K., Buys E.S., Sappington R.M. The nitric oxide-guanylate cyclase pathway and glaucoma. Nitric Oxide. 2018;77:75–87. doi: 10.1016/j.niox.2018.04.010.
    1. Herdegen T., Böhm R., Culman J., Gohlke P., Luippold G. Kurzlehrbuch Pharmakologie und Toxikologie. 2nd ed. Georg Thieme Verlag; Stuttgart, Germany: 2010. 535p
    1. Jonas J.B., Gusek G.C., Naumann G.O.H. Optic disc morphometry in chronic primary open-angle glaucoma. Graefes Arch. Clin. Exp. Ophthalmol. 1988;226:522–530. doi: 10.1007/BF02169199.
    1. Kornitzer M. 20 years of cardiovascular epidemiology. The epidemiologist’s viewpoint. Revue d’Épidémiologie Santé Publique. 1996;44:563–576.
    1. Roth G.A., Mensah G.A., Johnson C.O., Addolorato G., Ammirati E., Baddour L.M., Barengo N.C., Beaton A.Z., Benjamin E.J., Benziger C.P., et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 2020;76:2982–3021. doi: 10.1016/j.jacc.2020.11.010.
    1. Graf C., Böhm M., Predel H.G., Bjarnason-Wehrens B. Arteriosklerose—Eine Lebenslange Herausforderung. Herz. 2002;27:760–764. doi: 10.1007/s00059-001-2296-9.
    1. Schmermund A., Erbel R. Therapie der Arteriosklerose. Dtsch. Med. Wochenschr. 2003;128:41–47. doi: 10.1055/s-2003-36335.
    1. Mammo Z., Heisler M., Balaratnasingam C., Lee S., Yu D.-Y., Mackenzie P., Schendel S., Merkur A., Kirker A., Albiani D., et al. Quantitative Optical Coherence Tomography Angiography of Radial Peripapillary Capillaries in Glaucoma, Glaucoma Suspect, and Normal Eyes. Am. J. Ophthalmol. 2016;170:41–49. doi: 10.1016/j.ajo.2016.07.015.
    1. Mansoori T., Gamalapati J., Sivaswamy J., Balakrishna N. Optical coherence tomography angiography measured capillary density in the normal and glaucoma eyes. Saudi J. Ophthalmol. 2018;32:295–302. doi: 10.1016/j.sjopt.2018.09.006.
    1. Mastropasqua R., Agnifili L., Borrelli E., Fasanella V., Brescia L., Di Antonio L., Mastropasqua L. Optical Coherence Tomography Angiography of the Peripapillary Retina in Normal-Tension Glaucoma and Chronic Nonarteritic Anterior Ischemic Optic Neuropathy. Curr. Eye Res. 2018;43:778–784. doi: 10.1080/02713683.2018.1438630.
    1. Kose H.C., Tekeli O. Optical coherence tomography angiography of the peripapillary region and macula in normal, primary open angle glaucoma, pseudoexfoliation glaucoma and ocular hypertension eyes. Int. J. Ophthalmol. 2020;13:744–754. doi: 10.18240/ijo.2020.05.08.
    1. Manalastas P.I., Zangwill L.M., Saunders L.J., Mansouri K., Belghith A., Suh M.H., Yarmohammadi A., Penteado R.C., Akagi T., Shoji T., et al. Reproducibility of Optical Coherence Tomography Angiography Macular and Optic Nerve Head Vascular Density in Glaucoma and Healthy Eyes. J. Glaucoma. 2017;26:851–859. doi: 10.1097/IJG.0000000000000768.
    1. Flammer J., Orgül S., Costa V.P., Orzalesi N., Krieglstein G.K., Serra L.M., Renard J.-P., Stefánsson E. The impact of ocular blood flow in glaucoma. Prog. Retin. Eye Res. 2002;21:359–393. doi: 10.1016/S1350-9462(02)00008-3.
    1. Emre M. Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation. Br. J. Ophthalmol. 2004;88:662–666. doi: 10.1136/bjo.2003.032110.
    1. Leung D., Li F.C., Kwong Y.Y., Tham C.C., Chi S.C., Lam D.S. Simvastatin and Disease Stabilization in Normal Tension Glaucoma: A Cohort Study. Ophthalmology. 2010;117:471–476. doi: 10.1016/j.ophtha.2009.08.016.
    1. De Castro D.K., Punjabi O.S., Bostrom A.G., Stamper R.L., Lietman T.M., Ray K., Lin S.C. Effect of statin drugs and aspirin on progression in open-angle glaucoma suspects using confocal scanning laser ophthalmoscopy. Clin. Exp. Ophthalmol. 2007;35:506–513. doi: 10.1111/j.1442-9071.2007.01529.x.
    1. Vasnawala H., Kavalipati N., Shah J., Ramakrishan A. Pleiotropic effects of statins. Indian J. Endocrinol. Metab. 2015;19:554–562. doi: 10.4103/2230-8210.163106.
    1. Liao J.K., Laufs U. Pleiotropic effects of statins. Annu. Rev. Pharmacol. Toxicol. 2005;45:89–118. doi: 10.1146/annurev.pharmtox.45.120403.095748.
    1. Terai N., Spoerl E., Fischer S., Hornykewycz K., Haustein M., Haentzschel J., Pillunat L.E. Statins affect ocular microcirculation in patients with hypercholesterolaemia. Acta Ophthalmol. 2011;89:e500–e504. doi: 10.1111/j.1755-3768.2011.02154.x.
    1. Erb C., Konieczka K. Rho kinase inhibitors as new local therapy option in primary open angle glaucoma. Ophthalmologe. 2021;118:449–460. doi: 10.1007/s00347-020-01303-2.
    1. Nagaoka T., Hein T.W., Yoshida A., Kuo L. Simvastatin Elicits Dilation of Isolated Porcine Retinal Arterioles: Role of Nitric Oxide and Mevalonate-Rho Kinase Pathways. Investig. Opthalmol. Vis. Sci. 2007;48:825–832. doi: 10.1167/iovs.06-0856.
    1. Harris M.B., Blackstone M.A., Sood S.G., Li C., Goolsby J.M., Venema V.J., Kemp B.E., Venema R.C. Acute activation and phosphorylation of endothelial nitric oxide synthase by HMG-CoA reductase inhibitors. Am. J. Physiol. Circ. Physiol. 2004;287:H560–H566. doi: 10.1152/ajpheart.00214.2004.
    1. Nagaoka T., Takahashi A., Sato E., Izumi N., Hein T.W., Kuo L., Yoshida A. Effect of Systemic Administration of Simvastatin on Retinal Circulation. Arch. Ophthalmol. 2006;124:665–670. doi: 10.1001/archopht.124.5.665.
    1. Honjo M., Tanihara H., Nishijima K., Kiryu J., Honda Y., Yue B.Y.J.T., Sawamura T. Statin Inhibits Leukocyte-Endothelial Interaction and Prevents Neuronal Death Induced by Ischemia-Reperfusion Injury in the Rat Retina. Arch. Ophthalmol. 2002;120:1707–1713. doi: 10.1001/archopht.120.12.1707.
    1. Zacco A., Togo J., Spence K., Ellis A., Lloyd D., Furlong S., Piser T. 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibitors Protect Cortical Neurons from Excitotoxicity. J. Neurosci. 2003;23:11104–11111. doi: 10.1523/JNEUROSCI.23-35-11104.2003.
    1. Bösel J., Gandor F., Harms C., Synowitz M., Harms U., Djoufack P.C., Megow D., Dirnagl U., Hörtnagl H., Fink K.B., et al. Neuroprotective effects of atorvastatin against glutamate-induced excitotoxicity in primary cortical neurones. J. Neurochem. 2005;92:1386–1398. doi: 10.1111/j.1471-4159.2004.02980.x.
    1. Schmeer C., Kretz A., Isenmann S. Statin-mediated protective effects in the central nervous system: General mechanisms and putative role of stress proteins. Restor. Neurol. Neurosci. 2006;24:79–95.
    1. Cong L., Fu S., Zhang J., Zhao J., Zhang Y. Effects of atorvastatin on porcine aqueous humour outflow and trabecular meshwork cells. Exp. Ther. Med. 2017;15:210–216. doi: 10.3892/etm.2017.5353.
    1. Villarreal G., Chatterjee A., Oh S.S., Oh D.-J., Rhee U.J. Pharmacological Regulation of SPARC by Lovastatin in Human Trabecular Meshwork Cells. Investig. Ophthalmol. Vis. Sci. 2014;55:1657–1665. doi: 10.1167/iovs.13-12712.
    1. Rhee D.J., Haddadin R.I., Kang M.H., Oh D.-J. Matricellular proteins in the trabecular meshwork. Exp. Eye Res. 2009;88:694–703. doi: 10.1016/j.exer.2008.11.032.
    1. Haddadin R.I., Oh D.-J., Kang M.H., Filippopoulos T., Gupta M., Hart L., Sage E.H., Rhee D.J. SPARC-null Mice Exhibit Lower Intraocular Pressures. Investig. Ophthalmol. Vis. Sci. 2009;50:3771–3777. doi: 10.1167/iovs.08-2489.
    1. Swaminathan S.S., Oh D.-J., Kang M.H., Ren R., Jin R., Gong H., Rhee D.J. Secreted Protein Acidic and Rich in Cysteine (SPARC)-Null Mice Exhibit More Uniform Outflow. Investig. Ophthalmol. Vis. Sci. 2013;54:2035–2047. doi: 10.1167/iovs.12-10950.
    1. Schrör K. Aspirin and Platelets: The Antiplatelet Action of Aspirin and Its Role in Thrombosis Treatment and Prophylaxis. Semin. Thromb. Hemost. 1997;23:349–356. doi: 10.1055/s-2007-996108.
    1. Hardy P., Bhattacharya M., Abran D., Peri K.G., Asselin P., Varma D.R., Chemtob S., Bhatthacharya M. Increases in retinovascular prostaglandin receptor functions by cyclooxygenase-1 and -2 inhibition. Investig. Ophthalmol. Vis. Sci. 1998;39:1888–1898.
    1. Maihöfner C., Schlötzer-Schrehardt U., Gühring H., Zeilhofer H.U., Naumann G.O., Pahl A., Mardin C., Tamm E.R., Brune K. Expression of cyclooxygenase-1 and -2 in normal and glaucomatous human eyes. Investig. Ophthalmol. Vis. Sci. 2001;42:2616–2624. doi: 10.5167/uzh-5516.
    1. Mori A., Saito M., Sakamoto K., Narita M., Nakahara T., Ishii K. Stimulation of prostanoid IP and EP2 receptors dilates retinal arterioles and increases retinal and choroidal blood flow in rats. Eur. J. Pharmacol. 2007;570:135–141. doi: 10.1016/j.ejphar.2007.05.052.
    1. Monobe H., Yamanari H., Nakamura K., Ohe T. Effects of low-dose aspirin on endothelial function in hypertensive patients. Clin. Cardiol. 2001;24:705–709. doi: 10.1002/clc.4960241104.
    1. Lee J., Sung K.R., Kwon J., Shin J.W. Effect of Antiplatelet/Anticoagulant Use on Glaucoma Progression in Eyes with Optic Disc Hemorrhage. J. Glaucoma. 2018;27:1125–1130. doi: 10.1097/IJG.0000000000001065.
    1. Kubota N., Kasai T., Miyauchi K., Njaman W., Kajimoto K., Akimoto Y., Kojima T., Yokoyama K., Kurata T., Daida H. Therapy with statins and aspirin enhances long-term outcome of percutaneous coronary intervention. Heart Vessel. 2008;23:35–39. doi: 10.1007/s00380-007-1007-8.
    1. Le A., Mukesh B.N., McCarty C., Taylor H.R. Risk Factors Associated with the Incidence of Open-Angle Glaucoma: The Visual Impairment Project. Investig. Ophthalmol. Vis. Sci. 2003;44:3783–3789. doi: 10.1167/iovs.03-0077.
    1. McMonnies C.W. Glaucoma history and risk factors. J. Optom. 2017;10:71–78. doi: 10.1016/j.optom.2016.02.003.
    1. Laurent S. Defining vascular aging and cardiovascular risk. J. Hypertens. 2012;30:S3–S8. doi: 10.1097/HJH.0b013e328353e501.
    1. Horodinschi R.-N., Stanescu A.M.A., Bratu O.G., Stoian A.P., Radavoi D.G., Diaconu C.C. Treatment with Statins in Elderly Patients. Medicina. 2019;55:721. doi: 10.3390/medicina55110721.
    1. Phan K., Moore J.M., Griessenauer C.J., Ogilvy C.S., Thomas A. Aspirin and Risk of Subarachnoid Hemorrhage: Systematic Review and Meta-Analysis. Stroke. 2017;48:1210–1217. doi: 10.1161/STROKEAHA.116.015674.
    1. Mahé I., Leizorovicz A., Caulin C., Bergmann J.-F. Aspirin for the Prevention of Cardiovascular Events in the Elderly. Drugs Aging. 2003;20:999–1010. doi: 10.2165/00002512-200320130-00004.
    1. Rodríguez L.A.G., Soriano L.C., Hill C., Johansson S. Increased risk of stroke after discontinuation of acetylsalicylic acid: A UK primary care study. Neurology. 2011;76:740–746. doi: 10.1212/WNL.0b013e31820d62b5.
    1. Aimo A. Aspirin for primary cardiovascular prevention: Advice for a decisional strategy still based on risk stratification. Anatol. J. Cardiol. 2019;23:70–78. doi: 10.14744/AnatolJCardiol.2019.89916.
    1. Hennekens C. Pravastatin and acetylsalycilic acid fixed-combination: A strategy to improve cardiovascular outcomes. Am. J. Cardiovasc. Drugs. 2007;7:9–11. doi: 10.1007/BF03262467.
    1. Hennekens C.H. Aspirin in the treatment and prevention of cardiovascular disease: Current perspectives and future directions. Curr. Atheroscler. Rep. 2007;9:409–416. doi: 10.1007/s11883-007-0053-0.
    1. Derry S. Risk of gastrointestinal haemorrhage with long term use of aspirin: Meta-analysis. BMJ. 2000;321:1183–1187. doi: 10.1136/bmj.321.7270.1183.

Source: PubMed

3
구독하다