OCT-angiography: Regional reduced macula microcirculation in ocular hypertensive and pre-perimetric glaucoma patients

Bettina Hohberger, Marianna Lucio, Sarah Schlick, Antonia Wollborn, Sami Hosari, Christian Mardin, Bettina Hohberger, Marianna Lucio, Sarah Schlick, Antonia Wollborn, Sami Hosari, Christian Mardin

Abstract

Purpose: OCT-angiography (OCT-A) offers a non-invasive method to visualize retinochoroidal microvasculature. As glaucoma disease affects retinal ganglion cells in the macula, macular microcirculation is of interest. The purpose of the study was to investigate regional macular vascular characteristics in patients with ocular hypertension (OHT), pre-perimetric primary open-angle glaucoma (pre-POAG) and controls by OCT-A in three microvascular layers.

Material and methods: 180 subjects were recruited from the Erlangen Glaucoma Registry, the Department of Ophthalmology, University of Erlangen and residents: 38 OHT, 20 pre-POAG, 122 controls. All subjects received an ophthalmological examination including measurements of retinal nerve fibre layer (RNFL), retinal ganglion cell layer (RGC), inner nuclear layer (INL), and Bruch's Membrane Opening-Minimum Rim Width (BMO-MRW). Macular vascular characteristics (vessel density, VD, foveal avascular zone, FAZ) were measured by OCT-A (Spectralis OCT II) in superficial vascular plexus (SVP), intermediate capillary plexus (ICP), and deep capillary plexus (DCP).

Results: With age correction of VD data, type 3 tests on fixed effects showed a significant interaction between diagnosis and sectorial VD in SVP (p = 0.0004), ICP (p = 0.0073), and DCP (p = 0.0003). Moreover, a significance in sectorial VD was observed within each layer (p<0.0001) and for the covariate age (p<0.0001). FAZ differed significantly between patients' groups only in ICP (p = 0.03), not in SVP and DCP. For VD the AUC values of SVP, ICP, and DCP were highest among diagnostic modalities (AUC: 0.88, 95%-CI: 0.75-1.0, p<0.001).

Conclusion: Regional reduced macula VD was observed in all three retinal vascular layers of eyes with OHT and pre-POAG compared to controls, indicating localized microvascular changes as early marker in glaucoma pathogenesis.

Trial registration: ClinicalTrials.gov NCT00494923.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Segmentation of en face OCTA’s…
Fig 1. Segmentation of en face OCTA’s superficial vascular plexus (SVP), intermediate capillary plexus (ICP), deep capillary plexus (DCP) in correlation to structure OCT layers’ ganglion cell layer (GCL), inner plexiform layer (IPL) and inner nuclear layer (INL) and outer plexiform layer (OPL).
Fig 2. Analysis of covariance for BMO-MRW…
Fig 2. Analysis of covariance for BMO-MRW (a), RNFL (inner, b; middle, c; outer, d), and GCL (e) considering age and patients’ groups.
(a) a significant age effect on BMO-MRW was observed (p = 0.047); (b-d) age showed an impact on RFNL for the inner and middle scan; gender was significantly associated with RNFL of the outer scan; (e) a significant decrease of RGC was observed with increasing age for male and female persons (p = 0.0021).
Fig 3. Qualitative analysis of the number…
Fig 3. Qualitative analysis of the number of significant interactions between vessel density of each sector (s1-s12) of macula OCT-A in SVP, ICP, and DCP by color coding (red, n = 8–12; pink, n = 6–7; orange, n = 5; yellow, n = 4; green, n = 2–3; grey, n = 0–1) in controls, OHT, and pre-OAG eyes, respectively (a) and between the groups (b) with age correction of the data: Notice the temporal emphasis in SVP and the nasal emphasis in DCP.
Fig 4. Analysis of covariance for FAZ…
Fig 4. Analysis of covariance for FAZ of ICP across age subdivided for gender and diagnosis (OHT, pre-OAG, controls).
Fig 5. Receiver operating curves (ROC) of…
Fig 5. Receiver operating curves (ROC) of mean (a) and sectorial (b-d) vessel density in SVP, ICP, and DCP for differentiation between patients’ group and controls.

References

    1. Grieshaber MC, Mozaffarieh M, Flammer J. What is the link between vascular dysregulation and glaucoma? Survey of ophthalmology. 2007;52 Suppl 2:S144–54. 10.1016/j.survophthal.2007.08.010
    1. Flammer J. The vascular concept of glaucoma. Survey of ophthalmology. 1994;38 Suppl:S3–6. 10.1016/0039-6257(94)90041-8
    1. Chan KKW, Tang F, Tham CCY, Young AL, Cheung CY. Retinal vasculature in glaucoma: a review. BMJ open ophthalmology. 2017;1(1):e000032 10.1136/bmjophth-2016-000032
    1. Spaide RF, Klancnik JM Jr., Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015;133(1):45–50. 10.1001/jamaophthalmol.2014.3616
    1. Park JJ, Soetikno BT, Fawzi AA. Characterization of the Middle Capillary Plexus Using Optical Coherence Tomography Angiography in Healthy and Diabetic Eyes. Retina. 2016;36(11):2039–50. 10.1097/IAE.0000000000001077
    1. Campbell J, Zhang M, Hwang T, Bailey S, Wilson D, Jia Y, et al. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep-Uk. 2017;7:42201 10.1038/srep42201
    1. Hosari S, Hohberger B, Theelke L, Sari H, Lucio M, Mardin CY. OCT Angiography: Measurement of Retinal Macular Microvasculature with Spectralis II OCT Angiography—Reliability and Reproducibility. Ophthalmologica Journal international d’ophtalmologie International journal of ophthalmology Zeitschrift fur Augenheilkunde. 2020;243(1):75–84. 10.1159/000502458
    1. Milani P, Bochicchio S, Urbini LE, Bulone E, Callegarin S, Pisano L, et al. Diurnal Measurements of Macular Thickness and Vessel Density on OCT Angiography in Healthy Eyes and Those With Ocular Hypertension and Glaucoma. Journal of glaucoma. 2020;29(10):918–25. 10.1097/IJG.0000000000001580
    1. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Yousefi S, Saunders LJ, et al. Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma. Ophthalmology. 2016;123(12):2498–508. 10.1016/j.ophtha.2016.08.041
    1. Manalastas PIC, Zangwill LM, Daga FB, Christopher MA, Saunders LJ, Shoji T, et al. The Association Between Macula and ONH Optical Coherence Tomography Angiography (OCT-A) Vessel Densities in Glaucoma, Glaucoma Suspect, and Healthy Eyes. Journal of glaucoma. 2018;27(3):227–32. 10.1097/IJG.0000000000000862
    1. Wang Y, Xin C, Li M, Swain DL, Cao K, Wang H, et al. Macular vessel density versus ganglion cell complex thickness for detection of early primary open-angle glaucoma. BMC ophthalmology. 2020;20(1):17 10.1186/s12886-020-1304-x
    1. Triolo G, Rabiolo A, Shemonski ND, Fard A, Di Matteo F, Sacconi R, et al. Optical Coherence Tomography Angiography Macular and Peripapillary Vessel Perfusion Density in Healthy Subjects, Glaucoma Suspects, and Glaucoma Patients. Investigative ophthalmology & visual science. 2017;58(13):5713–22.
    1. Hou H, Moghimi S, Zangwill LM, Shoji T, Ghahari E, Penteado RC, et al. Macula Vessel Density and Thickness in Early Primary Open-Angle Glaucoma. American journal of ophthalmology. 2019;199:120–32. 10.1016/j.ajo.2018.11.012
    1. Chao SC, Yang SJ, Chen HC, Sun CC, Liu CH, Lee CY. Early Macular Angiography among Patients with Glaucoma, Ocular Hypertension, and Normal Subjects. Journal of ophthalmology. 2019;2019:7419470 10.1155/2019/7419470
    1. Hohberger B, Monczak E, Mardin CY. [26 Years of the Erlangen Glaucoma Registry: Demographic and Perimetric Characteristics of Patients Through the Ages]. Klinische Monatsblatter fur Augenheilkunde. 2019;236(5):691–8. 10.1055/s-0043-112856
    1. Jonas JB, Gusek GC, Naumann GO. Optic disc morphometry in chronic primary open-angle glaucoma. I. Morphometric intrapapillary characteristics. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 1988;226(6):522–30. 10.1007/BF02169199
    1. De Bernardo M, Cembalo G, Rosa N. Reliability of Intraocular Pressure Measurement by Goldmann Applanation Tonometry After Refractive Surgery: A Review of Different Correction Formulas. Clinical ophthalmology. 2020;14:2783–8. 10.2147/OPTH.S263856
    1. Kohlhaas M, Boehm AG, Spoerl E, Pursten A, Grein HJ, Pillunat LE. Effect of central corneal thickness, corneal curvature, and axial length on applanation tonometry. Archives of ophthalmology. 2006;124(4):471–6. 10.1001/archopht.124.4.471
    1. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–90. 10.1016/j.ophtha.2014.05.013
    1. Flammer J, Orgul S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21(4):359–93. 10.1016/s1350-9462(02)00008-3
    1. Penteado RC, Zangwill LM, Daga FB, Saunders LJ, Manalastas PIC, Shoji T, et al. Optical Coherence Tomography Angiography Macular Vascular Density Measurements and the Central 10–2 Visual Field in Glaucoma. J Glaucoma. 2018;27(6):481–9. 10.1097/IJG.0000000000000964
    1. Leng Y, Tam EK, Falavarjani KG, Tsui I. Effect of Age and Myopia on Retinal Microvasculature. Ophthalmic Surg Lasers Imaging Retina. 2018;49(12):925–31. 10.3928/23258160-20181203-03
    1. Wu J, Sebastian RT, Chu CJ, McGregor F, Dick AD, Liu L. Reduced Macular Vessel Density and Capillary Perfusion in Glaucoma Detected Using OCT Angiography. Current eye research. 2019;44(5):533–40. 10.1080/02713683.2018.1563195
    1. Hsu ST, Ngo HT, Stinnett SS, Cheung NL, House RJ, Kelly MP, et al. Assessment of Macular Microvasculature in Healthy Eyes of Infants and Children Using OCT Angiography. Ophthalmology. 2019;126(12):1703–11. 10.1016/j.ophtha.2019.06.028
    1. Fernández-Vigo JI, Kudsieh B, Shi H, Arriola-Villalobos P, Donate-López J, García-Feijóo J, et al. Normative database and determinants of macular vessel density measured by optical coherence tomography angiography. Clin Exp Ophthalmol. 2020;48(1):44–52. 10.1111/ceo.13648
    1. Lommatzsch C, Rothaus K, Koch JM, Heinz C, Grisanti S. OCTA vessel density changes in the macular zone in glaucomatous eyes. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2018;256(8):1499–508. 10.1007/s00417-018-3965-1
    1. Akil H, Chopra V, Al-Sheikh M, Ghasemi Falavarjani K, Huang AS, Sadda SR, et al. Swept-source OCT angiography imaging of the macular capillary network in glaucoma. The British journal of ophthalmology. 2017. 10.1136/bjophthalmol-2016-309816
    1. Leaney JC, Nguyen V, Miranda E, Barnett Y, Ahmad K, Wong S, et al. Bruch’s membrane opening minimum rim width provides objective differentiation between glaucoma and non-glaucomatous optic neuropathies. Am J Ophthalmol. 2020. 10.1016/j.ajo.2020.05.034
    1. Enders P, Schaub F, Adler W, Hermann MM, Dietlein TS, Cursiefen C, et al. Bruch’s membrane opening-based optical coherence tomography of the optic nerve head: a useful diagnostic tool to detect glaucoma in macrodiscs. Eye (Lond). 2018;32(2):314–23. 10.1038/eye.2017.306
    1. Hernandez-Mijares A, Rocha M, Rovira-Llopis S, Bañuls C, Bellod L, de Pablo C, et al. Human leukocyte/endothelial cell interactions and mitochondrial dysfunction in type 2 diabetic patients and their association with silent myocardial ischemia. Diabetes Care. 2013;36(6):1695–702. 10.2337/dc12-1224
    1. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87(10):840–4. 10.1161/01.res.87.10.840
    1. Görgülü A, Kinş T, Cobanoglu S, Unal F, Izgi NI, Yanik B, et al. Reduction of edema and infarction by Memantine and MK-801 after focal cerebral ischaemia and reperfusion in rat. Acta Neurochir (Wien). 2000;142(11):1287–92. 10.1007/s007010070027
    1. Mann C, Thanos S, Brockhaus K, Grus FH, Pfeiffer N, Prokosch V. [Endothelial Cell Reaction to Elevated Hydrostatic Pressure and Oxidative Stress in Vitro]. Klin Monbl Augenheilkd. 2019;236(9):1122–8. 10.1055/s-0043-122677
    1. Mohamed R, Sharma I, Ibrahim AS, Saleh H, Elsherbiny NM, Fulzele S, et al. Hyperhomocysteinemia Alters Retinal Endothelial Cells Barrier Function and Angiogenic Potential via Activation of Oxidative Stress. Sci Rep. 2017;7(1):11952 10.1038/s41598-017-09731-y
    1. Wilcox JN, Subramanian RR, Sundell CL, Tracey WR, Pollock JS, Harrison DG, et al. Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels. Arterioscler Thromb Vasc Biol. 1997;17(11):2479–88. 10.1161/01.atv.17.11.2479
    1. Pou S, Pou WS, Bredt DS, Snyder SH, Rosen GM. Generation of superoxide by purified brain nitric oxide synthase. J Biol Chem. 1992;267(34):24173–6.
    1. Shimokawa H, Flavahan NA, Vanhoutte PM. Loss of endothelial pertussis toxin-sensitive G protein function in atherosclerotic porcine coronary arteries. Circulation. 1991;83(2):652–60. 10.1161/01.cir.83.2.652
    1. Harrison DG. Endothelial function and oxidant stress. Clin Cardiol. 1997;20(11 Suppl 2):Ii-11–7.
    1. Doganay S, Evereklioglu C, Turkoz Y, Er H. Decreased nitric oxide production in primary open-angle glaucoma. Eur J Ophthalmol. 2002;12(1):44–8. 10.1177/112067210201200109
    1. Sugiyama T, Oku H, Ikari S, Ikeda T. Effect of nitric oxide synthase inhibitor on optic nerve head circulation in conscious rabbits. Invest Ophthalmol Vis Sci. 2000;41(5):1149–52.
    1. Luksch A, Polak K, Beier C, Polska E, Wolzt M, Dorner GT, et al. Effects of systemic NO synthase inhibition on choroidal and optic nerve head blood flow in healthy subjects. Invest Ophthalmol Vis Sci. 2000;41(10):3080–4.
    1. Polak K, Luksch A, Berisha F, Fuchsjaeger-Mayrl G, Dallinger S, Schmetterer L. Altered nitric oxide system in patients with open-angle glaucoma. Arch Ophthalmol. 2007;125(4):494–8. 10.1001/archopht.125.4.494
    1. Grunwald JE, Iannaccone A, DuPont J. Effect of isosorbide mononitrate on the human optic nerve and choroidal circulations. Br J Ophthalmol. 1999;83(2):162–7. 10.1136/bjo.83.2.162
    1. Kang JH, Willett WC, Rosner BA, Buys E, Wiggs JL, Pasquale LR. Association of Dietary Nitrate Intake With Primary Open-Angle Glaucoma: A Prospective Analysis From the Nurses’ Health Study and Health Professionals Follow-up Study. JAMA Ophthalmol. 2016;134(3):294–303. 10.1001/jamaophthalmol.2015.5601
    1. Ramdas WD. The relation between dietary intake and glaucoma: a systematic review. Acta Ophthalmol. 2018;96(6):550–6. 10.1111/aos.13662
    1. Zimmermann KW. Der feinere Bau der Blutcapillaren. Zeitschrift für Anatomie und Entwicklungsgeschichte. 1923;68(1):29–109.
    1. Tilton RG, Kilo C, Williamson JR. Pericyte-endothelial relationships in cardiac and skeletal muscle capillaries. Microvasc Res. 1979;18(3):325–35. 10.1016/0026-2862(79)90041-4
    1. Shepro D, Morel NM. Pericyte physiology. Faseb j. 1993;7(11):1031–8. 10.1096/fasebj.7.11.8370472
    1. Peppiatt CM, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by pericytes. Nature. 2006;443(7112):700–4. 10.1038/nature05193
    1. Trost A, Lange S, Schroedl F, Bruckner D, Motloch KA, Bogner B, et al. Brain and Retinal Pericytes: Origin, Function and Role. Front Cell Neurosci. 2016;10:20 10.3389/fncel.2016.00020
    1. Markhotina N, Liu GJ, Martin DK. Contractility of retinal pericytes grown on silicone elastomer substrates is through a protein kinase A-mediated intracellular pathway in response to vasoactive peptides. IET Nanobiotechnol. 2007;1(3):44–51. 10.1049/iet-nbt:20060019
    1. Hohberger B, Kunze R, Wallukat G, Kara K, Mardin CY, Lammer R, et al. Autoantibodies Activating the beta2-Adrenergic Receptor Characterize Patients With Primary and Secondary Glaucoma. Frontiers in immunology. 2019;10:2112 10.3389/fimmu.2019.02112
    1. Lee S, Zeiger A, Maloney JM, Kotecki M, Van Vliet KJ, Herman IM. Pericyte actomyosin-mediated contraction at the cell-material interface can modulate the microvascular niche. J Phys Condens Matter. 2010;22(19):194115 10.1088/0953-8984/22/19/194115

Source: PubMed

3
구독하다