Imaging video plethysmography shows reduced signal amplitude in glaucoma patients in the area of the microvascular tissue of the optic nerve head

Ralf-Peter Tornow, Radim Kolar, Jan Odstrcilik, Ivana Labounkova, Folkert Horn, Ralf-Peter Tornow, Radim Kolar, Jan Odstrcilik, Ivana Labounkova, Folkert Horn

Abstract

Purpose: To measure parameters of the cardiac cycle-induced pulsatile light absorption signal (plethysmography signal) of the optic nerve head (ONH) and to compare parameters between normal subjects and patients with different stages of glaucoma.

Patients and methods: A recently developed video ophthalmoscope was used to acquire short video sequences (10 s) of the ONH. After image registration and trend correction, the pulsatile changing light absorption at the ONH tissue (excluding large vessels) was calculated. The changing light absorption depends on the pulsatile changing blood volume. Various parameters, including peak amplitude, steepness, time-to-peak, full width at half maximum (FWHM), and pulse duration, were calculated for averaged individual pulses (heartbeats) of the plethysmography signal. This method was applied to 19 healthy control subjects and 91 subjects with ocular hypertension, as well as different stages of primary open-angle glaucoma (17 subjects with ocular hypertension, 24 with preperimetric glaucoma, and 50 with perimetric glaucoma).

Results: Compared to the normal subjects, significant reductions (p < 0.001) in peak amplitude and steepness were observed in the group of perimetric glaucoma patients, but no significant difference was found for time-to-peak, FWHM, and pulse duration. Peak amplitude and steepness showed high correlations with RNFL thickness (p < 0.001).

Conclusions: The presented low-cost video-ophthalmoscope permits measurement of the plethysmographic signal of the ONH tissue and calculation of different blood flow-related parameters. The reduced values of the amplitude and steepness parameters in perimetric glaucoma patients suggest decreased ONH perfusion and blood volume. This outcome is in agreement with results from other studies using OCT angiography and laser speckle flowgraphy, which confirm reduced capillary density in these patients. Registration site: www.clinicaltrials.gov , Trial registration number: NCT00494923.

Keywords: Blood flow; Blood volume; Glaucoma; Perfusion; Retinal plethysmography.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Figures

Fig. 1
Fig. 1
Flowchart to calculate pulse parameters of the plethysmographic signal of the ONH from video sequences. The different steps (1) to (9) are explained in the text
Fig. 2
Fig. 2
Calculation of averaged pulse from raw (intensity) signal of a normal subject. (A) original pulsatile signal (thick blue line) and calculated trend (red thin line). (B) Calculated plethysmographic signal after trend correction (dotted line) and manually selected pulses (solid parts). (C) Averaged image with segmented ONH ROI (green). (D) Five selected individual single pulses. (E) Averaged pulse was calculated from selected single pulses (red line) and standard deviation (reddish area). Twenty-five frames correspond to 1 s
Fig. 3
Fig. 3
Graphical explanation of calculated parameters from averaged pulse
Fig. 4
Fig. 4
Examples of calculated averaged pulses. Upper row: averaged fundus images of the entire sequence and segmented ONH ROIs (green area). Middle row: averaged pulses (red line) and standard deviations (reddish areas) calculated from the green ROIs shown in the upper row. Lower row: calculated pulse parameters (the bright semicircle on the right side in image B is due to a not correct aligned aperture during this measurement, but it has no influence on the result.) A corresponding example of a normal subject (amplitude 7.6%A, steepness 34%A/s, FWHM 44%) is shown in Fig. 2C and E. Patient groups: OHT, ocular hypertension; prep, preperimetric glaucoma; perim, perimetric glaucoma
Fig. 5
Fig. 5
Boxplots showing medians and quartiles of peak amplitude and steepness for the different subject groups. Significant differences (p < 0.001) between groups (Mann-Whitney test) in comparison with normal subjects are indicated by asterisks (*). Patient groups: OHT, ocular hypertension; prep, preperimetric glaucoma; perim, perimetric glaucoma; norm, normal subjects
Fig. 6
Fig. 6
Scatterplots of peak amplitude and steepness as functions of RNFL mean thickness, including regression lines. The Spearman test indicates a significant association between peak amplitude and steepness with RNFL thickness. Patient groups: OHT, ocular hypertension; prep, preperimetric glaucoma; perim, perimetric glaucoma; norm, normal subjects

References

    1. Flammer J, Orgül S, Costa VP, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21:359–393. doi: 10.1016/S1350-9462(02)00008-3.
    1. Schubert G. Untersuchung des Blutsauerstoffgehaltes und der Durchblutung des Auges auf lichtelektrischem Wege. Albrecht Von Graefes Arch Ophthalmol. 1936;135:558–560. doi: 10.1007/BF01853424.
    1. Trokel S. Measurement of ocular blood flow and volume by reflective densitometry. Arch Ophthalmol. 1964;71:88–92. doi: 10.1001/archopht.1964.00970010104017.
    1. Trokel S. Photometric study of ocular blood flow in man. Arch Ophthalmol. 1964;71:528–530. doi: 10.1001/archopht.1964.00970010544018.
    1. Beintema DK, Mook GA, Worst JGF. Recording of arm-to-retina circulation-time by means of fundus reflectometry. Ophthalmologica. 1964;148:163–168. doi: 10.1159/000304680.
    1. Matsuo H, Kogure F, Takahasi K (1966) Studies of the photoelectric plethysmogram of the eye. Procceedings XX Int Congr Ophthalmol 1966 178–182
    1. Tornow RP, Kopp O, Schultheiss B (2003) Time course of fundus reflection changes according to the cardiac cycle. In: Invest. Ophthalmol. Vis. Sci. pp 1296-ARVO Abstract
    1. Tornow RP, Kopp O (2006) Time course and frequency spectrum (0 to 12,5 Hz) of fundus reflection. In: Invest. Ophthalmol. Vis. Sci. pp 3753-ARVO Abstract
    1. Lovasik JV, Gagnon M, Kergoat H. A novel noninvasive videographic method for quantifying changes in the chromaticity of the optic nerve head with changes in the intraocular pressure, pulsatile choroidal blood flow and visual neural function in humans. Surv Ophthalmol. 1994;38(Suppl):S35–S51. doi: 10.1016/0039-6257(94)90045-0.
    1. Morgan WH, Hazelton ML, Betz-Stablein BD, et al. Photoplethysmographic measurement of various retinal vascular pulsation parameters and measurement of the venous phase delay. Investig Ophthalmol Vis Sci. 2014;55:5998–6006. doi: 10.1167/iovs.14-15104.
    1. Hassan H, Jaidka S, Dwyer VM, Hu S. Assessing blood vessel perfusion and vital signs through retinal imaging photoplethysmography. Biomed Opt Express. 2018;9:2351. doi: 10.1364/boe.9.002351.
    1. Briers JD. Laser Doppler and time-varying speckle: a reconciliation. J Opt Soc Am A. 1996;13:345. doi: 10.1364/josaa.13.000345.
    1. Briers JD. Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging. Physiol Meas. 2001;22:R35–R66. doi: 10.1088/0967-3334/22/4/201.
    1. Michelson G, Schmauss B. Two dimensional mapping of the perfusion of the retina and optic nerve head. Br J Ophthalmol. 1995;79:1126–1132. doi: 10.1136/bjo.79.12.1126.
    1. Wang RK, Jacques SL, Ma Z, et al. Three dimensional optical angiography. Opt Express. 2007;15:4083. doi: 10.1364/oe.15.004083.
    1. Jia Y, Morrison JC, Tokayer J, et al. Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express. 2012;3:3127. doi: 10.1364/boe.3.003127.
    1. Zhang A, Zhang Q, Chen C-L, Wang RK. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison. J Biomed Opt. 2015;20:100901. doi: 10.1117/1.jbo.20.10.100901.
    1. Gao SS, Jia Y, Zhang M, et al. Optical coherence tomography angiography. Investig Ophthalmol Vis Sci. 2016;57:OCT27–OCT36. doi: 10.1167/iovs.15-19043.
    1. Hagag AM, Gao SS, Jia Y, Huang D. Optical coherence tomography angiography: technical principles and clinical applications in ophthalmology. Taiwan J Ophthalmol. 2017;7:115–129. doi: 10.4103/tjo.tjo_31_17.
    1. Gräfe MGO, Gondre M, de Boer JF. Precision analysis and optimization in phase decorrelation OCT velocimetry. Biomed Opt Express. 2019;10:1297. doi: 10.1364/boe.10.001297.
    1. Chen C-L, Bojikian KD, Gupta D, et al. Optic nerve head perfusion in normal eyes and eyes with glaucoma using optical coherence tomography-based microangiography. Quant Imaging Med Surg. 2016;6:125. doi: 10.21037/QIMS.2016.03.05.
    1. Wang X, Jiang C, Ko T, et al. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol. 2015;253:1557–1564. doi: 10.1007/s00417-015-3095-y.
    1. Rao HL, Kadambi SV, Weinreb RN et al (2017) Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br J Ophthalmol 101. 10.1136/bjophthalmol-2016-309377
    1. Chihara E, Dimitrova G, Amano H, Chihara T. Discriminatory power of superficial vessel density and prelaminar vascular flow index in eyes with glaucoma and ocular hypertension and normal eyes. Investig Ophthalmol Vis Sci. 2017;58:690–697. doi: 10.1167/iovs.16-20709.
    1. Lommatzsch C, Rothaus K, Koch JM, et al. Vessel density in OCT angiography permits differentiation between normal and glaucomatous optic nerve heads. Int J Ophthalmol. 2018;11:835–843. doi: 10.18240/ijo.2018.05.20.
    1. Konishi N, Tokimoto Y, Kohra K, Fujii H (2002) New laser speckle flowgraphy system using CCD camera. Opt Rev. 10.1007/s10043-002-0163-4
    1. Luft N, Wozniak PA, Aschinger GC, et al. Ocular blood flow measurements in healthy white subjects using laser speckle flowgraphy. PLoS One. 2016;11:e0168190. doi: 10.1371/journal.pone.0168190.
    1. Mursch-Edlmayr AS, Luft N, Podkowinski D, et al. Laser speckle flowgraphy derived characteristics of optic nerve head perfusion in normal tension glaucoma and healthy individuals: a Pilot study. Sci Rep. 2018;8:5343. doi: 10.1038/s41598-018-23149-0.
    1. Yokoyama Y, Aizawa N, Chiba N, et al. Significant correlations between optic nerve head microcirculation and visual field defects and nerve fiber layer loss in glaucoma patients with myopic glaucomatous disk. Clin Ophthalmol. 2011;5:1721–1727. doi: 10.2147/OPTH.S23204.
    1. Shiga Y, Kunikata H, Aizawa N, et al. Optic nerve head blood flow, as measured by laser speckle flowgraphy, is significantly reduced in preperimetric glaucoma. Curr Eye Res. 2016;41:1447–1453. doi: 10.3109/02713683.2015.1127974.
    1. Shiga Y, Omodaka K, Kunikata H, et al. Waveform analysis of ocular blood flow and the early detection of normal tension glaucoma. Investig Ophthalmol Vis Sci. 2013;54:7699–7706. doi: 10.1167/iovs.13-12930.
    1. Tornow R-P, Odstrcilik J, Kolar R. Time-resolved quantitative inter-eye comparison of cardiac cycle-induced blood volume changes in the human retina. Biomed Opt Express. 2018;9:6237. doi: 10.1364/boe.9.006237.
    1. Tornow RP, Kolar R, Odstrcilik J (2015) Non-mydriatic video ophthalmoscope to measure fast temporal changes of the human retina. In: Progress in Biomedical Optics and Imaging - Proceedings of SPIE. p 954006
    1. Jonas JB, Gusek GC, Naumann GOH (1988) Optic disc morphometry in chronic primary open-angle glaucoma - I. Morphometric intrapapillary characteristics. Graefes Arch Clin Exp Ophthalmol. 10.1007/BF02169199
    1. Jonas JB, Budde WM, Panda-Jonas S (1999) Ophthalmoscopic evaluation of the optic nerve head. Surv Ophthalmol. 10.1016/S0039-6257(98)00049-6
    1. Skuta GL. Automated static perimetry. Am J Ophthalmol. 1992;114:110–111. doi: 10.1016/s0002-9394(14)77431-8.
    1. Bendschneider D, Tornow RP, Horn FK et al (2010) Retinal nerve fiber layer thickness in normals measured by spectral domain oct. J Glaucoma 19. 10.1097/IJG.0b013e3181c4b0c7
    1. Kolar R, Tornow RP, Odstrcilik J, Liberdova I. Registration of retinal sequences from new video-ophthalmoscopic camera. Biomed Eng Online. 2016;15:57. doi: 10.1186/s12938-016-0191-0.
    1. Odstrcilik J, Kolar R, Harabis V, Tornow RP (2015) Classification-based blood vessel segmentation in retinal images. In: Computational Vision and Medical Image Processing V. CRC Press, pp 95–100
    1. Lévêque P-MM, Zéboulon P, Brasnu E, et al. Optic disc vascularization in glaucoma: value of spectral-domain optical coherence tomography angiography. J Ophthalmol. 2016;2016:1–9. doi: 10.1155/2016/6956717.
    1. Van Melkebeke L, Barbosa-Breda J, Huygens M, Stalmans I (2018) Optical coherence tomography angiography in glaucoma: a review. Ophthalmic Res. 10.1159/000488495
    1. Takeyama A, Ishida K, Anraku A, et al. Comparison of optical coherence tomography angiography and laser speckle flowgraphy for the diagnosis of normal-tension glaucoma. J Ophthalmol. 2018;2018:1–9. doi: 10.1155/2018/1751857.
    1. Lawrence C, Schlegel WA. Ophthalmic pulse studies. I. Influence of intraocular pressure. Investig Ophthalmol. 1966;5:515–525.
    1. Michelson G, Patzelt A, Harazny J (2002) Flickering light increases retinal blood flow. In: Retina, 2002/06/11. pp 336–343
    1. Crittin M, Riva CE. Functional imaging of the human papilla and peripapillary region based on flicker-induced reflectance changes. Neurosci Lett. 2004;360:141–144. doi: 10.1016/j.neulet.2004.02.063.
    1. Best M, Plechaty G, Harris L, Galin MA. Ophthalmodynamometry and ocular pulse studies in carotid occlusion. Arch Ophthalmol. 1971;85:334–338. doi: 10.1001/archopht.1971.00990050336019.
    1. Perkins ES. The ocular pulse and intraocular pressure as a screening test for carotid artery stenosis. Br J Ophthalmol. 1985;69:676–680. doi: 10.1136/bjo.69.9.676.
    1. Kinsner W, Yan Y. A model of the carotid vascular system with stenosis at the carotid bifurcation. Math Comput Model. 1990;14:582–585. doi: 10.1016/0895-7177(90)90249-M.
    1. Rina M, Shiba T, Takahashi M et al (2015) Pulse waveform analysis of optic nerve head circulation for predicting carotid atherosclerotic changes. Graefes Arch Clin Exp Ophthalmol. 10.1007/s00417-015-3123-y
    1. Knecht PB, Menghini M, Bachmann LM, et al. The ocular pulse amplitude as a noninvasive parameter for carotid artery stenosis screening: a test accuracy study. Ophthalmology. 2012;119:1244–1249. doi: 10.1016/j.ophtha.2011.12.040.
    1. Pinto LA, Vandewalle E, de Clerck E, et al. Ophthalmic artery Doppler waveform changes associated with increased damage in glaucoma patients. Investig Ophthalmol Vis Sci. 2012;53:2448–2453. doi: 10.1167/iovs.11-9388.
    1. Millasseau SC, Guigui FG, Kelly RP, et al. Noninvasive assessment of the digital volume pulse. Comparison with the peripheral pressure pulse. Hypertens (Dallas, Tex 1979) 2000;36:952–956. doi: 10.1161/01.hyp.36.6.952.
    1. Levine RA, Demirel S, Fan J, et al. Asymmetries and visual field summaries as predictors of glaucoma in the ocular hypertension treatment study. Invest Ophthalmol Vis Sci. 2006;47:3896–3903. doi: 10.1167/iovs.05-0469.
    1. Sullivan-Mee M, Ruegg CC, Pensyl D, et al. Diagnostic precision of retinal nerve fiber layer and macular thickness asymmetry parameters for identifying early primary open-angle glaucoma. Am J Ophthalmol. 2013;156:567–577.e1. doi: 10.1016/j.ajo.2013.04.037.
    1. Hou H, Moghimi S, Zangwill LM, et al. Inter-eye asymmetry of optical coherence tomography angiography vessel density in bilateral glaucoma, glaucoma suspect, and healthy eyes. Am J Ophthalmol. 2018;190:69–77. doi: 10.1016/j.ajo.2018.03.026.

Source: PubMed

3
구독하다