First-in-human phase I study of BPI-9016M, a dual MET/Axl inhibitor, in patients with non-small cell lung cancer

Xingsheng Hu, Xin Zheng, Sheng Yang, Lin Wang, Xuezhi Hao, Xinge Cui, Lieming Ding, Li Mao, Pei Hu, Yuankai Shi, Xingsheng Hu, Xin Zheng, Sheng Yang, Lin Wang, Xuezhi Hao, Xinge Cui, Lieming Ding, Li Mao, Pei Hu, Yuankai Shi

Abstract

Background: BPI-9016M is a novel small-molecule inhibitor that simultaneously targets both c-Met and AXL tyrosine kinases. This phase I study aimed to determine the maximum tolerated dose (MTD), safety, pharmacokinetics, and antitumor activity of BPI-9016M in Chinese patients with advanced non-small cell lung cancer (NSCLC).

Methods: Over the dose range of 100 mg to 800 mg, eligible patients were administered with a single dose of 9016M tablet and received 7 days of pharmacokinetics evaluation, followed by continuous dose administration (QD dosing, 28 days). Standard "3 + 3" dose escalations were performed.

Results: Twenty NSCLC patients were treated. All patients experienced at least one adverse event (AE), of which treatment-related adverse events (TRAEs) were reported in 17 (85.0%) patients. The most common TRAEs were alanine transaminase (ALT) elevation (60%), bilirubin increased (40%), dysgeusia (40%), constipation (30%), hypertension (25%), and palmar-plantar erythrodysesthesia syndrome (15%). The TRAEs of grade 3 or higher during treatment were hypertension (15%), pulmonary embolism (5%), and laryngeal pain (5%). No dose-limiting toxicity (DLT) was observed, and the MTD was not reached. The median time to Cmax ranged from 2.0 to 3.5 h, and the plasma concentration of BPI-9016M declined rapidly after Tmax fitting a single-compartment model. The mean AUC0-72 h of M1 and M2-2, main metabolites of BPI-9016M, were 4.8-6.6 folds and 4.1-9.8 folds higher than that of BPI-9016M, respectively. Exposure to BPI-9016M, M1, and M2-2 reached moderate saturation at 600 mg. Among 19 evaluable patients, 1 had a partial response and 10 patients had stable disease.

Conclusion: BPI-9016M showed favorable safety and pharmacokinetic profiles, and no DLT was observed at doses up to 800 mg once daily. The promising antitumor activity in Chinese NSCLC patients supports further development of this tyrosine kinase inhibitor.

Trial registration: Clinical Trial ID: NCT02478866, registered May 21, 2015.

Keywords: 9016-M; C-MET; Non-small cell lung cancer (NSCLC); Phase 1; Tyrosine kinase inhibitor.

Conflict of interest statement

Li Mao and Lieming Ding is an employee and a stock owner of Betta Pharmaceuticals. All the remaining authors have declared no conflicts of interest.

Figures

Fig. 1
Fig. 1
Plasma concentration-time curve ofBPI-9016M following continuous QD dosing. Average concentration-time curves for BPI-9016M, M1, and M2-2 in Chinese advanced NSCLC patients with single oral administration of 100–800 mg of BPI-9016M tablet
Fig. 2
Fig. 2
Waterfall plot of the best overall response. The bars indicate the largest percentage change in target lesions from baseline. The colors represent different best tumor response. The lower horizontal dashed line indicates a 30% reduction from baseline. The upper horizontal dashed line indicates a 20% increase from baseline

References

    1. Organ SL, Tsao MS. An overview of the c-MET signaling pathway. TherAdv Med Oncol. 2011;3:S7–19. doi: 10.1177/1758834011422556.
    1. Sierra JR, Tsao MS. c-MET as a potential therapeutic target and biomarker in cancer. TherAdv Med Oncol. 2011;3:S21–S35. doi: 10.1177/1758834011422557.
    1. Della Corte CM, Fasano M, Papaccio F, Ciardiello F, Morgillo F. Role of HGF-MET signaling in primary and acquired resistance to targeted therapies in cancer. Biomedicines. 2014;25(2):345–358. doi: 10.3390/biomedicines2040345.
    1. Cecchi F, Rabe DC, Bottaro DP. Targeting the HGF/Met signaling pathway in cancer therapy. Expert OpinTher Targets. 2012;16:553–572. doi: 10.1517/14728222.2012.680957.
    1. Tsao MS, Liu N, Chen JR, Pappas J, Ho J, To C, et al. Differential expression of Met/hepatocyte growth factor receptor in subtypes of non-small cell lung cancers. Lung Cancer. 1998;20:1–16. doi: 10.1016/S0169-5002(98)00007-5.
    1. Yu HA, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. 2013;19(8):2240–2247. doi: 10.1158/1078-0432.CCR-12-2246.
    1. Minari R, Bordi P, Tiseo M. Third-generation epidermal growth factor receptor-tyrosine kinase inhibitors in T790M-positive non-small cell lung cancer: review on emerged mechanisms of resistance. Transl Lung Cancer Res. 2016;5:695–708. doi: 10.21037/tlcr.2016.12.02.
    1. Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L, et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. ProcNatlAcad Sci. 2007;104:20932–20937. doi: 10.1073/pnas.0710370104.
    1. Chen HJ, Mok TS, Chen ZH, Guo AL, Zhang XC, Su J, et al. Clinicopathologic and molecular features of epidermal growth factor receptor T790M mutation and c-MET amplification in tyrosine kinase inhibitor-resistant Chinese non-small cell lung cancer. PatholOncol Res. 2009;15:651–658.
    1. Ma PC, Jagadeeswaran R, Jagadeesh S, Tretiakova MS, Nallasura V, Fox EA, et al. Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res. 2005;65:1479–1488. doi: 10.1158/0008-5472.CAN-04-2650.
    1. Ma PC, Kijima T, Maulik G, Fox EA, Sattler M, Griffin JD, et al. c-MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Res. 2003;63(19):6272–6281.
    1. Kong-Beltran M, Seshagiri S, Zha J, Zhu W, Bhawe K, Mendoza N, et al. Somatic mutations lead to an oncogenic deletion of met in lung cancer. Cancer Res. 2006;66:283–289. doi: 10.1158/0008-5472.CAN-05-2749.
    1. Kong-Beltran M, Seshagiri S, Zha J, Zhu W, Bhawe K, Mendoza N, et al. The potential roles of hepatocyte growth factor (HGF)-MET pathway inhibitors in cancer treatment. Onco Targets Ther. 2014;7:969–983.
    1. Rosen LS, Goldman JW, Algazi AP, Turner PK, Moser B, Hu T, et al. A first-in-human phase I study of a bivalent MET antibody, emibetuzuman (LY2875358), as monotherapy and in combination with erlotinib in advanced cancer. Clin Cancer Res. 2017;23:1910–1919. doi: 10.1158/1078-0432.CCR-16-1418.
    1. Ruiz-Morales JM, Heng DY. Cabozantinib in the treatment of advanced renal carcinoma: clinical trial evidence and experience. TherAdv Urol. 2016;8:338–347. doi: 10.1177/1756287216663073.
    1. Esaki T, Hirai F, Makiyama A, Seto T, Bando H, Naito Y, et al. Phase I dose-escalation study of capmatinib (INC280) in Japanese patients with advanced solid tumors. Cancer Sci. 2019;110:1340–1351. doi: 10.1111/cas.13956.
    1. Gan Hui K., Millward Michael, Hua Ye, Qi Chuan, Sai Yang, Su Weiguo, Wang Jian, Zhang Lilin, Frigault Melanie M., Morgan Shethah, Yang Liu, Lickliter Jason D. First-in-Human Phase I Study of the Selective MET Inhibitor, Savolitinib, in Patients with Advanced Solid Tumors: Safety, Pharmacokinetics, and Antitumor Activity. Clinical Cancer Research. 2019;25(16):4924–4932. doi: 10.1158/1078-0432.CCR-18-1189.
    1. Byers LA, Diao L, Wang J, et al. An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin Cancer Res. 2013;19:279–290. doi: 10.1158/1078-0432.CCR-12-1558.
    1. Zhang Z, Lee JC, Lin L, et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet. 2012;44:852–860. doi: 10.1038/ng.2330.
    1. Hugo W, Zaretsky JM, Sun L, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 2016;165:35–44. doi: 10.1016/j.cell.2016.02.065.
    1. Wang C, Jin H, Wang N, et al. Gas6/Axl axis contributes to chemoresistance and metastasis in breast cancer through Akt/GSK-3β/β-cateninsignaling. Theranostics. 2016;6:1205–1219. doi: 10.7150/thno.15083.
    1. Aguilera TA, Rafat M, Castellini L, et al. Reprogramming the immunological microenvironment through radiation and targeting Axl. Nat Commun. 2016;7:13898. doi: 10.1038/ncomms13898.
    1. Koopman LA, Terp MG, Zom GG, et al. Enapotamabvedotin, an AXL-specific antibody-drug conjugate, shows preclinical antitumor activity in non-small cell lung cancer. JCI Insight. 2019;4:e128199. doi: 10.1172/jci.insight.128199.
    1. Cui X, Zheng X, Jiang J, Tan F, Ding L, Hu P. Simultaneous determination of a novel c-Met/AXL dual-target small-molecule inhibitor BPI-9016M and its metabolites in human plasma by liquid chromatography-tandem mass spectrometry: application in a pharmacokinetic study in Chinese advanced solid tumor patients. J Chromatogr B AnalytTechnol Biomed Life Sci. 2017;1068–1069:33–40. doi: 10.1016/j.jchromb.2017.10.017.
    1. Zhang P, Li S, Lv C, Si J, Xiong Y, Ding L, et al. BPI-9016M, a c-Met inhibitor, suppresses tumor cell growth, migration and invasion of lung adenocarcinoma via miR203-DKK1. Theranostics. 2018;8:5890–5902. doi: 10.7150/thno.27667.
    1. Wakelee HA, Gettinger S, Engelman J, et al. A phase Ib/II study of cabozantinib (XL184) with or without erlotinib in patients with non-small cell lung cancer. Cancer ChemotherPharmacol. 2017;79:923–932.
    1. Nokihara H, Nishio M, Yamamoto N, et al. Phase 1 study of Cabozantinib in Japanese patients with expansion cohorts in non-small-cell lung cancer. Clinical Lung Cancer. 2019;20:e317–e328. doi: 10.1016/j.cllc.2018.12.018.
    1. Wu YL, Zhang L, Kim DW, Liu X, Lee DH, Yang JC, et al. Phase Ib/II study of Capmatinib (INC280) plus Gefitinib after failure of epidermal growth factor receptor (EGFR) inhibitor therapy in patients with EGFR-mutated, MET factor-dysregulated non-small-cell lung cancer. J ClinOncol. 2018;36:3101–3109. doi: 10.1200/JCO.2018.77.7326.
    1. Neal JW, Dahlberg SE, Wakelee HA, Aisner SC, Bowden M, Huang Y, et al. Erlotinib, cabozantinib, or erlotinib plus cabozantinib as second-line or third-line treatment of patients with EGFR wild-type advanced non-small-cell lung cancer (ECOG-ACRIN 1512): a randomised, controlled, open-label, multicentre, phase 2 trial. Lancet Oncol. 2016;17:1661–1671. doi: 10.1016/S1470-2045(16)30561-7.
    1. Yoshioka H, Azuma K, Yamamoto N, Takahashi T, Nishio M, Katakami N, et al. A randomized, double-blind, placebo-controlled, phase III trial of erlotinib with or without a c-Met inhibitor tivantinib (ARQ 197) in Asian patients with previously treated stage IIIB/IV nonsquamousnonsmall-cell lung cancer harboring wild-type epidermal growth factor receptor (ATTENTION study) Ann Oncol. 2015;26:2066–2072. doi: 10.1093/annonc/mdv288.
    1. Scagliotti G, von Pawel J, Novello S, Ramlau R, Favaretto A, Barlesi F, et al. Phase III multinational, randomized, double-blind, placebo-controlled study of Tivantinib (ARQ 197) plus Erlotinib versus Erlotinib alone in previously treated patients with locally advanced or metastatic nonsquamous non-small-cell lung cancer. J ClinOncol. 2015;33:2667–2674. doi: 10.1200/JCO.2014.60.7317.
    1. Cheng Y, Johne A, Scheele J, Wu Y-L, Zhou J, Lu S, et al. 1377O Phase II study of tepotinib+ gefitinib (TEP+ GEF) in MET-positive (MET+)/epidermal growth factor receptor (EGFR)-mutant (MT) non-small cell lung cancer (NSCLC). Annals of Oncology. 2018;29(suppl_8):mdy292.
    1. Drilon AE, Camidge DR, Ou S-HI, Clark JW, Socinski MA, Weiss J, et al. Efficacy and safety of crizotinib in patients (pts) with advanced MET exon 14-altered non-small cell lung cancer (NSCLC) J ClinOncol. 2016;34(15_suppl):108. doi: 10.1200/JCO.2016.34.15_suppl.108.
    1. Felip E, Horn L, Patel JD, Sakai H, Scheele J, Bruns R, et al. Tepotinib in patients with advanced non-small cell lung cancer (NSCLC) harboring MET exon 14-skipping mutations: phase IItrial. J ClinOncol. 2018;36(15_suppl):9016. doi: 10.1200/JCO.2018.36.15_suppl.9016.

Source: PubMed

3
구독하다