Circulating and Adipose Tissue miRNAs in Women With Polycystic Ovary Syndrome and Responses to High-Intensity Interval Training

Sofie Lionett, Ida A Kiel, Donny M Camera, Eszter Vanky, Evelyn B Parr, Stian Lydersen, John A Hawley, Trine Moholdt, Sofie Lionett, Ida A Kiel, Donny M Camera, Eszter Vanky, Evelyn B Parr, Stian Lydersen, John A Hawley, Trine Moholdt

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression post-transcriptionally. In women with polycystic ovary syndrome (PCOS), several miRNAs are differentially expressed compared to women without PCOS, suggesting a role for miRNAs in PCOS pathophysiology. Exercise training modulates miRNA abundance and is primary lifestyle intervention for women with PCOS. Accordingly, we measured the expression of eight circulating miRNAs selected a priori along with miRNA expression from gluteal and abdominal adipose tissue (AT) in 12 women with PCOS and 12 women matched for age and body mass index without PCOS. We also determined the miRNA expression "signatures" before and after high-intensity interval training (HIT) in 42 women with PCOS randomized to either: (1) low-volume HIT (LV-HIT, 10 × 1 min work bouts at maximal, sustainable intensity, n = 13); (2) high-volume HIT (HV-HIT, 4 × 4 min work bouts reaching 90-95% of maximal heart rate, n = 14); or (3) non-exercise control (Non-Ex, n = 15). Both HIT groups trained three times/week for 16 weeks. miRNAs were extracted from plasma, gluteal and abdominal AT, and quantified via a customized plate array containing eight miRNAs associated with PCOS and/or exercise training responses. Basal expression of circulating miRNA-27b (c-miR-27b), implicated in fatty acid metabolism, adipocyte differentiation and inflammation, was 1.8-fold higher in women with compared to without PCOS (P = 0.006) despite no difference in gluteal or abdominal AT miR-27b expression. Only the HV-HIT protocol increased peak oxygen uptake (VO2peak L/min; 9%, P = 0.008). There were no changes in body composition. In LV-HIT, but not HV-HIT, the expression of c-miR-27b decreased (0.5-fold, P = 0.007). None of the remaining seven circulating miRNAs changed in LV-HIT, nor was the expression of gluteal or abdominal AT miRNAs altered. Despite increased cardiorespiratory fitness, HV-HIT did not alter the expression of any circulating, gluteal or abdominal AT miRNAs. We conclude that women with PCOS have a higher basal expression of c-miR-27b compared to women without PCOS and that 16 weeks of LV-HIT reduces the expression of this miRNA in women with PCOS. Intense exercise training had little effect on the abundance of the selected miRNAs within subcutaneous AT depots in women with PCOS.

Keywords: cardiorespiratory fitness; epigenetic modifications; exercise; female; insulin resistance; miRNA-27b.

Copyright © 2020 Lionett, Kiel, Camera, Vanky, Parr, Lydersen, Hawley and Moholdt.

Figures

FIGURE 1
FIGURE 1
Study protocol. The testing days included: VO2peak, body fat percentage, waist and hip circumference measurements as well as blood and adipose tissue sampling. Non-PCOS (n = 12) women were only tested at baseline, whereas all women with PCOS (n = 42) were tested at baseline and after the 16 weeks exercise intervention. The 12 PCOS women in the case-control comparison also took part in the exercise intervention. Non-PCOS were age- and BMI-matched to these 12 women with PCOS.
FIGURE 2
FIGURE 2
Circulatory microRNA expression patterns. (A) c-miR-21-5p, (B) c-miR-27b-5p, (C) c-miR-93-5p, (D) c-miR-103a-3p, (E) c-miR-146a-5p, (F) c-miR-155-5p, (G) c-miR-222-3p, (H) c-miR-223-3p abundance in women with (PCOS; open, red circles) and without PCOS (Non-PCOS; blue squares). Values are arbitrary units expressed relative to the geometric mean of UniSp3, UniSp6 and RNU1A1. Individual data with group means and SD are displayed. PCOS, polycystic ovary syndrome; c, circulating; miR, microRNA; AU, arbitrary units.
FIGURE 3
FIGURE 3
Gluteal adipose tissue (ATG) microRNA expression patterns. (A) ATG-miR-21-5p, (B) ATG-miR-27b-5p, (C) ATG-miR-93-5p, (D) ATG-miR-103a-3p, (E) ATG-miR-146a-5p, (F) ATG-miR-155-5p, (G) ATG-miR-222-3p, (H) ATG-miR-223-3p abundance in women with (PCOS; open, red circles) and without PCOS (Non-PCOS; blue squares). Values are arbitrary units expressed relative to the geometric mean of SNORD44, UniSp3, UniSp6, and RNU1A1. Individual data with group means and SD are displayed. PCOS, polycystic ovary syndrome; ATG, gluteal adipose tissue; miR, microRNA; AU, arbitrary units.
FIGURE 4
FIGURE 4
Abdominal adipose tissue (ATA) microRNA expression patterns. (A) ATA-miR-21-5p, (B) ATA-miR-27b-5p, (C) ATA-miR-93-5p, (D) ATA-miR-103a-3p, (E) ATA-miR-146a-5p, (F) ATA-miR-155-5p, (G) ATA-miR-222-3p, (H) ATA-miR-223-3p abundance in women with (PCOS; open, red circles) and without PCOS (Non-PCOS; blue squares). Values are arbitrary units expressed relative to the geometric mean of SNORD44, UniSp3, UniSp6, and RNU1A1. Individual data with group means and SD are displayed. PCOS, polycystic ovary syndrome; ATA, abdominal adipose tissue; miR, microRNA; AU, arbitrary units.

References

    1. Al Kindi M. K., Al Essry F. S., Al Essry F. S., Mula-Abed W. A. (2012). Validity of serum testosterone, free androgen index, and calculated free testosterone in women with suspected hyperandrogenism. Oman Med. J. 27 471–474. 10.5001/omj.2012.112
    1. Anderson S. A., Barry J. A., Hardiman P. J. (2014). Risk of coronary heart disease and risk of stroke in women with polycystic ovary syndrome: a systematic review and meta-analysis. Int. J. Cardiol. 176 486–487. 10.1016/j.ijcard.2014.06.079
    1. Arancio W., Calogero Amato M., Magliozzo M., Pizzolanti G., Vesco R., Giordano C. (2018). Serum miRNAs in women affected by hyperandrogenic polycystic ovary syndrome: the potential role of miR-155 as a biomarker for monitoring the estroprogestinic treatment. Gynecol. Endocrinol. 34 704–708. 10.1080/09513590.2018.1428299
    1. Barber J. L., Zellars K. N., Barringhaus K. G., Bouchard C., Spinale F. G., Sarzynski M. A. (2019). The effects of regular exercise on circulating cardiovascular-related microRNAs. Sci. Rep. 9:7527.
    1. Bozdag G., Mumusoglu S., Zengin D., Karabulut E., Yildiz B. O. (2016). The prevalence and phenotypic features of polycystic ovary syndrome: a systematic review and meta-analysis. Hum. Reprod. 31 2841–2855. 10.1093/humrep/dew218
    1. Butler A. E., Ramachandran V., Hayat S., Dargham S. R., Cunningham T. K., Benurwar M., et al. (2019). Expression of microRNA in follicular fluid in women with and without PCOS. Sci. Rep. 9:16306.
    1. Cassar S., Misso M. L., Hopkins W. G., Shaw C. S., Teede H. J., Stepto N. K. (2016). Insulin resistance in polycystic ovary syndrome: a systematic review and meta-analysis of euglycaemic-hyperinsulinaemic clamp studies. Hum. Reprod. 31 2619–2631. 10.1093/humrep/dew243
    1. Cassidy S., Thoma C., Houghton D., Trenell M. I. (2017). High-intensity interval training: a review of its impact on glucose control and cardiometabolic health. Diabetologia 60 7–23. 10.1007/s00125-016-4106-1
    1. Chen B., Xu P., Wang J., Zhang C. (2019). The role of MiRNA in polycystic ovary syndrome (PCOS)’. Gene 706 91–96. 10.1016/j.gene.2019.04.082
    1. Chen W., Yin K., Zhao G., Fy Y., Tang C. (2012). The magic and mystery of microRNA-27 in Atherosclerosis. Atherosclerosis 222 314–323. 10.1016/j.atherosclerosis.2012.01.020
    1. Chen Y. H., Heneidi S., Lee J. M., Layman L. C., Stepp D. W., Gamboa G. M., et al. (2013). miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes 62 2278–2286. 10.2337/db12-0963
    1. Chen X., Liang H., Zhang J., Zen K., Zhang C. Y. (2012). Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol. 22 125–132. 10.1016/j.tcb.2011.12.001
    1. Chuang T. Y., Wu H. L., Chen C. C., Gamboa G. M., Layman L. C., Diamond M. P., et al. (2015). MicroRNA-223 expression is upregulated in insulin resistant human adipose tissue. J. Diabetes Res. 2015:943659.
    1. Da Silva F. C., Da Rosa Lop R., Andrade A., Costa V. P., Filho P. J. B. G., Da Silva R. (2019). Effects of physical exercise on the expression of microRNAs: a systematic review. J. Strength Cond. Res. 34 270–280. 10.1519/jsc.0000000000003103
    1. Denham J., Gray A. J., Scott-Hamilton J., Hagstrom A. D., Murphy A. J. (2018). Small non-coding RNAs are altered by short-term sprint interval training in men. Physiol. Rep. 6:e13653. 10.14814/phy2.13653
    1. Ding C. F., Chen W. Q., Zhu Y. T., Bo Y. L., Hu H. M., Zheng R. H. (2015). Circulating microRNAs in patients with polycystic ovary syndrome. Hum. Fertil. 18 22–29. 10.3109/14647273.2014.956811
    1. Dunaif A., Segal K. R., Shelley D. R., Green G., Dobrjansky A., Licholai T. (1992). Evidence for distinctive and intrinsic defects in insulin action in polycystic ovary syndrome. Diabetes 41 1257–1266. 10.2337/diabetes.41.10.1257
    1. Fabbri M., Paone A., Calore F., Galli R., Gaudio E., Santhanam R., et al. (2012). MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc. Natl. Acad. Sci. U.S.A. 109 E2110–E2116.
    1. Fauser B. C., Tarlatzis B. C., Rebar R. W., Legro R. S., Balen A. H., Lobo R., et al. (2012). Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-sponsored 3rd PCOS consensus workshop group. Fertil. Steril. 97 28–38.e25.
    1. Fernandez-Valverde S. L., Taft R. J., Mattick J. S. (2011). MicroRNAs in beta-cell biology, insulin resistance, diabetes and its complications. Diabetes 60 1825–1831. 10.2337/db11-0171
    1. Ferriman D., Gallwey J. D. (1961). Clinical assessment of body hair growth in women. J. Clin. Endocrinol. Metab. 21 1440–1447. 10.1210/jcem-21-11-1440
    1. Gomes C. P., Kim T. K., Wang K., He Y. (2015). The implications on clinical diagnostics of using microRNA-based biomarkers in exercise. Expert Rev. Mol. Diagn. 15 761–772. 10.1586/14737159.2015.1039517
    1. Herrera B. M., Lockstone H. E., Taylor J. M., Ria M., Barrett A., Collins S., et al. (2010). Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia 53 1099–1109. 10.1007/s00125-010-1667-2
    1. Icli B., Feinberg M. W. (2017). MicroRNAs in dysfunctional adipose tissue: cardiovascular implications. Cardiovasc. Res. 113 1024–1034. 10.1093/cvr/cvx098
    1. Improta A. C., Nonaka C. K. V., Pereira C. S., Soares M. B. P., Macambira S. G., Souza B. S. F. (2018). Exercise training-induced changes in microRNAs: beneficial regulatory effects in hypertension, Type 2 diabetes, and obesity. Int. J. Mol. Sci. 19:3608. 10.3390/ijms19113608
    1. Karbiener M., Fischer C., Nowitsch S., Opriessnig P., Papak C., Ailhaud G., et al. (2009). microRNA miR-27b impairs human adipocyte differentiation and targets PPARγ. Biochem. Biophys. Res. Commun. 390 247–251. 10.1016/j.bbrc.2009.09.098
    1. Karpe F., Pinnick K. E. (2015). Biology of upper-body and lower-body adipose tissue–link to whole-body phenotypes. Nat. Rev. Endocrinol. 11 90–100. 10.1038/nrendo.2014.185
    1. Kiel I. A., Lionett S., Parr E. B., Jones H., Roset M. A. H., Salvesen O., et al. (2020). Improving reproductive function in women with polycystic ovary syndrome with high-intensity interval training (IMPROV-IT): study protocol for a two-centre, three-armed randomised controlled trial. BMJ Open 10:e034733. 10.1136/bmjopen-2019-034733
    1. Lin Q., Gao Z., Alarcon R. M., Ye J., Yun Z. (2009). A role of miR-27 in the regulation of adipogenesis. FEBS J. 276 2348–2358.
    1. Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25 402–408. 10.1006/meth.2001.1262
    1. Long W., Zhao C., Ji C., Ding H., Cui Y., Guo X., et al. (2014). Characterization of serum microRNAs profile of PCOS and identification of novel non-invasive biomarkers. Cell. Physiol. Biochem. 33 1304–1315. 10.1159/000358698
    1. Manneras-Holm L., Leonhardt H., Kullberg J., Jennische E., Oden A., Holm G., et al. (2011). Adipose tissue has aberrant morphology and function in PCOS: enlarged adipocytes and low serum adiponectin, but not circulating sex steroids, are strongly associated with insulin resistance. J. Clin. Endocrinol. Metab. 96 E304–E311.
    1. Matthews D. R., Hosker J. P., Rudenski A. S., Naylor B. A., Treacher D. F., Turner R. C. (1985). Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28 412–419. 10.1007/bf00280883
    1. Mittelbrunn M., Gutierrez-Vazquez C., Villarroya-Beltri C., Gonzalez S., Sanchez-Cabo F., Gonzalez M. A., et al. (2011). Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun. 2:282.
    1. Murri M., Insenser M., Fernandez-Duran E., San-Millan J. L., Escobar-Morreale H. F. (2013). Effects of polycystic ovary syndrome (PCOS), sex hormones, and obesity on circulating miRNA-21, miRNA-27b, miRNA-103, and miRNA-155 expression. J. Clin. Endocrinol. Metab. 98 E1835–E1844.
    1. Murri M., Insenser M., Fernandez-Duran E., San-Millan J. L., Luque-Ramirez M., Escobar-Morreale H. F. (2018). Non-targeted profiling of circulating microRNAs in women with polycystic ovary syndrome (PCOS): effects of obesity and sex hormones. Metabolism 86 49–60. 10.1016/j.metabol.2018.01.011
    1. Orio F., Muscogiuri G., Nese C., Palomba S., Savastano S., Tafuri D., et al. (2016). Obesity, type 2 diabetes mellitus and cardiovascular disease risk: an uptodate in the management of polycystic ovary syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 207 214–219. 10.1016/j.ejogrb.2016.08.026
    1. Parr E. B., Camera D. M., Burke L. M., Phillips S. M., Coffey V. G., Hawley J. A. (2016). Circulating microRNA responses between ‘High’ and ‘Low’ responders to a 16-Wk diet and exercise weight loss intervention. PLoS One 11:e0152545. 10.1371/journal.pone.0152545
    1. Patten R. K., Boyle R. A., Moholdt T., Kiel I., Hopkins W. G., Harrison C. L., et al. (2020). Exercise interventions in polycystic ovary syndrome: a systematic review and meta-analysis. Front. Physiol. 11:606 10.3389/fphys.2020.00606
    1. Rotterdam E. A.-S. (2004). Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. 19 41–47. 10.1093/humrep/deh098
    1. Russell A. P., Lamon S. (2015). Exercise, skeletal muscle and circulating microRNAs. Prog. Mol. Biol. Transl. Sci. 135 471–496. 10.1016/bs.pmbts.2015.07.018
    1. Sathyapalan T., David R., Gooderham N. J., Atkin S. L. (2015). Increased expression of circulating miRNA-93 in women with polycystic ovary syndrome may represent a novel, non-invasive biomarker for diagnosis. Sci. Rep. 5:16890.
    1. Sorensen A. E., Udesen P. B., Maciag G., Geiger J., Saliani N., Januszewski A. S., et al. (2019). Hyperandrogenism and metabolic syndrome are associated with changes in serum-derived microRNAs in women with polycystic ovary syndrome. Front. Med. 6:242. 10.3389/fmed.2019.00242
    1. Sorensen A. E., Wissing M. L., Salo S., Englund A. L., Dalgaard L. T. (2014). MicroRNAs related to polycystic ovary syndrome (PCOS). Genes 5 684–708. 10.3390/genes5030684
    1. Stepto N. K., Cassar S., Joham A. E., Hutchison S. K., Harrison C. L., Goldstein R. F., et al. (2013). Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic-hyperinsulaemic clamp. Hum. Reprod. 28 777–784.
    1. Tan G. D., Goossens G. H., Humphreys S. M., Vidal H., Karpe F. (2004). Upper and lower body adipose tissue function: a direct comparison of fat mobilization in humans. Obes. Res. 12 114–118. 10.1038/oby.2004.15
    1. Teede H. J., Misso M. L., Costello M. F., Dokras A., Laven J., Moran L., et al. (2018). Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum. Reprod. 33 1602–1618.
    1. Teede H. J., Misso M. L., Deeks A. A., Moran L. J., Stuckey B. G., Wong J. L., et al. (2011). Assessment and management of polycystic ovary syndrome: summary of an evidence-based guideline. Med. J. Aust. 195 S65–S112.
    1. Tsiloulis T., Pike J., Powell D., Rossello F. J., Canny B. J., Meex R. C., et al. (2017). Impact of endurance exercise training on adipocyte microRNA expression in overweight men. FASEB J. 31 161–171. 10.1096/fj.201600678r
    1. Twisk J., Bosman L., Hoekstra T., Rijnhart J., Welten M., Heymans M. (2018). Different ways to estimate treatment effects in randomised controlled trials. Contemp. Clin. Trials Commun. 10 80–85. 10.1016/j.conctc.2018.03.008
    1. Weston K. S., Wisloff U., Coombes J. S. (2014). High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br. J. Sports Med. 48 1227–1234. 10.1136/bjsports-2013-092576
    1. Wu H. L., Heneidi S., Chuang T. Y., Diamond M. P., Layman L. C., Azziz R., et al. (2014). The expression of the miR-25/93/106b family of micro-RNAs in the adipose tissue of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 99 E2754–E2761.
    1. You T., Wang X., Murphy K. M., Lyles M. F., Demons J. L., Yang R., et al. (2014). Regional adipose tissue hormone/cytokine production before and after weight loss in abdominally obese women. Obesity 22 1679–1684.

Source: PubMed

3
구독하다