Self-reported leisure time physical activity: a useful assessment tool in everyday health care

Lars Rödjer, Ingibjörg H Jonsdottir, Annika Rosengren, Lena Björck, Gunnar Grimby, Dag S Thelle, Georgios Lappas, Mats Börjesson, Lars Rödjer, Ingibjörg H Jonsdottir, Annika Rosengren, Lena Björck, Gunnar Grimby, Dag S Thelle, Georgios Lappas, Mats Börjesson

Abstract

Background: The individual physical activity level is an independent risk factor for cardiovascular disease and death, as well as a possible target for improving health outcome. However, today's widely adopted risk score charts, typically do not include the level of physical activity. There is a need for a simple risk assessment tool, which includes a reliable assessment of the level of physical activity. The aim of this study was therefore, to analyse the association between the self-reported levels of physical activity, according to the Saltin-Grimby Physical Activity Level Scale (SGPALS) question, and cardiovascular risk factors, specifically focusing on the group of individuals with the lowest level of self-reported PA.

Methods: We used cross sectional data from the Intergene study, a random sample of inhabitants from the western part of Sweden, totalling 3588 (1685 men and 1903 women, mean age 52 and 51). Metabolic measurements, including serum-cholesterol, serum-triglycerides, fasting plasma-glucose, waist circumference, blood pressure and resting heart rate, as well as smoking and self-reported stress were related to the self-reported physical activity level, according to the modernized version of the SGPALS 4-level scale.

Results: There was a strong negative association between the self-reported physical activity level, and smoking, weight, waist circumference, resting heart rate, as well as to the levels of fasting plasma-glucose, serum-triglycerides, low-density lipoproteins (LDL), and self-reported stress and a positive association with the levels of high-density lipoproteins (HDL). The individuals reporting the lowest level of PA (SGPALS, level 1) had the highest odds-ratios (OR) for having pre-defined levels of abnormal risk factors, such as being overweight (men OR 2.19, 95% CI: 1.51-3.19; women OR 2.57, 95 % CI: 1.78-3.73), having an increased waist circumference (men OR 3.76, 95 % CI: 2.61-5.43; women OR 2.91, 95% CI: 1.94-4.35) and for reporting stress (men OR 3.59, 95 % CI: 2.34-5.49; women OR 1.25, 95% CI: 0.79-1.98), compared to the most active individuals, but also showed increased OR for most other risk factors analyzed above.

Conclusion: The self-reported PA-level according to the modernized Saltin-Grimby Physical Activity Level Scale, SGPALS, is associated with the presence of many cardiovascular risk factors, with the most inactive individuals having the highest risk factor profile, including self-reported stress. We propose that the present SGPALS may be used as an additional, simple tool in a routine risk assessment in e.g. primary care, to identify inactive individuals, with a higher risk profile.

References

    1. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985;100(2):126–131.
    1. Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. CMAJ. 2006;174(6):801–809. doi: 10.1503/cmaj.051351.
    1. World Health Organization. Global health risks: mortality and burden of disease attributable to selected major risks. Geneva: World Health Organization; 2009.
    1. Schoenborn CA, Adams PF, Barnes PM, Vickerie JL, Schiller JS. Health behaviors of adults: United States, 1999–2001. Vital Health Stat 10. 2004. pp. 1–79.
    1. Sjöström M, Oja P, Hagströmer M, Smith B, Bauman A. Health-enhancing physical activity across European Union countries: the Eurobarometer study. J Public Health. 2006;14(5):291–300. doi: 10.1007/s10389-006-0031-y.
    1. Aires N, Selmer R, Thelle D. The validity of self-reported leisure time physical activity, and its relationship to serum cholesterol, blood pressure and body mass index. A population based study of 332,182 men and women aged 40–42 years. Eur J Epidemiol. 2003;18(6):479–485.
    1. Ekblom-Bak E, Hellenius ML, Ekblom O, Engstrom LM, Ekblom B. Independent associations of physical activity and cardiovascular fitness with cardiovascular risk in adults. Eur J Cardiovasc Prev Rehabil. 2009;17(2):175–180.
    1. Lee DC, Sui X, Ortega FB, Kim YS, Church TS, Winett RA, Ekelund U, Katzmarzyk PT, Blair SN. Comparisons of leisure-time physical activity and cardiorespiratory fitness as predictors of all-cause mortality in men and women. Br J Sports Med. 2010;45(6):504–510.
    1. Mora S, Redberg RF, Cui Y, Whiteman MK, Flaws JA, Sharrett AR, Blumenthal RS. Ability of exercise testing to predict cardiovascular and all-cause death in asymptomatic women: a 20-year follow-up of the lipid research clinics prevalence study. JAMA. 2003;290(12):1600–1607. doi: 10.1001/jama.290.12.1600.
    1. Healy GN, Matthews CE, Dunstan DW, Winkler EA, Owen N. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003–06. Eur Heart J. 2011;32(5):590–597. doi: 10.1093/eurheartj/ehq451.
    1. Jonsdottir IH, Rodjer L, Hadzibajramovic E, Borjesson M, Ahlborg G Jr. A prospective study of leisure-time physical activity and mental health in Swedish health care workers and social insurance officers. Prev Med. 2010;51(5):373–377. doi: 10.1016/j.ypmed.2010.07.019.
    1. Bennett JA, Winters-Stone K, Nail LM, Scherer J. Definitions of sedentary in physical-activity-intervention trials: a summary of the literature. J Aging Phys Act. 2006;14(4):456–477.
    1. Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, Zimmet PZ, Owen N. Breaks in sedentary time: beneficial associations with metabolic risk. Diabetes Care. 2008;31(4):661–666. doi: 10.2337/dc07-2046.
    1. Healy GN, Wijndaele K, Dunstan DW, Shaw JE, Salmon J, Zimmet PZ, Owen N. Objectively measured sedentary time, physical activity, and metabolic risk: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab) Diabetes Care. 2008;31(2):369–371.
    1. Pate RR, O'Neill JR, Lobelo F. The evolving definition of "sedentary". Exerc Sport Sci Rev. 2008;36(4):173–178. doi: 10.1097/JES.0b013e3181877d1a.
    1. Sedentary Behaviour Research Network. Letter to the editor: standardized use of the terms "sedentary" and "sedentary behaviours". Appl Physiol Nutr Metab. 2012;37(3):540–545. doi: 10.1139/h2012-024.
    1. Katzmarzyk PT, Church TS, Craig CL, Bouchard C. Sitting time and mortality from all causes, cardiovascular disease, and cancer. Med Sci Sports Exerc. 2009;41(5):998–1005. doi: 10.1249/MSS.0b013e3181930355.
    1. Warren TY, Barry V, Hooker SP, Sui X, Church TS, Blair SN. Sedentary behaviors increase risk of cardiovascular disease mortality in men. Med Sci Sports Exerc. 2009;42(5):879–885.
    1. Church TS, Earnest CP, Skinner JS, Blair SN. Effects of different doses of physical activity on cardiorespiratory fitness among sedentary, overweight or obese postmenopausal women with elevated blood pressure: a randomized controlled trial. JAMA. 2007;297(19):2081–2091. doi: 10.1001/jama.297.19.2081.
    1. Conroy RM, Pyorala K, Fitzgerald AP, Sans S, Menotti A, De Backer G, De Bacquer D, Ducimetiere P, Jousilahti P, Keil U, Njolstad I, Oganov RG, Thomsen T, Tunstall-Pedoe H, Tverdal A, Wedel H, Whincup P, Wilhelmsen L, Graham IM. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J. 2003;24(11):987–1003. doi: 10.1016/S0195-668X(03)00114-3.
    1. Balady GJ, Larson MG, Vasan RS, Leip EP, O'Donnell CJ, Levy D. Usefulness of exercise testing in the prediction of coronary disease risk among asymptomatic persons as a function of the Framingham risk score. Circulation. 2004;110(14):1920–1925. doi: 10.1161/01.CIR.0000143226.40607.71.
    1. Myers J, Kaykha A, George S, Abella J, Zaheer N, Lear S, Yamazaki T, Froelicher V. Fitness versus physical activity patterns in predicting mortality in men. Am J Med. 2004;117(12):912–918. doi: 10.1016/j.amjmed.2004.06.047.
    1. Saltin B, Grimby G. Physiological analysis of middle-aged and old former athletes Comparison with still active athletes of the same ages. Circulation. 1968;38(6):1104–1115. doi: 10.1161/01.CIR.38.6.1104.
    1. Berg C, Rosengren A, Aires N, Lappas G, Toren K, Thelle D, Lissner L. Trends in overweight and obesity from 1985 to 2002 in Goteborg, West Sweden. Int J Obes (Lond) 2005;29(8):916–924. doi: 10.1038/sj.ijo.0802964.
    1. Thune I, Njolstad I, Lochen ML, Forde OH. Physical activity improves the metabolic risk profiles in men and women: the Tromso Study. Arch Intern Med. 1998;158(15):1633–1640. doi: 10.1001/archinte.158.15.1633.
    1. Saltin B. In: Ischemic Heart Disease: the Strategy of Postponement. Hansen AT, Schnohr P, Rose G, editor. Chicago: Year Book Medical Publishers; 1977. Physiological effects of physical conditioning; pp. 104–115.
    1. Wilhelmsen L, Tibblin G, Aurell M, Bjure J, Ekstrom-Jodal B, Grimby G. Physical activity, physical fitness and risk of myocardial infarction. Adv Cardiol. 1976;18:217–230.
    1. Apullan FJ, Bourassa MG, Tardif JC, Fortier A, Gayda M, Nigam A. Usefulness of self-reported leisure-time physical activity to predict long-term survival in patients with coronary heart disease. Am J Cardiol. 2008;102(4):375–379. doi: 10.1016/j.amjcard.2008.03.072.
    1. Rosengren A, Wilhelmsen L. Physical activity protects against coronary death and deaths from all causes in middle-aged men. Evidence from a 20-year follow-up of the primary prevention study in Goteborg. Ann Epidemiol. 1997;7(1):69–75. doi: 10.1016/S1047-2797(96)00106-8.
    1. Rosengren A, Tibblin G, Wilhelmsen L. Self-perceived psychological stress and incidence of coronary artery disease in middle-aged men. Am J Cardiol. 1991;68(11):1171–1175. doi: 10.1016/0002-9149(91)90189-R.
    1. Carr DB, Utzschneider KM, Hull RL, Kodama K, Retzlaff BM, Brunzell JD, Shofer JB, Fish BE, Knopp RH, Kahn SE. Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome. Diabetes. 2004;53(8):2087–2094. doi: 10.2337/diabetes.53.8.2087.
    1. Verrier RL, Tan A. Heart rate, autonomic markers, and cardiac mortality. Hear Rhythm. 2009;6(11 Suppl):S68–S75.
    1. Graham I, Atar D, Borch-Johnsen K, Boysen G, Burell G, Cifkova R, Dallongeville J, De Backer G, Ebrahim S, Gjelsvik B, Herrmann-Lingen C, Hoes A, Humphries S, Knapton M, Perk J, Priori SG, Pyorala K, Reiner Z, Ruilope L, Sans-Menendez S, Op Reimer WS, Weissberg P, Wood D, Yarnell J, Zamorano JL, Walma E, Fitzgerald T, Cooney MT, Dudina A, Vahanian A. et al.European guidelines on cardiovascular disease prevention in clinical practice: full text. Fourth Joint Task Force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts) Eur J Cardiovasc Prev Rehabil. 2007;14(Suppl 2):S1–S113.
    1. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III) JAMA. 2001;285((19):2486–2497.
    1. Laukkanen JA, Rauramaa R, Salonen JT, Kurl S. The predictive value of cardiorespiratory fitness combined with coronary risk evaluation and the risk of cardiovascular and all-cause death. J Intern Med. 2007;262(2):263–272. doi: 10.1111/j.1365-2796.2007.01807.x.
    1. Wing RR, Jakicic J, Neiberg R, Lang W, Blair SN, Cooper L, Hill JO, Johnson KC, Lewis CE. Fitness, fatness, and cardiovascular risk factors in type 2 diabetes: look ahead study. Med Sci Sports Exerc. 2007;39(12):2107–2116. doi: 10.1249/mss.0b013e31815614cb.
    1. Wannamethee SG, Shaper AG. Physical activity and cardiovascular disease. Semin Vasc Med. 2002;2(3):257–266. doi: 10.1055/s-2002-35400.
    1. Dunstan DW, Thorp AA, Healy GN. Prolonged sitting: is it a distinct coronary heart disease risk factor? Curr Opin Cardiol. pp. 412–419.
    1. Rosengren A, Hawken S, Ounpuu S, Sliwa K, Zubaid M, Almahmeed WA, Blackett KN, Sitthi-amorn C, Sato H, Yusuf S. Association of psychosocial risk factors with risk of acute myocardial infarction in 11119 cases and 13648 controls from 52 countries (the INTERHEART study): case–control study. Lancet. 2004;364(9438):953–962. doi: 10.1016/S0140-6736(04)17019-0.
    1. Beswick A, Brindle P. Risk scoring in the assessment of cardiovascular risk. Curr Opin Lipidol. 2006;17(4):375–386. doi: 10.1097/01.mol.0000236362.56216.44.
    1. Cooper A, Nherera L, Calvert N, O’Flynn N, Turnbull N, Robson J, Camosso-Stefinovic J, Rule C, Browne N, Ritchie G, Stokes T, Mannan R, Brindle P, Gill P, Gujral R, Hogg M, Marshall T, Minhas R, Pavitt L, Reckless J, Rutherford A, Thorogood M, Wood D. Volume Appendix K - A systematic review of risk scoring methods and clinical decision aids used in the primary prevention of coronary heart disease. London: National Collaborating Centre for Primary Care and Royal College of General Practitioners; 2008. Clinical Guidelines and Evidence Review for Lipid Modification: cardiovascular risk assessment and the primary and secondary prevention of cardiovascular disease.
    1. Bjorck L, Rosengren A, Bennett K, Lappas G, Capewell S. Modelling the decreasing coronary heart disease mortality in Sweden between 1986 and 2002. Eur Heart J. 2009;30(9):1046–1056. doi: 10.1093/eurheartj/ehn554.
    1. Strandhagen E, Berg C, Lissner L, Nunez L, Rosengren A, Toren K, Thelle DS. Selection bias in a population survey with registry linkage: potential effect on socioeconomic gradient in cardiovascular risk. Eur J Epidemiol. 2010;25(3):163–172. doi: 10.1007/s10654-010-9427-7.
    1. Swedish Professional Associations for Physical Activity. Physical Activity in the Prevention and Treatment of Disease. Swedish: National Institute of Public Health; 2010.

Source: PubMed

3
구독하다