Oral melatonin as a new tool for neuroprotection in preterm newborns: study protocol for a randomized controlled trial

Francesca Garofoli, Stefania Longo, Camilla Pisoni, Patrizia Accorsi, Micol Angelini, Salvatore Aversa, Camilla Caporali, Sara Cociglio, Annalisa De Silvestri, Elisa Fazzi, Vittoria Rizzo, Chryssoula Tzialla, Marco Zecca, Simona Orcesi, Francesca Garofoli, Stefania Longo, Camilla Pisoni, Patrizia Accorsi, Micol Angelini, Salvatore Aversa, Camilla Caporali, Sara Cociglio, Annalisa De Silvestri, Elisa Fazzi, Vittoria Rizzo, Chryssoula Tzialla, Marco Zecca, Simona Orcesi

Abstract

Background: Prevention of neurodevelopmental impairment due to preterm birth is a major health challenge. Despite advanced obstetric and neonatal care, to date there are few neuroprotective molecules available. Melatonin has been shown to have anti-oxidant/anti-inflammatory effects and to reduce brain damage, mainly after hypoxic ischemic encephalopathy. The planned study will be the first aiming to evaluate the capacity of melatonin to mitigate brain impairment due to premature birth.

Method: In our planned prospective, multicenter, double-blind, randomized vs placebo study, we will recruit, within 96 h of birth, 60 preterm newborns with a gestational age ≤ 29 weeks + 6 days; these infants will be randomly allocated to oral melatonin, 3 mg/kg/day, or placebo for 15 days. After the administration period, we will measure plasma levels of malondialdehyde, a lipid peroxidation product considered an early biological marker of melatonin treatment efficacy (primary outcome). At term-equivalent age, we will evaluate neurological status (through cerebral ultrasound, cerebral magnetic resonance imaging, vision and hearing evaluations, clinical neurological assessment, and screening for retinopathy of prematurity) as well as the incidence of bronchodysplasia and sepsis. We will also monitor neurodevelopmental outcome during the first 24 months of corrected age (using the modified Fagan Test of Infant Intelligence at 4-6 months and standardized neurological and developmental assessments at 24 months).

Discussion: Preterm birth survivors often present long-term neurodevelopmental sequelae, such as motor, learning, social-behavioral, and communication problems. We aim to assess the role of melatonin as a neuroprotectant during the first weeks of extrauterine life, when preterm infants are unable to produce it spontaneously. This approach is based on the supposition that its anti-oxidant mechanism could be useful in preventing neurodevelopmental impairment. Considering the short- and long-term morbidities related to preterm birth, and the financial and social costs of the care of preterm infants, both at birth and over time, we suggest that melatonin administration could lead to considerable saving of resources. This would be the first study addressing the role of melatonin in very low birth weight preterm newborns, and it could provide a basis for further studies on melatonin as a neuroprotection strategy in this vulnerable population.

Trial registration: ClinicalTrials.gov NCT04235673 . Prospectively registered on 22 January 2020.

Keywords: Anti-oxidant; Infants; Malondialdehyde; Melatonin; Neuro-cognitive development; Neuroprotection; Preterm newborn.

References

    1. Cavallo MC, Gugiatti A, Fattore G, Gerzeli S, Barbieri D, Zanini R. Cost of care and social consequences of very low birth weight infants without premature- related morbidities in Italy. Ital J Pediatr. 2015;41:59. doi: 10.1186/s13052-015-0165-z.
    1. Lui K, Lee SK, Kusuda S, Adams M, Vento M, Reichman B, et al. Trends in outcomes for neonates born very preterm and very low birth weight in 11 high-income countries. J Pediatr. 2019;215:32–40.e14. doi: 10.1016/j.jpeds.2019.08.020.
    1. Pascal A, Govaert P, Oostra A, Naulaers G, Ortibus E, Van den Broeck C. Neurodevelopmental outcome in very preterm and very-low-birthweight infants born over the past decade: a meta-analytic review. Dev Med Child Neurol. 2018;60(4):342–355. doi: 10.1111/dmcn.13675.
    1. Pierrat V, Marchand-Martin L, Arnaud C, Kaminski M, Resche-Rigon M, Lebeaux C, et al. Neurodevelopmental outcome at 2 years for preterm children born at 22 to 34 weeks’ gestation in France in 2011: EPIPAGE-2 cohort study. BMJ. 2017;358:j3448. doi: 10.1136/bmj.j3448.
    1. Volpe JJ. Dysmaturation of premature brain: importance, cellular mechanisms, and potential interventions. Pediatr Neurol. 2019;95:42–66. doi: 10.1016/j.pediatrneurol.2019.02.016.
    1. Fleiss B, Gressens P. Neuroprotection of the preterm brain. Handb Clin Neurol. 2019;162:315–328. doi: 10.1016/B978-0-444-64029-1.00015-1.
    1. Reiter RJ, Rosales-Corral S, Tan DX, Jou MJ, Galano A, Xu B. Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell Mol Life Sci. 2017;74(21):3863–3881. doi: 10.1007/s00018-017-2609-7.
    1. Biran V, Phan Duy A, Decobert F, Bednarek N, Alberti C, Baud O. Is melatonin ready to be used in preterm infants as a neuroprotectant? Dev Med Child Neurol. 2014;56(8):717–723. doi: 10.1111/dmcn.12415.
    1. Chen BH, Park JH, Lee YL, Kang IJ, Kim DW, Hwang IK, et al. Melatonin improves vascular cognitive impairment induced by ischemic stroke by remyelination via activation of ERK1/2 signaling and restoration of glutamatergic synapses in the gerbil hippocampus. Biomed Pharmacother. 2018;108:687–697. doi: 10.1016/j.biopha.2018.09.077.
    1. Hu Y, Wang Z, Pan S, Zhang H, Fang M, Jiang H, et al. Melatonin protects against blood-brain barrier damage by inhibiting the TLR4/ NF-κB signaling pathway after LPS treatment in neonatal rats. Oncotarget. 2017;8(19):31638–31654. doi: 10.18632/oncotarget.15780.
    1. Moretti R, Zanin A, Pansiot J, Spiri D, Manganozzi L, Kratzer I, et al. Melatonin reduces excitotoxic blood-brain barrier breakdown in neonatal rats. Neuroscience. 2015;311:382–397. doi: 10.1016/j.neuroscience.2015.10.044.
    1. Villapol S, Fau S, Renolleau S, Biran V, Charriaut-Marlangue C, Baud O. Melatonin promotes myelination by decreasing white matter inflammation after neonatal stroke. Pediatr Res. 2011;69(1):51–55. doi: 10.1203/PDR.0b013e3181fcb40b.
    1. Dixon BJ, Reis C, Ho WM, Tang J, Zhang JH. Neuroprotective strategies after neonatal hypoxic ischemic encephalopathy. Int J Mol Sci. 2015;16(9):22368–22401. doi: 10.3390/ijms160922368.
    1. Marseglia L, D’Angelo G, Manti S, Reiter RJ, Gitto E. Potential utility of melatonin in preeclampsia, intrauterine fetal growth retardation, and perinatal asphyxia. Reprod Sci. 2016;23(8):970–977. doi: 10.1177/1933719115612132.
    1. Alonso-Alconada D, Alvarez A, Arteaga O, Martínez-Ibargüen A, Hilario E. Neuroprotective effect of melatonin: a novel therapy against perinatal hypoxia-ischemia. Int J Mol Sci. 2013;14(5):9379–9395. doi: 10.3390/ijms14059379.
    1. Gitto E, Reiter RJ, Sabatino G, Buonocore G, Romeo C, Gitto P, et al. Correlation among cytokines, bronchopulmonary dysplasia and modality of ventilation in preterm newborns: improvement with melatonin treatment. J Pineal Res. 2005;39(3):287–293. doi: 10.1111/j.1600-079X.2005.00251.x.
    1. Aly H, Elmahdy H, El-Dib M, Rowisha M, Awny M, El-Gohary T, et al. Melatonin use for neuroprotection in perinatal asphyxia: a randomized controlled pilot study. J Perinatol. 2015;35(3):186–191. doi: 10.1038/jp.2014.186.
    1. Fulia F, Gitto E, Cuzzocrea S, Reiter RJ, Dugo L, Gitto P, et al. Increased levels of malondialdehyde and nitrite/nitrate in the blood of asphyxiated newborns: reduction by melatonin. J Pineal Res. 2001;31(4):343–349. doi: 10.1034/j.1600-079X.2001.310409.x.
    1. Merchant NM, Azzopardi DV, Hawwa AF, McElnay JC, Middleton B, Arendt J, et al. Pharmacokinetics of melatonin in preterm infants. Br J Clin Pharmacol. 2013;76(5):725–733. doi: 10.1111/bcp.12092.
    1. Sánchez-Hidalgo M, Guerrero JM, Villegas I, Packham G, de la Lastra CA. Melatonin, a natural programmed cell death inducer in cancer. Curr Med Chem. 2012;19(22):3805–3821. doi: 10.2174/092986712801661013.
    1. Carloni S, Proietti F, Rocchi M, Longini M, Marseglia L, D’Angelo G, et al. Melatonin pharmacokinetics following oral administration in preterm neonates. Molecules. 2017;22(12):2115. doi: 10.3390/molecules22122115.
    1. Fagan JF, McGrath SK. Infant recognition memory and later intelligence. Intelligence. 1981;5(2):121–130. doi: 10.1016/0160-2896(81)90002-7.
    1. Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr. 1978;92(4):529–534. doi: 10.1016/S0022-3476(78)80282-0.
    1. de Vries LS, Eken P, Dubowitz LM. The spectrum of leukomalacia using cranial ultrasound. Behav Brain Res. 1992;49(1):1–6. doi: 10.1016/S0166-4328(05)80189-5.
    1. Amiel-Tison C. Update of the Amiel-Tison neurologic assessment for the term neonate or at 40 weeks corrected age. Pediatr Neurol. 2002;27(3):196–212. doi: 10.1016/S0887-8994(02)00436-8.
    1. Hadders-Algra M. General movements: a window for early identification of children at high risk for developmental disorders. J Pediatr. 2004;145(2 Suppl):S12–S18. doi: 10.1016/j.jpeds.2004.05.017.
    1. Rossi A, Gnesi M, Montomoli C, Chirico G, Malerba L, Merabet LB, et al. Neonatal Assessment Visual European Grid (NAVEG): unveiling neurological risk. Infant Behav Dev. 2017;49:21–30. doi: 10.1016/j.infbeh.2017.06.002.
    1. Stroud L, Foxcroft C, Green E, Bloomfield S, Cronje J, Hurter KVD, et al. Griffiths scales of child development. 3. Oxford: Hogrefe; 2016.
    1. Achenbach TM, Rescorla L. Manual for the ASEBA preschool forms & profiles. Burlington: University of Vermont, Research Center for Children, Youth, & Families; 2000.
    1. Gitto E, Karbownik M, Reiter RJ, Tan DX, Cuzzocrea S, Chiurazzi P, et al. Effects of melatonin treatment in septic newborns. Pediatr Res. 2001;50(6):756–760. doi: 10.1203/00006450-200112000-00021.
    1. Rizzo V, Porta C, Moroni M, Scoglio E, Moratti R. Determination of free and total (free plus protein-bound) melatonin in plasma and cerebrospinal fluid by high-performance liquid chromatography with fluorescence detection. J Chromatogr B Anal Technol Biomed Life Sci. 2002;774(1):17–24. doi: 10.1016/S1570-0232(02)00168-X.
    1. Vermont Oxford Network database for very low birth weight [Internet]. Vermont Oxford Network. [cited 2020 Nov 22]. Available from: .
    1. Montirosso R, Provenzi L, Calciolari G, Borgatti R, Group N-AS Measuring maternal stress and perceived support in 25 Italian NICUs. Acta Paediatr. 2012;101(2):136–142. doi: 10.1111/j.1651-2227.2011.02440.x.
    1. Ment LR, Duncan CC, Geehr R. Benign enlargement of the subarachnoid spaces in the infant. J Neurosurg. 1981;54(4):504–508. doi: 10.3171/jns.1981.54.4.0504.
    1. Rademaker KJ, Uiterwaal CSPM, Beek FJA, van Haastert IC, Lieftink AF, Groenendaal F, et al. Neonatal cranial ultrasound versus MRI and neurodevelopmental outcome at school age in children born preterm. Arch Dis Child Fetal Neonatal Ed. 2005;90(6):F489–F493. doi: 10.1136/adc.2005.073908.

Source: PubMed

3
구독하다