Corticopuncture Facilitated Microimplant-Assisted Rapid Palatal Expansion

Selly Sayuri Suzuki, Laila Fernanda Souza Braga, Denise Nami Fujii, Won Moon, Hideo Suzuki, Selly Sayuri Suzuki, Laila Fernanda Souza Braga, Denise Nami Fujii, Won Moon, Hideo Suzuki

Abstract

Introduction: Microimplant-assisted rapid palatal expansion (MARPE) has been considered an alternative to avoid extensive surgical procedures. In order to obtain skeletal results of MARPE, force should be enough to overcome areas of resistance and the first one that is required to be disrupted is the midpalatal suture, which becomes increasingly interdigitated after adolescence.

Objective: The present study aimed at providing a novel approach using a minimally invasive method called corticopuncture (CP) in association with MARPE illustrated by a case report of a 35-year-old Brazilian female Caucasian patient presenting maxillary transverse deficiency.

Method: Treatment plan started with an orthopedic correction of the transverse problem using a MARPE device. After many unsuccessful attempts to activate MARPE, corticopunctures were performed along the midpalatal suture. CP procedure at the midpalatal suture included 8 perforations (2 mm apart), performed after previous predrilling followed by miniscrew insertion (5 mm thread length and 1.8 mm diameter).

Results: After CP and new activation protocol, the opening of the midpalatal suture was observed by CBCT images, showing skeletal results, suture split of 3.14 mm (premolar area) and 2.06 (molar area), an increase of 4.3 mm (premolar) and 3.03 mm (molar) in basal bone width, 4.43 mm (premolar) and 3.1 mm (molar) in cortical bone width, and minimal dental effects (mean of 1.2° of tooth tipping).

Conclusion: The combination of MARPE and corticopuncture method was proved to be a nonsurgical treatment option to correct maxillary transverse deficiency in an adult patient. CP was able to weaken suture interdigitation thus facilitating the split.

Figures

Figure 1
Figure 1
Initial intraoral images: (a) right side, (b) frontal, (c) left side, (d) occlusal view of upper arch, and (e) occlusal view of lower arch.
Figure 2
Figure 2
Lateral X-ray (a). Panoramic X-ray (b).
Figure 3
Figure 3
Ricketts cephalometric and soft and hard tissue integration analyses.
Figure 4
Figure 4
MARPE in place and minimally invasive surgical procedure to reduce suture resistance: (a) day of installation; (b) after corticopuncture procedure (8 perforations); (c) corticopuncture method—first stage: shallow predrilling using lance; and (d) corticopuncture method—second stage: insertion and removal of the miniscrew (4–5 mm depth).
Figure 5
Figure 5
Cone beam CT image of the corticopunctures for an illustration purpose: (a) sagittal view and (b) axial view.
Figure 6
Figure 6
Protocol of the corticopuncture procedure suggested prior MARPE insertion in a second patient: (a) nerve block anesthesia, (b) corticopuncture procedure performed using contra-angle electric screwdriver, (c) maxillary skeletal expander in place and miniscrew insertion, (d) end of procedure, (e) result after expansion, and (f) occlusal X-ray showing midpalatal suture split.
Figure 7
Figure 7
Images of the result after the corticopuncture procedure and second activation protocol: (a) right, (b) frontal, (c) left, (d) upper occlusal view after opening of the medial palatine suture, and (e) upper occlusal X-ray.
Figure 8
Figure 8
CBCT images after MARPE and corticopuncture procedure: (a, b) 3D reconstructed image in frontal view before and after expansion; (c, d) axial section of the maxilla at the level of anterior and posterior nasal spine before and after expansion; (e) coronal section at the level of the upper first molars showing suture split and molar inclination; and (f) sagittal section showing the bicortical anchorage of the miniscrews.
Figure 9
Figure 9
Orthodontic phase of the treatment: (a) frontal, (b) overjet, (c) right, and (d) left.
Figure 10
Figure 10
Final pictures: (a) frontal, (b) overjet, (c) right, (d) left, and (e, f) retention appliance with temporary crowns.
Figure 11
Figure 11
Facial images during smile before, immediately after suture split (presence of the anterior diastema), and after treatment.

References

    1. MacGinnis M., Chu H., Youssef G., Wu K. W., Machado A. W., Moon W. The effects of micro-implant assisted rapid palatal expansion (MARPE) on the nasomaxillary complex—a finite element method (FEM) analysis. Progress in Orthodontics. 2014;15(1):p. 52. doi: 10.1186/s40510-014-0052-y.
    1. Lee K. J., Park Y. C., Park J. Y., Hwang W. S. Miniscrew-assisted nonsurgical palatal expansion before orthognathic surgery for a patient with severe mandibular prognathism. American Journal of Orthodontics and Dentofacial Orthopedics. 2010;137(6):830–839. doi: 10.1016/j.ajodo.2007.10.065.
    1. Persson M., Thilander B. Palatal suture closure in man from 15 to 35 years of age. American Journal of Orthodontics. 1977;72(1):42–52. doi: 10.1016/0002-9416(77)90123-3.
    1. Melsen B., Melsen F. The postnatal development of the palatomaxillary region studied on human autopsy material. American Journal of Orthodontics. 1982;82(4):329–342. doi: 10.1016/0002-9416(82)90467-5.
    1. Carlson C., Sung J., McComb R. W., Machado A. W., Moon W. Microimplant-assisted rapid palatal expansion appliance to orthopedically correct transverse maxillary deficiency in an adult. American Journal of Orthodontics and Dentofacial Orthopedics. 2016;149(5):716–728. doi: 10.1016/j.ajodo.2015.04.043.
    1. Choi S. H., Shi K. K., Cha J. Y., Park Y. C., Lee K. J. Nonsurgical miniscrew-assisted rapid maxillary expansion results in acceptable stability in young adults. The Angle Orthodontist. 2016;86(5):713–720. doi: 10.2319/101415-689.1.
    1. Rossi R. R. P., Araújo M. T., Bolognese A. M. Expansão maxilar em adultos e adolescentes com maturação esquelética avançada. Revista Dental Press de Ortodontia e Ortopedia Facial. 2009;14(5):43–52. doi: 10.1590/S1415-54192009000500008.
    1. Jensen T., Johannesen L. H., Rodrigo-Domingo M. Periodontal changes after surgically assisted rapid maxillary expansion (SARME) Oral and Maxillofacial Surgery. 2015;19(4):381–386. doi: 10.1007/s10006-015-0506-5.
    1. Laudemann K., Petruchin O., Nafzger M., et al. Long-term 3D cast model study: bone-borne vs. tooth-borne surgically assisted rapid maxillary expansion due to secondary variables. Oral and Maxillofacial Surgery. 2010;14(2):105–114. doi: 10.1007/s10006-009-0194-0.
    1. Suzuki H., Moon W., Previdente L. H., Suzuki S. S., Garcez A. S., Consolaro A. Miniscrew-assisted rapid palatal expander (MARPE): the quest for pure orthopedic movement. Dental Press Journal of Orthodontics. 2016;21(4):17–23. doi: 10.1590/2177-6709.21.4.017-023.oin.
    1. Angelieri F., Cevidanes L. H. S., Franchi L., Gonçalves J. R., Benavides E., McNamara J. A., Jr. Midpalatal suture maturation: classification method for individual assessment before rapid maxillary expansion. American Journal of Orthodontics and Dentofacial Orthopedics. 2013;144(5):759–769. doi: 10.1016/j.ajodo.2013.04.022.
    1. de Miranda Ladewig V., Capelozza-Filho L., Almeida-Pedrin R. R., Guedes F. P., de Almeida Cardoso M., de Castro Ferreira Conti A. C. Tomographic evaluation of the maturation stage of the midpalatal suture in postadolescents. American Journal of Orthodontics and Dentofacial Orthopedics. 2018;153(6):818–824. doi: 10.1016/j.ajodo.2017.09.019.
    1. Isfeld D., Lagravere M., Leon-Salazar V., Flores-Mir C. Novel methodologies and technologies to assess mid-palatal suture maturation: a systematic review. Head & Face Medicine. 2017;13(1):p. 13. doi: 10.1186/s13005-017-0144-2.
    1. Grünheid T., Larson C. E., Larson B. E. Midpalatal suture density ratio: a novel predictor of skeletal response to rapid maxillary expansion. American Journal of Orthodontics and Dentofacial Orthopedics. 2017;151(2):267–276. doi: 10.1016/j.ajodo.2016.06.043.
    1. Möhlhenrich S. C., Modabber A., Kniha K., et al. Simulation of three surgical techniques combined with two different bone-borne forces for surgically assisted rapid palatal expansion of the maxillofacial complex: a finite element analysis. International Journal of Oral and Maxillofacial Surgery. 2017;46(10):1306–1314. doi: 10.1016/j.ijom.2017.05.015.
    1. Suri L., Taneja P. Surgically assisted rapid palatal expansion: a literature review. American Journal of Orthodontics and Dentofacial Orthopedics. 2008;133(2):290–302. doi: 10.1016/j.ajodo.2007.01.021.
    1. Murata W., de Oliveira C. B., Suzuki S. S., Suzuki H. Expansão rápida da maxila assistida por mini-implantes ortodônticos. In: Duarte D., Capez M., Feres M., editors. Ortodontia: Estado Atual da Arte, Diagnóstico, Planejamento e Tratamento. Editora Napoleão; 2016. pp. 311–333.
    1. Wilcko W. M., Wilcko T., Bouquot J. E., Ferguson D. J. Rapid orthodontics with alveolar reshaping: two case reports of decrowding. The International Journal of Periodontics & Restorative Dentistry. 2001;21(1):9–19.
    1. Kim S. J., Park Y. G., Kang S. G. Effects of corticision on paradental remodeling in orthodontic tooth movement. The Angle Orthodontist. 2009;79(2):284–291. doi: 10.2319/020308-60.1.
    1. Wilcko M. T., Wilcko W. M., Pulver J. J., Bissada N. F., Bouquot J. E. Accelerated osteogenic orthodontics technique: a 1-stage surgically facilitated rapid orthodontic technique with alveolar augmentation. Journal of Oral and Maxillofacial Surgery. 2009;67(10):2149–2159. doi: 10.1016/j.joms.2009.04.095.
    1. Alikhani M., Raptis M., Zoldan B., et al. Effect of micro-osteoperforations on the rate of tooth movement. American Journal of Orthodontics and Dentofacial Orthopedics. 2013;144(5):639–648. doi: 10.1016/j.ajodo.2013.06.017.
    1. Cheung T., Park J., Lee D., et al. Ability of mini-implant–facilitated micro-osteoperforations to accelerate tooth movement in rats. American Journal of Orthodontics and Dentofacial Orthopedics. 2016;150(6):958–967. doi: 10.1016/j.ajodo.2016.04.030.
    1. Kim Y. S., Kim S. J., Yoon H. J., Lee P. J., Moon W., Park Y. G. Effect of piezopuncture on tooth movement and bone remodeling in dogs. American Journal of Orthodontics and Dentofacial Orthopedics. 2013;144(1):23–31. doi: 10.1016/j.ajodo.2013.01.022.
    1. Suzuki S. S., Garcez A. S., Reese P. O., Suzuki H., Ribeiro M. S., Moon W. Effects of corticopuncture (CP) and low-level laser therapy (LLLT) on the rate of tooth movement and root resorption in rats using micro-CT evaluation. Lasers in Medical Science. 2018;33(4):811–821. doi: 10.1007/s10103-017-2421-5.
    1. Murphy C., Kalajzic Z., Chandhoke T., Utreja A., Nanda R., Uribe F. The effect of corticision on root resorption with heavy and light forces. The Angle Orthodontist. 2016;86(1):17–23. doi: 10.2319/112514-843.1.
    1. Echchadi M. E., Benchikh B., Bellamine M., Kim S.-H. Corticotomy-assisted rapid maxillary expansion: a novel approach with a 3-year follow-up. American Journal of Orthodontics and Dentofacial Orthopedics. 2015;148(1):138–153. doi: 10.1016/j.ajodo.2014.08.023.
    1. Hassan A. H., AlGhamdi A. T., Al-Fraidi A. A., Al-Hubail A., Hajrassy M. K. Unilateral cross bite treated by corticotomy-assisted expansion: two case reports. Head & Face Medicine. 2010;6(1):p. 6. doi: 10.1186/1746-160X-6-6.
    1. Hassan A. H., Al-Fraidi A. A., Al-Saeed S. H. Corticotomy-assisted orthodontic treatment: review. The Open Dentistry Journal. 2010;4(1):159–164. doi: 10.2174/1874210601004010159.
    1. Brunetto D. P., Sant’Anna E. F., Machado A. W., Moon W. Non-surgical treatment of transverse deficiency in adults using microimplant-assisted rapid palatal expansion (MARPE) Dental Press Journal of Orthodontics. 2017;22(1):110–125. doi: 10.1590/2177-6709.22.1.110-125.sar.
    1. Cantarella D., Dominguez-Mompell R., Mallya S. M., et al. Changes in the midpalatal and pterygopalatine sutures induced by micro-implant-supported skeletal expander, analyzed with a novel 3D method based on CBCT imaging. Progress in Orthodontics. 2017;18(1):p. 34. doi: 10.1186/s40510-017-0188-7.
    1. Lee R. J., Moon W., Hong C. Effects of monocortical and bicortical mini-implant anchorage on bone-borne palatal expansion using finite element analysis. American Journal of Orthodontics and Dentofacial Orthopedics. 2017;151(5):887–897. doi: 10.1016/j.ajodo.2016.10.025.
    1. Park J. J., Park Y. C., Lee K. J., Cha J. Y., Tahk J. H., Choi Y. J. Skeletal and dentoalveolar changes after miniscrew-assisted rapid palatal expansion in young adults: a cone-beam computed tomography study. The Korean Journal of Orthodontics. 2017;47(2):77–86. doi: 10.4041/kjod.2017.47.2.77.
    1. Clement E. A., Krishnaswamy N. R. Skeletal and dentoalveolar changes after skeletal anchorage-assisted rapid palatal expansion in young adults: a cone beam computed tomography study. APOS Trends in Orthodontics. 2017;7(3):p. 113. doi: 10.4103/2321-1407.207220.
    1. Khalmuratova R., Jeon S. Y., Kim D. W., et al. Wound healing of nasal mucosa in a rat. American Journal of Rhinology and Allergy. 2009;23(6):33–37. doi: 10.2500/ajra.2009.23.3390.
    1. Cantarella D., Dominguez-Mompell R., Moschik C., et al. Midfacial changes in the coronal plane induced by microimplant-supported skeletal expander, studied with cone-beam computed tomography images. American Journal of Orthodontics and Dentofacial Orthopedics. 2018;154(3):337–345. doi: 10.1016/j.ajodo.2017.11.033.
    1. Celenk-Koca T., Erdinc A. E., Hazar S., Harris L., English J. D., Akyalcin S. Evaluation of miniscrew-supported rapid maxillary expansion in adolescents: a prospective randomized clinical trial. The Angle Orthodontist. 2018;88(6):702–709. doi: 10.2319/011518-42.1.
    1. Garib D. G., de Lima Navarro R., Francischone C. E., Oltramari P. V. P. Expansão rápida da maxila ancorada em implantes: uma nova proposta para expansão ortopédica na dentadura permanente. Revista Dental Press de Ortodontia e Ortopedia Facial. 2007;12(3):75–81. doi: 10.1590/S1415-54192007000300008.
    1. Lee H. K., Bayome M., Ahn C. S., et al. Stress distribution and displacement by different bone-borne palatal expanders with micro-implants: a three-dimensional finite-element analysis. European Journal of Orthodontics. 2014;36(5):531–540. doi: 10.1093/ejo/cjs063.
    1. Wilmes B., Nienkemper M., Drescher D. Application and effectiveness of a mini-implant- and tooth-borne rapid palatal expansion device: the hybrid hyrax. World Journal of Orthodontics. 2010;11(4):323–330.
    1. Ludwig B., Baumgaertel S., Zorkun B., et al. Application of a new viscoelastic finite element method model and analysis of miniscrew-supported hybrid hyrax treatment. American Journal of Orthodontics and Dentofacial Orthopedics. 2013;143(3):426–435. doi: 10.1016/j.ajodo.2012.07.019.
    1. McNamara J. A., Lione R., Franchi L., et al. The role of rapid maxillary expansion in the promotion of oral and general health. Progress in Orthodontics. 2015;16(1):p. 33. doi: 10.1186/s40510-015-0105-x.
    1. Pulver R. J., Campbell P. M., Opperman L. A., Buschang P. H. Miniscrew-assisted slow expansion of mature rabbit sutures. American Journal of Orthodontics and Dentofacial Orthopedics. 2016;150(2):303–312. doi: 10.1016/j.ajodo.2015.12.026.
    1. Dibart S., Surmenian J., Sebaoun J. D., Montesani L. Rapid treatment of class II malocclusion with piezocision: two case reports. The International Journal of Periodontics & Restorative Dentistry. 2010;30(5):487–493.
    1. Murphy K. G., Wilcko M. T., Wilcko W. M., Ferguson D. J. Periodontal accelerated osteogenic orthodontics: a description of the surgical technique. Journal of Oral and Maxillofacial Surgery. 2009;67(10):2160–2166. doi: 10.1016/j.joms.2009.04.124.

Source: PubMed

3
구독하다