Implications and Current Limitations of Oogenesis from Female Germline or Oogonial Stem Cells in Adult Mammalian Ovaries

Jessica J Martin, Dori C Woods, Jonathan L Tilly, Jessica J Martin, Dori C Woods, Jonathan L Tilly

Abstract

A now large body of evidence supports the existence of mitotically active germ cells in postnatal ovaries of diverse mammalian species, including humans. This opens the possibility that adult stem cells naturally committed to a germline fate could be leveraged for the production of female gametes outside of the body. The functional properties of these cells, referred to as female germline or oogonial stem cells (OSCs), in ovaries of women have recently been tested in various ways, including a very recent investigation of the differentiation capacity of human OSCs at a single cell level. The exciting insights gained from these experiments, coupled with other data derived from intraovarian transplantation and genetic tracing analyses in animal models that have established the capacity of OSCs to generate healthy eggs, embryos and offspring, should drive constructive discussions in this relatively new field to further exploring the value of these cells to the study, and potential management, of human female fertility. Here, we provide a brief history of the discovery and characterization of OSCs in mammals, as well as of the in-vivo significance of postnatal oogenesis to adult ovarian function. We then highlight several key observations made recently on the biology of OSCs, and integrate this information into a broader discussion of the potential value and limitations of these adult stem cells to achieving a greater understanding of human female gametogenesis in vivo and in vitro.

Keywords: fertility; germ cell; germline stem cell; meiosis; oocyte; oogenesis; oogonial stem cell; ovary.

Conflict of interest statement

J.J.M. declares no competing interests. D.C.W. declares interest in intellectual property described in U.S. Patent 8,642,329, U.S. Patent 8,647,869 and U.S. Patent 9,150,830. J.L.T. declares interest in intellectual property described in U.S. Patent 7,195,775, U.S. Patent 7,850,984, U.S. Patent 7,955,846, U.S. Patent 8,642,329, U.S. Patent 8,647,869, U.S. Patent 8,652,840, U.S. Patent 9,150,830 and U.S. Patent 9,267,111.

Figures

Figure 1
Figure 1
Oocytes formed during adult life in mice contribute directly to offspring production. Schematic representation of an inducible genetic lineage-tracing model to ‘mark’ new oocytes formed during the doxycycline (dox) induction phase, which specifically activates a triple-transgenic Cre-loxP–based reporter system tied to stimulated by retinoic acid gene 8 (Stra8) expression in pre-meiotic germ cells (viz. OSCs) committing to meiosis followed by de novo oogenesis. Portions of this figure were adapted with permission from Wang et al. [84].
Figure 2
Figure 2
In vitro oogenesis from human OSCs. (A) Time lapse images of human OSCs in culture, with a typical OSC (blue arrow) followed as it undergoes progressive differentiation into an IVD oocyte (oocyte-like cell). (B) Numbers of IVD oocytes formed in human OSC cultures over time post-passage. (C) Expression analysis of germ cell (DDX4) and oocyte (KIT oncogene or KIT; Y-box protein 2 or YBX2, also referred to as MSY2 or CONTRIN; LIM homeobox protein 8 or LHX8) marker genes, as well as of β-actin expression as a loading control, in IVD oocytes collected from human OSC cultures (–RT, PCR analysis performed on the RNA template without reverse transcription, as a control to rule out genomic DNA amplification). (D) Representative images of human IVD oocytes by light microscopy (two left panels; scale bar, 50-µm), and by immunofluorescence microscopy for the presence of DDX4, KIT, YBX2 and LHX8 proteins. Portions of this figure were adapted with permission from White et al. [73].
Figure 3
Figure 3
Mouse VSEL stem cells do not express externalized Ddx4. (A) To identify VSEL stem cells by FACS, size gates were initially set for 2–10 µm using calibrated beads. (B, C) Following dead cell exclusion, bone marrow-derived VSEL stem cells were identified in the 2–10 µm size gate as Lin−/Sca1+/CD45− events, first by gating Lin−/Sca1+ cells followed by exclusion of CD45+ cells from this subpopulation (for additional details, see [129]). (D) Further analysis of the VSEL stem cell population shown in panel C using C-terminal-directed Ddx4 antibodies demonstrates that VSEL stem cells do not express externalized Ddx4 (ecDdx4−). (E) As a positive control for the VSEL stem cell analysis shown in panel D, parallel sorting of dispersed ovaries identifies viable ecDdx4+ cells, which represent OSCs (for additional details, see [68,73,112]). D.C. Woods and J.L. Tilly, unpublished data.

References

    1. Everett N.B. The present status of the germ-cell problem in vertebrates. Biol. Rev. Camb. Philos. Soc. 1945;20:45–55. doi: 10.1111/j.1469-185X.1945.tb00313.x.
    1. Waldeyer-Hartz W. Eierstock und Ei. Engelmann; Leipzig, Germany: 1870.
    1. Morris M.A. Pregnancy following removal of both ovaries and tubes. Boston Med. Surg. J. 1901;144:86–87. doi: 10.1056/NEJM190101241440405.
    1. Arai H. On the postnatal development of the ovary (albino rat), with especial reference to the number of ova. Am. J. Anat. 1920;27:405–462. doi: 10.1002/aja.1000270403.
    1. Allen E. Ovogenesis during sexual maturity. Am. J. Anat. 1923;31:439–482. doi: 10.1002/aja.1000310502.
    1. Davenport C.B. Regeneration of ovaries in mice. J. Exp. Zool. 1925;42:1–12. doi: 10.1002/jez.1400420102.
    1. Butcher E.O. The origin of the definitive ova in the white rat (Mus norvegicus albinus) Anat. Rec. 1927;37:13–29. doi: 10.1002/ar.1090370103.
    1. Parkes A.S., Fielding U., Brambell W.R. Ovarian regeneration in the mouse after complete double ovariectomy. Proc. R. Soc. Lond. Ser. B. 1927;101:328–354. doi: 10.1098/rspb.1927.0019.
    1. Pallot O. Apropos de la régénération ovarienne et des modifications périodiques de l’épithelium vaginal chez le rat blanc. Comp. Rend. Soc. Biol. 1928;99:1333–1334.
    1. Schwarz O.H., Young C.C., Jr., Crouse J.C. Ovogenesis in the adult human ovary. Am. J. Obstet. Gynecol. 1949;58:54–64. doi: 10.1016/0002-9378(49)90006-X.
    1. Zuckerman S. The number of oocytes in the mature ovary. Rec. Prog. Horm. Res. 1951;6:63–108.
    1. Franchi L.L., Mandl A.M., Zuckerman S. The development of the ovary and the process of oogenesis. In: Zuckerman S., editor. The Ovary. Academic Press; New York, NY, USA: 1962. pp. 1–88.
    1. Zuckerman S. Beyond the Ivory Tower. The Frontiers of Public and Private Science. Taplinger; New York, NY, USA: 1971. pp. 22–34.
    1. Pearl R., Schoppe W.F. Studies on the physiology of reproduction in the domestic fowl. J. Exp. Zool. 1921;34:101–118. doi: 10.1002/jez.1400340107.
    1. Pansky B., Mossman H.W. The regenerative capacity of the rabbit ovary. Anat. Rec. 1953;116:19–40. doi: 10.1002/ar.1091160104.
    1. Vermande-Van Eck G.J. Neo-ovogenesis in the adult monkey. Consequences of atresia of ovocytes. Anat. Rec. 1956;125:207–224. doi: 10.1002/ar.1091250205.
    1. Artem’eva N.S. Regenerative capacity of the rat ovary after compensatory hypertrophy. Bull. Exp. Biol. Med. 1961;51:76–81. doi: 10.1007/BF01306883.
    1. King R.C., Rubinson A.C., Smith R.F. Oogenesis in adult Drosophila melanogaster. Growth. 1956;20:121–157.
    1. Lin H., Spradling A.C. Germline stem cell division and egg chamber development in transplanted Drosophila germaria. Dev. Biol. 1993;159:142–152. doi: 10.1006/dbio.1993.1228.
    1. Bhat K.M., Schedl P. Establishment of stem cell identity in the Drosophila germline. Dev. Dyn. 1997;210:371–382. doi: 10.1002/(SICI)1097-0177(199712)210:4<371::AID-AJA2>;2-D.
    1. Deng W., Lin H. Asymmetric germ cell division and oocyte determination during Drosophila oogenesis. Int. Rev. Cytol. 2001;203:93–138.
    1. Schulze C. Morphological characteristics of the spermatogonial stem cells in man. Cell Tissue Res. 1979;198:191–199. doi: 10.1007/BF00232003.
    1. Lin H. The stem-cell niche theory: Lessons from flies. Nat. Genet. 2002;3:931–940. doi: 10.1038/nrg952.
    1. Brinster R.L. Male germline stem cells: From mice to men. Science. 2007;316:404–405. doi: 10.1126/science.1137741.
    1. Matunis E.L., Stine R.R., de Cuevas M. Recent advances in Drosophila male germline stem cell biology. Spermatogenesis. 2012;2:137–144. doi: 10.4161/spmg.21763.
    1. Greenspan L.J., de Cuevas M., Matunis E. Genetics of gonadal stem cell renewal. Annu. Rev. Cell Dev. Biol. 2015;31:291–315. doi: 10.1146/annurev-cellbio-100913-013344.
    1. Kirilly D., Xie T. The Drosophila ovary: An active stem cell community. Cell Res. 2007;17:15–25. doi: 10.1038/sj.cr.7310123.
    1. Zhao R., Xuan Y., Li X., Xi R. Age-related changes of germline stem cell activity, niche signaling activity and egg production in Drosophila. Aging Cell. 2008;7:344–354. doi: 10.1111/j.1474-9726.2008.00379.x.
    1. Tworzydlo W., Kloc M., Bilinski S.M. Female germline stem cell niches of earwigs are structurally simple and different from those of Drosophila melanogaster. J. Morphol. 2010;271:634–640.
    1. Underwood J.L., Hestand R.S., III, Thompson B.Z. Gonad regeneration in grass carp following bilateral gonadectomy. Prog. Fish-Cult. 1986;48:54–56. doi: 10.1577/1548-8640(1986)48<54:GRIGCF>;2.
    1. Kersten C.A., Krisfalusi M., Parsons J.E., Cloud J.G. Gonadal regeneration in masculinized female or steroid-treated rainbow trout (Oncorhynchus mykiss) J. Exp. Zool. 2001;290:396–401. doi: 10.1002/jez.1080.
    1. Draper B.W., McCallum C.M., Moens C.B. nanos1 is required to maintain oocyte production in adult zebrafish. Dev. Biol. 2007;305:589–598. doi: 10.1016/j.ydbio.2007.03.007.
    1. Nakamura S., Kobayashi K., Nishimura T., Higashijima S., Tanaka M. Identification of germline stem cells in the ovary of the teleost medaka. Science. 2010;328:1561–1563. doi: 10.1126/science.1185473.
    1. Nakamura S., Kobayashi K., Nishimura T., Tanaka M. Ovarian germline stem cells in the teleost fish, medaka (Oryzias latipes) Int. J. Biol. Sci. 2011;7:403–409. doi: 10.7150/ijbs.7.403.
    1. White Y.A.R., Woods D.C., Wood A.W. A transgenic zebrafish model of targeted oocyte ablation and de novo oogenesis. Dev. Dyn. 2011;240:1929–1937. doi: 10.1002/dvdy.22695.
    1. Woods D.C., Tilly J.L. An evolutionary perspective on adult female germline stem cell function from flies to humans. Semin. Reprod. Med. 2013;31:24–32.
    1. Johnson J., Canning J., Kaneko T., Pru J.K., Tilly J.L. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature. 2004;428:145–150. doi: 10.1038/nature02316.
    1. Bazer F. Strong science challenges conventional wisdom: New perspectives on ovarian biology. Reprod. Biol. Endocrinol. 2004;2:28. doi: 10.1186/1477-7827-2-28.
    1. Byskov A.G., Faddy M.J., Lemmen J.G., Andersen C.Y. Eggs forever? Differentiation. 2005;73:438–446. doi: 10.1111/j.1432-0436.2005.00045.x.
    1. Skaznik-Wikiel M., Tilly J.C., Lee H.-J., Niikura Y., Kaneko-Tarui T., Johnson J., Tilly J.L. Serious doubts over “Eggs Forever?”. Differentiation. 2007;75:93–99. doi: 10.1111/j.1432-0436.2006.00117.x.
    1. Johnson J., Bagley J., Skaznik-Wikiel M., Lee H.-J., Adams G.B., Niikura Y., Tschudy K.S., Tilly J.C., Cortes M.L., Forkert R., et al. Oocyte generation in adult mammalian ovaries by putative germ cells derived from bone marrow and peripheral blood. Cell. 2005;122:303–315. doi: 10.1016/j.cell.2005.06.031.
    1. Telfer E.E., Gosden R.G., Byskov A.G., Spears N., Albertini D., Andersen C.Y., Anderson R., Braw-Tal R., Clarke H., Gougeon A., et al. On regenerating the ovary and generating controversy. Cell. 2005;122:821–822. doi: 10.1016/j.cell.2005.09.004.
    1. Johnson J., Skaznik-Wikiel M., Lee H.-J., Niikura Y., Tilly J.C., Tilly J.L. Setting the record straight on data supporting postnatal oogenesis in female mammals. Cell Cycle. 2005;4:1471–1477.
    1. Eggan K., Jurga S., Gosden R., Min I.M., Wagers A. Ovulated oocytes in adult mice derive from non-circulating germ cells. Nature. 2006;441:1109–1114. doi: 10.1038/nature04929.
    1. Lee H.-J., Selesniemi K., Niikura Y., Niikura T., Klein R., Dombkowski D.M., Tilly J.L. Bone marrow transplantation generates immature oocytes and rescues long-term fertility in a preclinical mouse model of chemotherapy-induced premature ovarian failure. J. Clin. Oncol. 2007;25:3198–3204. doi: 10.1200/JCO.2006.10.3028.
    1. Selesniemi K., Lee H.-J., Niikura T., Tilly J.L. Young adult donor bone marrow infusions into female mice postpone age-related reproductive failure and improve offspring survival. Aging. 2008;1:49–57. doi: 10.18632/aging.100002.
    1. Niikura Y., Niikura T., Wang N., Satirapod C., Tilly J.L. Systemic signals in aged males exert potent rejuvenating effects on the ovarian follicle reserve in mammalian females. Aging. 2010;2:999–1003. doi: 10.18632/aging.100255.
    1. Kerr J.B., Duckett R., Myers M., Britt K.L., Mladenovska T., Findlay J.K. Quantification of healthy follicles in the neonatal and adult mouse ovary: Evidence for maintenance of primordial follicle supply. Reproduction. 2006;132:95–109. doi: 10.1530/rep.1.01128.
    1. Niikura Y., Niikura T., Tilly J.L. Aged mouse ovaries possess rare premeiotic germ cells that can generate oocytes following transplantation into a young host environment. Aging. 2009;1:971–978. doi: 10.18632/aging.100105.
    1. Liu Y., Wu C., Lyu Q., Yang D., Albertini D.F., Keefe D.L., Liu L. Germline stem cells and neo-oogenesis in the adult human ovary. Dev. Biol. 2007;306:112–120. doi: 10.1016/j.ydbio.2007.03.006.
    1. Tilly J.L., Johnson J. Recent arguments against germ cell renewal in the adult human ovary. Is an absence of marker gene expression really acceptable evidence of an absence of oogenesis? Cell Cycle. 2007;6:879–883. doi: 10.4161/cc.6.8.4185.
    1. Tilly J.L., Niikura Y., Rueda B.R. The current status of evidence for and against postnatal oogenesis in mammals: A case of ovarian optimism versus pessimism? Biol. Reprod. 2009;80:2–12. doi: 10.1095/biolreprod.108.069088.
    1. Zou K., Yuan Z., Yang Z., Luo H., Sun K., Zhou L., Xiang J., Shi L., Yu Q., Zhang Y., et al. Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat. Cell Biol. 2009;11:631–636. doi: 10.1038/ncb1869.
    1. Tilly J.L., Telfer E.E. Purification of germline stem cells from adult mammalian ovaries: A step closer towards control of the female biological clock? Mol. Hum. Reprod. 2009;15:393–398. doi: 10.1093/molehr/gap036.
    1. De Felici M. Germ stem cells in the mammalian adult ovary: Considerations by a fan of primordial germ cells. Mol. Hum. Reprod. 2010;16:632–636. doi: 10.1093/molehr/gaq006.
    1. Woods D.C., Telfer E.E., Tilly J.L. Oocyte family trees: Old branches or new stems? PLoS Genet. 2012;8:e1002848. doi: 10.1371/journal.pgen.1002848.
    1. Gougeon A., Notarianni E. There is no neo-oogenesis in the adult mammalian ovary. J. Turk. Ger. Gynecol. Assoc. 2011;12:270–273. doi: 10.5152/jtgga.2011.63.
    1. Notarianni E. Reinterpretation of evidence advanced for neo-oogenesis in mammals, in terms of a finite oocyte reserve. J. Ovarian Res. 2011;4:1. doi: 10.1186/1757-2215-4-1.
    1. Oatley J.M., Hunt P.A. Of mice and (wo)men: Purified oogonial stem cells from mouse and human ovaries. Biol. Reprod. 2012;86:196. doi: 10.1095/biolreprod.112.100297.
    1. Woods D.C., White Y.A.R., Tilly J.L. Purification of oogonial stem cells from adult mouse and human ovaries: An assessment of the literature and a view towards the future. Reprod. Sci. 2013;20:7–15. doi: 10.1177/1933719112462632.
    1. Zhang H., Zheng W., Shen Y., Adhikari D., Ueno H., Liu K. Experimental evidence showing that no mitotically active female germline progenitors exist in postnatal mouse ovaries. Proc. Natl. Acad. Sci. USA. 2012;109:12580–12585. doi: 10.1073/pnas.1206600109.
    1. Yuan J., Zhang D., Wang L., Liu M., Mao J., Yin Y., Ye X., Liu N., Han J., Gao Y., et al. No evidence for neo-oogenesis may link to ovarian senescence in adult monkey. Stem Cells. 2013;31:2536–2550. doi: 10.1002/stem.1480.
    1. Lei L., Spradling A.C. Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles. Proc. Natl. Acad. Sci. USA. 2013;110:8585–8590. doi: 10.1073/pnas.1306189110.
    1. Hernandez S.F., Vahidi N.A., Park S., Weitzel R.P., Tisdale J., Rueda B.R., Wolff E.F. Characterization of extracellular DDX4- or Ddx4-positive ovarian cells. Nat. Med. 2015;21:1114–1116. doi: 10.1038/nm.3966.
    1. Zhang H., Panula S., Petropoulos S., Edsgärd D., Busayavalasa K., Liu L., Li X., Risal S., Shen Y., Shao J., et al. Adult human and mouse ovaries lack DDX4-expressing functional oogonial stem cells. Nat. Med. 2015;21:1116–1118. doi: 10.1038/nm.3775.
    1. Park E.S., Tilly J.L. Use of DEAD-box polypeptide 4 (Ddx4) gene promoter-driven fluorescent reporter mice to identify mitotically active germ cells in postnatal mouse ovaries. Mol. Hum. Reprod. 2015;21:58–65. doi: 10.1093/molehr/gau071.
    1. Zhang C., Wu J. Production of offspring from a germline stem cell line derived from prepubertal ovaries of germline reporter mice. Mol. Hum. Reprod. 2016;22:457–464. doi: 10.1093/molehr/gaw030.
    1. Woods D.C., Tilly J.L. Isolation, characterization and propagation of mitotically active germ cells from adult mouse and human ovaries. Nat. Protoc. 2013;8:966–988. doi: 10.1038/nprot.2013.047.
    1. Woods D.C., Tilly J.L. Reply to adult human and mouse ovaries lack DDX4-expressing functional oogonial stem cells. Nat. Med. 2015;21:1118–1121. doi: 10.1038/nm.3964.
    1. Pacchiarotti J., Maki C., Ramos T., Marh J., Howerton K., Wong J., Pham J., Anorve S., Chow Y.C., Izadyar F. Differentiation potential of germ line stem cells derived from the postnatal mouse ovary. Differentiation. 2010;79:159–170. doi: 10.1016/j.diff.2010.01.001.
    1. Wang N., Tilly J.L. Epigenetic status determines germ cell meiotic commitment in embryonic and postnatal mammalian gonads. Cell Cycle. 2010;9:339–349. doi: 10.4161/cc.9.2.10447.
    1. Zhang Y., Yang Z., Yang Y., Wang S., Shi L., Xie W., Sun K., Zou K., Wang L., Xiong J., et al. Production of transgenic mice by random recombination of targeted genes in female germline stem cells. J. Mol. Cell Biol. 2011;3:132–141. doi: 10.1093/jmcb/mjq043.
    1. White Y.A.R., Woods D.C., Takai Y., Ishihara O., Seki H., Tilly J.L. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat. Med. 2012;18:413–421. doi: 10.1038/nm.2669.
    1. Imudia A.N., Wang N., Tanaka Y., White Y.A., Woods D.C., Tilly J.L. Comparative gene expression profiling of adult mouse ovary-derived oogonial stem cells supports a distinct cellular identity. Fertil. Steril. 2013;100:1451–1458. doi: 10.1016/j.fertnstert.2013.06.036.
    1. Park E.S., Woods D.C., Tilly J.L. Bone morphogenetic protein 4 (BMP4) promotes mammalian oogonial stem cell differentiation via SMAD1/5/8 signaling. Fertil. Steril. 2013;100:1468–1475. doi: 10.1016/j.fertnstert.2013.07.1978.
    1. Wang H., Jiang M., Bi H., Chen X., He L., Li X., Wu J. Conversion of female germline stem cells from neonatal and prepubertal mice into pluripotent stem cells. J. Mol. Cell Biol. 2014;6:166–171. doi: 10.1093/jmcb/mju004.
    1. Xie W., Wang H., Wu J. Similar morphological and molecular signatures shared by female and male germline stem cells. Sci. Rep. 2014;4:5580. doi: 10.1038/srep05580.
    1. Zhou L., Wang L., Kang J.X., Xie W., Li X., Wu C., Xu B., Wu J. Production of fat-1 transgenic rats using a post-natal female germline stem cell line. Mol. Hum. Reprod. 2014;20:271–281. doi: 10.1093/molehr/gat081.
    1. Khosravi-Farsani S., Amidi F., Roudkenar M.H., Sobhani A. Isolation and enrichment of mouse female germ line stem cells. Cell J. 2015;16:406–415.
    1. Xiong J., Lu Z., Wu M., Zhang J., Cheng J., Luo A., Shen W., Fang L., Zhou S., Wang S. Intraovarian transplantation of female germline stem cells rescues ovarian function in chemotherapy injured ovaries. PLoS ONE. 2015;10:e0139824. doi: 10.1371/journal.pone.0139824.
    1. Guo K., Li C.-H., Wang X.-Y., He D.-J., Zheng P. Germ stem cells are active in postnatal mouse ovary under physiological conditions. Mol. Hum. Reprod. 2016;22:316–328. doi: 10.1093/molehr/gaw015.
    1. Lu Z., Wu M., Zhang J., Xiong J., Cheng J., Shen W., Luo A., Fang L., Wang S. Improvement in isolation and identification of mouse oogonial stem cells. Stem Cells Int. 2016;2016:2749461. doi: 10.1155/2016/2749461.
    1. Zhang X.L., Wu J., Wang J., Shen T., Li H., Lu J., Gu Y., Kang Y., Wong C.H., Ngan C.Y., et al. Integrative epigenomic analysis reveals unique epigenetic signatures involved in unipotency of mouse female germline stem cells. Genome Biol. 2016;17:162. doi: 10.1186/s13059-016-1023-z.
    1. Wang N., Satirapod C., Ohguchi Y., Park E.-S., Woods D.C., Tilly J.L. Genetic studies in mice directly link oocytes produced during adulthood to ovarian function and natural fertility. Sci. Rep. 2017;7:10011. doi: 10.1038/s41598-017-10033-6.
    1. Wu C., Xu B., Li X., Ma W., Zhang P., Wu J. Tracing and characterizing the development of transplanted female germline stem cells in vivo. Mol. Ther. 2017;25:1408–1419. doi: 10.1016/j.ymthe.2017.04.019.
    1. Ye H., Zheng T., Hu C., Pan Z., Huang J., Li J., Li W., Zheng Y. The Hippo signaling pathway regulates ovarian function via the proliferation of ovarian germline stem cells. Cell. Physiol. Biochem. 2017;41:1051–1062. doi: 10.1159/000464113.
    1. Gu Y., Wu J., Yang W., Xia C., Shi X., Li H., Sun J., Shao Z., Wu J., Zhao X. STAT3 is required for proliferation and exerts a cell type-specific binding preference in mouse female germline stem cells. Mol. Omics. 2018;14:95–102. doi: 10.1039/C7MO00084G.
    1. Wang J., Gong X., Tian G.G., Hou C., Zhu X., Pei X., Wang Y., Wu J. Long noncoding RNA growth arrest-specific 5 promotes proliferation and survival of female germline stem cells in vitro. Gene. 2018;653:14–21. doi: 10.1016/j.gene.2018.02.021.
    1. Wu M., Xiong J., Ma L., Lu Z., Qin X., Luo A., Zhang J., Xie H., Shen W., Wang S. Enrichment of female germline stem cells from mouse ovaries using the differential adhesion method. Cell. Physiol. Biochem. 2018;46:2114–2126. doi: 10.1159/000489452.
    1. Yang H., Yao X., Tang F., Wei Y., Hua J., Peng S. Characterization of female germline stem cells from adult mouse ovaries and the role of rapamycin on them. Cytotechnol. 2018;70:843–854. doi: 10.1007/s10616-018-0196-6.
    1. Zhang H.Y., Yang Y., Xia Q., Song H.F., Wei R., Wang J.J., Zou K. Cadherin 22 participates in the self-renewal of mouse female germline stem cells via interaction with JAK2 and ß-catenin. Cell. Mol. Life Sci. 2018;75:1241–1253. doi: 10.1007/s00018-017-2689-4.
    1. Zhu X., Tian G.G., Yu B., Yang Y., Wu J. Effects of bisphenol A on ovarian follicular development and female germline stem cells. Arch. Toxicol. 2018;92:1581–1591. doi: 10.1007/s00204-018-2167-2.
    1. Dunlop C.E., Bayne R.A., McLaughlin M., Telfer E.E., Anderson R.A. Isolation, purification, and culture of oogonial stem cells from adult human and bovine ovarian cortex. Lancet. 2014;383:S45. doi: 10.1016/S0140-6736(14)60308-1.
    1. de Souza G.B., Costa J., da Cunha E.V., Passos J., Ribeiro R.P., Saraiva M., van den Hurk R., Silva J. Bovine ovarian stem cells differentiate into germ cells and oocyte-like structures after culture in vitro. Reprod. Domest. Anim. 2017;52:243–250. doi: 10.1111/rda.12886.
    1. Tsai T.-S., Johnson J., White Y., St. John J.C. The molecular characterization of porcine egg precursor cells. Oncotarget. 2017;8:63484–63505. doi: 10.18632/oncotarget.18833.
    1. Hou L., Wang J., Li X., Wang H., Liu G., Xu B., Mei X., Hua X., Wu J. Characteristics of female germline stem cells from porcine ovaries at sexual maturity. Cell Transplant. 2018;27:1195–1202. doi: 10.1177/0963689718784878.
    1. Ding X., Liu G., Xu B., Wu C., Hui N., Ni X., Wang J., Du M., Teng X., Wu J. Human GV oocytes generated by mitotically active germ cells obtained from follicular aspirates. Sci. Rep. 2016;6:28218. doi: 10.1038/srep28218.
    1. Clarkson Y.L., McLaughlin M., Waterfall M., Dunlop C.E., Skehel P.A., Anderson R.A., Telfer E.E. Initial characterisation of adult human ovarian cell populations isolated by DDX4 expression and aldehyde dehydrogenase activity. Sci. Rep. 2018;8:6953. doi: 10.1038/s41598-018-25116-1.
    1. Silvestris E., Cafforio P., D’Oronzo S., Felici C., Silvestris F., Loverro G. In vitro differentiation of human oocyte-like cells from oogonial stem cells: Single-cell isolation and molecular characterization. Hum. Reprod. 2018;33:464–473. doi: 10.1093/humrep/dex377.
    1. Silvestris E., D’Oronzo S., Cafforio P., D’Amato G., Loverno G. Perspective in infertility: The ovarian stem cells. J. Ovarian Res. 2015;8:55. doi: 10.1186/s13048-015-0184-9.
    1. Bothun A., Gao Y., Takai Y., Ishihara O., Seki H., Karger B., Tilly J.L., Woods D.C. Quantitative proteomic profiling of the human ovary from early to mid-gestation reveals protein expression dynamics of oogenesis and folliculogenesis. Stem Cells Dev. 2018;27:723–735. doi: 10.1089/scd.2018.0002.
    1. Fakih M.H., El Shmoury M., Szeptycki J., dela Cruz D.B., Lux C., Verjee S., Burgess C.M., Cohn G.M., Casper R.F. The AUGMENTSM treatment: Physician reported outcomes of the initial global patient experience. JFIV Reprod. Med. Genet. 2015;3:154. doi: 10.4172/2375-4508.1000154.
    1. Oktay K., Baltaci V., Sonmezer M., Turan V., Unsal E., Baltaci A., Aktuna S., Moy F. Oogonial precursor cell derived autologous mitochondria injection (AMI) to improve outcomes in women with multiple IVF failures due to low oocyte quality: A clinical translation. Reprod. Sci. 2015;22:1612–1617. doi: 10.1177/1933719115612137.
    1. Woods D.C., Tilly J.L. Autologous germline mitochondrial energy transfer (AUGMENT) in human assisted reproduction. Semin. Reprod. Med. 2015;33:410–421. doi: 10.1055/s-0035-1567826.
    1. Grieve K.M., McLaughlin M., Dunlop C.E., Telfer E.E., Anderson R.A. The controversial existence and functional potential of oogonial stem cells. Maturitas. 2015;83:278–281. doi: 10.1016/j.maturitas.2015.07.017.
    1. Woods D.C., Tilly J.L. The next (re)generation of human ovarian biology and female fertility: Is current science tomorrows practice? Fertil. Steril. 2012;98:3–10. doi: 10.1016/j.fertnstert.2012.05.005.
    1. Woods D.C., Tilly J.L. Germline stem cells in adult mammalian ovaries. In: Sanders S., editor. Ten Critical Topics in Reproductive Medicine. Science/AAAS; Washington, DC, USA: 2013. pp. 10–12.
    1. Truman A.M., Tilly J.L., Woods D.C. Ovarian regeneration: The potential for stem cell contribution in the postnatal ovary to sustained endocrine function. Mol. Cell. Endocrinol. 2017;445:74–84. doi: 10.1016/j.mce.2016.10.012.
    1. Fujiwara Y., Komiya T., Kawabata H., Sato M., Fujimoto H., Furusawa M., Noce T. Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage. Proc. Natl. Acad. Sci. USA. 1994;91:12258–12262. doi: 10.1073/pnas.91.25.12258.
    1. Toyooka Y., Tsunekawa N., Takahashi Y., Matsui Y., Satoh M., Noce T. Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development. Mech. Dev. 2000;93:139–149. doi: 10.1016/S0925-4773(00)00283-5.
    1. Castrillon D.H., Quade B.J., Wang T.Y., Quigley C., Crum C.P. The human VASA gene is specifically expressed in the germ lineage. Proc. Natl. Acad. Sci. USA. 2000;97:9585–9590. doi: 10.1073/pnas.160274797.
    1. Navaroli D.M., Tilly J.L., Woods D.C. Isolation of mammalian oogonial stem cells by antibody-based fluorescence-activated cell sorting. Meth. Mol. Biol. 2016;1457:253–268.
    1. Crisan M., Dzierak E. The many faces of hematopoietic stem cell heterogeneity. Development. 2016;143:4571–4581. doi: 10.1242/dev.114231.
    1. MacDonald J.A., Takai Y., Ishihara O., Seki H., Woods D.C., Tilly J.L. Extracellular matrix signaling activates differentiation of adult ovary-derived oogonial stem cells in a species-specific manner. Fertil. Steril. 2019 doi: 10.1016/jfertnstert.2018.12.015. in press.
    1. Gosden R.G., Clarke H., Miller D. Female gametogenesis. In: Fauser B.C.J.M., editor. Reproductive Medicine. Molecular, Cellular and Genetic Fundamentals. Parthenon Publishing; New York, NY, USA: 2003. pp. 365–380.
    1. West F.D., Mumaw J.L., Gallegos-Cardenas A., Young A., Stice S.L. Human haploid cells differentiated from meiotic competent clonal germ cell lines that originated from embryonic stem cells. Stem Cells Dev. 2011;20:1079–1088. doi: 10.1089/scd.2010.0255.
    1. Hayashi K., Ogushi S., Kurimoto K., Shimamoto S., Ohta H., Saitou M. Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science. 2012;338:971–975. doi: 10.1126/science.1226889.
    1. Hikabe O., Hamazaki N., Nagamatsu G., Obata Y., Hirao Y., Hamada N., Shimamoto S., Imamura T., Nakashima K., Saitou M., et al. Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature. 2016;539:299–303. doi: 10.1038/nature20104.
    1. Panula S., Medrano J.V., Kee K., Bergström R., Nguyen H.N., Byers B., Wilson K.D., Wu J.C., Simon C., Hovatta O., et al. Human germ cell differentiation from fetal- and adult-derived induced pluripotent stem cells. Hum. Mol. Genet. 2011;20:752–762.
    1. Yamashiro C., Sasaki K., Yabuta Y., Kojima Y., Nakamura T., Okamoto I., Yokobayashi S., Murase Y., Ishikura Y., Shirane K., et al. Generation of human oogonia from induced pluripotent stem cells. Science. 2018;362:356–360. doi: 10.1126/science.aat1674.
    1. Jung D., Xiong J., Ye M., Qin X., Li L., Cheng S., Luo M., Peng J., Dong J., Tang F., et al. In vitro differentiation of human embryonic stem cells into ovarian follicle-like cells. Nat. Commun. 2017;8:15680. doi: 10.1038/ncomms15680.
    1. McLaughlin M., Albertini D.F., Wallace W.H.B., Anderson R.A., Telfer E.E. Metaphase II oocytes from human unilaminar follicles grown in a multi-step culture system. Mol. Hum. Reprod. 2018;24:135–142. doi: 10.1093/molehr/gay002.
    1. Smitz J.E., Gilchrist R.B. Are human oocytes from stem cells next? Nat. Biotechnol. 2016;34:1247–1248. doi: 10.1038/nbt.3742.
    1. Cohen I.G., Daley G.Q., Adashi E.Y. Disruptive reproductive technologies. Sci. Transl. Med. 2017;9:eaag2959. doi: 10.1126/scitranslmed.aag2959.
    1. Stewart J.B., Larsson N.-G. Keeping mtDNA in shape between generations. PLoS Genet. 2014;10:e1004670. doi: 10.1371/journal.pgen.1004670.
    1. Stewart J.B., Chinnery P.F. The dynamics of mitochondrial DNA heteroplasmy: Implications for human health and disease. Nat. Rev. Genet. 2015;16:530–542. doi: 10.1038/nrg3966.
    1. Woods D.C., Khrapko K., Tilly J.L. Influence of maternal aging on mitochondrial heterogeneity, inheritance, and function in oocytes and preimplantation embryos. Genes. 2018;9:265. doi: 10.3390/genes9050265.
    1. Bhartiya D., Patel H., Parte S. Improved understanding of very small embryonic-like stem cells in adult mammalian ovary. Hum. Reprod. 2018;33:978–979. doi: 10.1093/humrep/dey039.
    1. Kucia M., Reca R., Campbell F.R., Zuba-Surma E., Majka M., Ratajczak J., Ratajczak M.Z. A population of very small embryonic-like (VSEL) CXCR4+SSEA4+Oct-4+ stem cells identified in adult bone marrow. Leukemia. 2006;20:857–869. doi: 10.1038/sj.leu.2404171.
    1. Heider A., Danova-Alt R., Egger D., Cross M., Alt R. Murine and human very small embryonic-like cells: A perspective. Cytometry A. 2013;83:72–75. doi: 10.1002/cyto.a.22229.
    1. Miyanishi M., Mori Y., Seita J., Chen J.Y., Karten S., Chan C.K.F., Nakauchi H., Weissman I.L. Do pluripotent stem cells exist in mice as very small embryonic-like cells? Stem Cell Rep. 2013;1:198–208. doi: 10.1016/j.stemcr.2013.07.001.
    1. Havens A.M., Sun H., Shiozawa Y., Jung Y., Wang J., Mishra A., Jiang Y., O’Neill D.W., Krebsbach P.H., Rodgerson D.O., et al. Human and murine very small embryonic-like cells represent multipotent tissue progenitors, in vitro and in vivo. Stem Cells Dev. 2014;23:689–701. doi: 10.1089/scd.2013.0362.
    1. Kim Y., Jeong J., Kang H., Lim J., Heo J., Ratajczak J., Ratajczak M.Z., Shin D.M. The molecular nature of very small embryonic-like stem cells in adult tissues. Int. J. Stem Cells. 2014;7:55–62. doi: 10.15283/ijsc.2014.7.2.55.
    1. Virant-Klun I., Zech N., Rozman P., Vogler A., Cvjeticanin B., Klemenc P., Malicev E., Meden-Vrtovec H. Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles or oocytes. Differentiation. 2008;76:843–856. doi: 10.1111/j.1432-0436.2008.00268.x.
    1. Gong S.P., Lee S.T., Lee E.J., Kim D.Y., Lee G., Chi S.G., Ryu B.K., Lee C.H., Yum K.E., Lee H.J., et al. Embryonic stem cell-like cells established by culture of adult ovarian cells in mice. Fertil. Steril. 2010;93:2594–2601. doi: 10.1016/j.fertnstert.2009.12.053.
    1. Parte S., Bhartiya D., Telang J., Daithankar V., Salvi V., Zaveri K., Hinduja I. Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells Dev. 2011;20:1451–1464. doi: 10.1089/scd.2010.0461.
    1. Bhartiya D., Patel H. Ovarian stem cells—Resolving controversies. J. Assist. Reprod. Genet. 2018;35:393–398. doi: 10.1007/s10815-017-1080-6.
    1. Patel H., Bhartiya D., Parte S., Gunjal P., Yedurkar S., Bhatt M. Follicle-stimulating hormone modulates ovarian stem cells through alternatively spliced receptor variant FSH-R3. J. Ovarian Res. 2013;6:52. doi: 10.1186/1757-2215-6-52.
    1. Bhartiya D., Unni S., Parte S., Anand S. Very small embryonic-like cells: Implications in reproductive biology. Biomed. Res. Int. 2013;2013:682326. doi: 10.1155/2013/682326.
    1. Brinster R.L., Zimmermann J.W. Spermatogenesis following male germ-cell transplantation. Proc. Natl. Acad. Sci. USA. 1994;91:11298–11302. doi: 10.1073/pnas.91.24.11298.
    1. Brinster R.L., Avarbock M.R. Germline transmission of donor haplotype following spermatogonial transplantation. Proc. Natl. Acad. Sci. USA. 1994;91:11303–11307. doi: 10.1073/pnas.91.24.11303.
    1. Kanatsu-Shinohara M., Morimoto H., Shinohara T. Fertility of male germline stem cells following spermatogonial transplantation in infertile mouse models. Biol. Reprod. 2016;94:112. doi: 10.1095/biolreprod.115.137869.
    1. Tilly J.L., Woods D.C. Compositions and Methods for Autologous Germline Mitochondrial Energy Transfer. 8,642,329. U.S. Patent. 2014 Feb 4;
    1. Tilly J.L., Woods D.C. Compositions and Methods for Autologous Germline Mitochondrial Energy Transfer. 8,647,869. U.S. Patent. 2014 Feb 11;
    1. Park S., Yu J., Marquis K., DeCherney A.H., Wolff E.F. Egg from ovarian-derived stem cells develops into embryo after intracytoplasmic sperm injection. Reprod. Sci. 2016;23:264A.
    1. Telfer E.E., McLaughlin M., Ding C., Thong K.J. A two-step serum-free culture system supports development of human oocytes from primordial follicles in the presence of activin. Hum. Reprod. 2008;23:1151–1158. doi: 10.1093/humrep/den070.
    1. McLaughlin M., Telfer E.E. Oocyte development in bovine primordial follicles is promoted by activin and FSH within a two-step serum-free culture system. Reproduction. 2010;139:971–978. doi: 10.1530/REP-10-0025.
    1. Xu M., Fazleabas A., Shikanov A., Jackson E., Barrett S.L., Hirshfield-Cytron J., Kiesewetter S.E., Shea L.D., Woodruff T.K. In vitro oocyte maturation and preantral follicle culture from the luteal-phase baboon ovary produce mature oocytes. Biol. Reprod. 2011;84:689–697. doi: 10.1095/biolreprod.110.088674.
    1. Telfer E.E., McLaughlin M. Strategies to support human oocyte development in vitro. Int. J. Dev. Biol. 2012;56:901–907. doi: 10.1387/ijdb.130001et.
    1. Trounson A., Wood C., Kausche A. In vitro maturation and the fertilization and developmental competence of oocytes recovered from untreated polycystic ovarian patients. Fertil. Steril. 1994;62:353–362. doi: 10.1016/S0015-0282(16)56891-5.
    1. Cha K.Y., Koo J.J., Ko J.J., Choi D.H., Han S.Y., Yoon T.K. Pregnancy after in vitro fertilization of human follicular oocytes collected from nonstimulated cycles, their culture in vitro and their transfer in a donor oocyte program. Fertil. Steril. 1991;55:109–113. doi: 10.1016/S0015-0282(16)54068-0.
    1. Cha K.Y., Chian R.C. Maturation in vitro of immature human oocytes for clinical use. Hum. Reprod. Update. 1998;4:103–120. doi: 10.1093/humupd/4.2.103.
    1. Kim B.K., Lee S.C., Kim K.J., Han C.H., Kim J.H. In-vitro maturation, fertilization, and development of human germinal vesicle oocytes collected from stimulated cycles. Fertil. Steril. 2000;74:1153–1158. doi: 10.1016/S0015-0282(00)01617-4.
    1. Son W.Y., Chung J.T., Demirtas E., Holzer H., Sylvestre C., Buckett W., Chian R.C., Tan S.L. Comparison of in-vitro maturation cycles with and without in-vivo matured oocytes retrieved. Reprod. Biomed. Online. 2008;17:59–67. doi: 10.1016/S1472-6483(10)60294-5.
    1. Oktay K., Buyuk E., Rodriguez-Wallberg K.A., Sahin G. In vitro maturation improves oocyte or embryo cryopreservation outcome in breast cancer patients undergoing ovarian stimulation for fertility preservation. Reprod. Biomed. Online. 2010;20:634–638. doi: 10.1016/j.rbmo.2010.01.012.
    1. Fadini R., Dal Canto M., Mignini Renzini M., Milani R., Fruscio R., Cantù M.G., Brambillasca F., Coticchio G. Embryo transfer following in vitro maturation and cryopreservation of oocytes recovered from antral follicles during conservative surgery for ovarian cancer. J. Assist. Reprod. Genet. 2012;29:779–781. doi: 10.1007/s10815-012-9768-0.
    1. Chang E.M., Song H.S., Lee D.R., Lee W.S., Yoon T.K. In vitro maturation of human oocytes: Its role in infertility treatment and new possibilities. Clin. Exp. Reprod. Med. 2014;41:41–46. doi: 10.5653/cerm.2014.41.2.41.
    1. Woods D.C., White Y.A.R., Niikura Y., Kiatpongsan S., Lee H.J., Tilly J.L. Embryonic stem cell derived granulosa cells participate in follicle formation in vitro and in vivo. Reprod. Sci. 2013;20:524–535. doi: 10.1177/1933719113483017.
    1. Lipskind S., Lindsey J.S., Gerami-Naini B. An embryonic and induced pluripotent stem cell model for ovarian granulosa cell development and steroidogenesis. Reprod. Sci. 2018;25:712–726. doi: 10.1177/1933719117725814.

Source: PubMed

3
구독하다