Estimation of the Burden of Iron Deficiency Anemia in France from Iron Intake: Methodological Approach

Juliana De Oliveira Mota, Patrick Tounian, Sandrine Guillou, Fabrice Pierre, Jeanne-Marie Membré, Juliana De Oliveira Mota, Patrick Tounian, Sandrine Guillou, Fabrice Pierre, Jeanne-Marie Membré

Abstract

: Dietary iron deficiency (ID) is the first nutritional deficiency in the world, in terms of disability adjusted life years (DALY). This nutritional deficiency may lead to anemia, especially among children, adolescents, and adult women. The aim of this study was to build an original probabilistic model to quantitatively assess the ID, the iron deficiency anemia (IDA) and the subsequent health burden in France expressed in DALY, per age class and gender. The model considered the distribution of absorbed iron intake, the iron requirement distribution established by the European Food Safety Authority and the iron status in France. Uncertainty due to lack of data and variability due to biological diversity were taken into account and separated using a second-order Monte Carlo procedure. A total of 1290 (95% CI = 1230-1350) IDA cases corresponding to 16 (95% CI = 11-20) DALY were estimated per 100,000 individuals per year. The major contributors to IDA burden were menstruating females aged from 25 to 44 years old. Then, a consumption scenario was built with ground beef as intake, an increase in red meat consumption to 100 g/d would not eliminate entirely the IDA burden. The quantitative methodology applied here for France could be reused for other populations.

Keywords: DALY; anemia; iron deficiency; probabilistic model; risk assessment; second-order Monte Carlo simulation.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Flowchart of the assessment model of iron deficiency anemia disease per year in France per age class and gender. White rectangles with dashed line correspond to the “Inputs”, full line to “Intermediate calculation”. Light grey rectangles correspond to the “Final output”. Absorbed iron corresponds to the mean absorbed values provided by European Food Safety Authority (EFSA) considering both heme and non-heme iron.
Figure 2
Figure 2
Estimated number of DALY from iron deficiency anemias in France for young children (three to six) and adolescent females (15–17) according to ground beef consumption scenarios. Results expressed per 100,000 individuals per year. Full lines represent the 95% uncertainty around the mean value.
Figure 3
Figure 3
Estimated number of DALY from iron deficiency anemias in France for adult males and females according to ground beef consumption scenarios. Results expressed per 100,000 individuals per year. Full lines represent the 95% uncertainty around the mean value.

References

    1. WHO/CDC . Assessing the Iron Status of Populations: Including Literature Reviews. WHO/CDC; Geneva, Switzerland: 2004. p. 112.
    1. WHO/UNICEF/UNU . Iron Deficiency Anaemia: Assessment, Prevention and Control, a Guide for Programme Managers. World Health Organization; Geneva, Switzerland: 2001.
    1. Jáuregui-Lobera I. Iron deficiency and cognitive functions. Neuropsychiatr. Dis. Treat. 2014;10:2087–2095. doi: 10.2147/NDT.S72491.
    1. Kassebaum N.J. (on behalf of GBD 2013 Anemia Collaborators). The global burden of anemia. Hematol. Oncol. Clin. N. Am. 2016;30:247–308. doi: 10.1016/j.hoc.2015.11.002.
    1. WHO/CDC . Worldwide Prevalence of Anaemia 1993–2005: WHO Global Database on Anaemia. WHO/CDC; Geneva, Switzerland: 2008. p. 51.
    1. Olives J.P. Causes des déficits en fer chez l’enfant. Arch. Pédiatrie. 2017;24:5S2–5S5. doi: 10.1016/S0929-693X(17)24002-0.
    1. Dignass A., Farrag K., Stein J. Limitations of Serum Ferritin in Diagnosing Iron Deficiency in Inflammatory Conditions. Int. J. Chronic Dis. 2018;2018:1–11. doi: 10.1155/2018/9394060.
    1. Soppi E.T. Iron deficiency without anemia—A clinical challenge. Clin. Case Rep. 2018;6:1082–1086. doi: 10.1002/ccr3.1529.
    1. Stoltzfus R.J. Iron deficiency: Global prevalence and consequences. Food Nutr. Bull. 2003;24:S99–S103. doi: 10.1177/15648265030244S106.
    1. Tounian P., Chouraqui J.P. Iron in nutrition. Arch. Pediatr. 2017;24:5s23–25s31. doi: 10.1016/S0929-693X(17)24006-8.
    1. Czerwonka M., Tokarz A. Iron in red meat–friend or foe. Meat Sci. 2017;123:157–165. doi: 10.1016/j.meatsci.2016.09.012.
    1. Moshe G., Amitai Y., Korchia G., Korchia L., Tenenbaum A., Rosenblum J., Schechter A. Anemia and iron deficiency in children: Association with red meat and poultry consumption. J. Pediatr. Gastroenterol. Nutr. 2013;57:722–727. doi: 10.1097/MPG.0b013e3182a80c42.
    1. Szymlek-Gay A.E., Ferguson E.L., Heath A.L.M., Gray A.R., Gibson R.S., Heath A.L.M. Food-based strategies improve iron status in toddlers: A randomized controlled trial. Am. J. Clin. Nutr. 2009;90:1541–1551. doi: 10.3945/ajcn.2009.27588.
    1. WHO Health Statistics and Information Systems: About the Global Burden of Disease (GBD) Project. [(accessed on 5 April 2018)]; Available online:
    1. Cummins E. Fundamental Principles of Risk Assessment. In: Geril P., editor. Textbook on Quantitative Tools for Sustainable Food and Energy in the Food Chain. Volume 1. EUROSIS; Ghent, Belgium: 2017. pp. 151–179.
    1. Thompson K.M. Variability and Uncertainty Meet Risk Management and Risk Communication. Risk Anal. 2002;22:647–654. doi: 10.1111/0272-4332.00044.
    1. Cummins E. Quantifying Microbial Propagation. In: Membré J.M., Vasilis V., editors. Modeling in Food Microbiology. Elsevier; Oxford, UK: 2016. pp. 17–31.
    1. ANSES Données de Consommations et Habitudes Alimentaires de L’étude INCA 2. [(accessed on 23 August 2017)]; Available online: .
    1. Inserm Ménopause: Améliorer la Sécurité D’utilisation des Traitements Hormonaux. [(accessed on 1 June 2019)]; Available online: .
    1. EFSA Panel on Dietetic Products Nutrition Allergies Scientific opinion on dietary reference values for iron. EFSA J. 2015;13:4254. doi: 10.2903/j.efsa.2015.4254.
    1. Norden . Nordic Nutrition Recommendations 2012: Integrating Nutrition and Physical Activity. Nordic Council of Ministers; Copenhagen, Denmark: 2014. p. 627.
    1. Ined L’âge aux Premières Règles. [(accessed on 20 June 2019)]; Available online:
    1. Stoltzfus R.J., Mullany L., Black R.E. Iron Deficiency Anaemia. WHO; Geneva, Switzerland: 2004. pp. 163–209.
    1. Hercberg S., Preziosi P., Galan P. Iron deficiency in Europe. Public Health Nutr. 2001;4:537–545. doi: 10.1079/PHN2001139.
    1. Hercberg S., Cailhol J., Franchisseur C., Maurel M. La dificience en fer et l’anémie ferriprive dans la population française. Rev. Française Lab. 2001;334:55–58. doi: 10.1016/S0338-9898(01)80197-9.
    1. Santé Publique France-Université Paris 13 . ENNS: Étude Nationale Nutrition Santé. Santé Publique France; Saint-Maurice, France: 2006–2007.
    1. Ferrari M., Mistura L., Patterson E., Sjöström M., E Díaz L., Stehle P., Gonzalez-Gross M., Kersting M., Widhalm K., Molnár D., et al. Evaluation of iron status in European adolescents through biochemical iron indicators: The HELENA Study. Eur. J. Clin. Nutr. 2011;65:340–349. doi: 10.1038/ejcn.2010.279.
    1. Insee . Projections de population 2007-2060 pour la France métropolitaine: Projections de population–Insee Résultats. Insee; Paris, France: 2010.
    1. Salomon A.J., Haagsma A.J., Davis A., De Noordhout C.M., Polinder S., Havelaar A.H., Cassini A., Devleesschauwer B., Kretzschmar M., Speybroeck N., et al. Disability weights for the Global Burden of Disease 2013 study. Lancet Glob. Health. 2015;3:e712–e723. doi: 10.1016/S2214-109X(15)00069-8.
    1. Hoekstra J., Hart A., Boobis A., Claupein E., Cockburn A., Hunt A., Knudsen I., Richardson D., Schilter B., Schütte K., et al. BRAFO tiered approach for benefit–risk assessment of foods. Food Chem. Toxicol. 2012;50:S684–S698. doi: 10.1016/j.fct.2010.05.049.
    1. ANSES Ciqual: Table de Composition Nutritionelle des Aliments. [(accessed on 29 May 2019)]; Available online:
    1. Dupont C. Prévalence de la carence en fer. Arch. Pédiatrie. 2017;24:5S45–5S48. doi: 10.1016/S0929-693X(17)24009-3.
    1. Sacri A.S., Hercberg S., Gouya L., Levy C., Bocquet A., Blondel B., Vincelet C., Hebel P., Vinatier I., Montalembert M., et al. Very low prevalence of iron deficiency among young French children: A national cross-sectional hospital-based survey. Matern. Child Nutr. 2018;14:e12460. doi: 10.1111/mcn.12460.
    1. Preziosi P., Hercberg S., Galan P., Devanlay M., Cherouvrier F., Dupin H. Iron Status of a Healthy French Population: Factors Determining Biochemical Markers. Ann. Nutr. Metab. 1994;38:192–202. doi: 10.1159/000177811.
    1. InVS Marqueurs Biologiques de L’état Nutritionnel—Adultes 18–74 Ans: Tableaux de Distribution—Etude Nationale Nutrition Santé (ENNS) [(accessed on 30 August 2019)]; Available online: .
    1. Galan P., Yoon H.C., Preziosi P., Viteri F., Valeix P., Fieux B., Briançon S., Malvy D., Roussel A.M., Favier A., et al. Determining factors in the iron status of adult women in the SU.VI.MAX study. SUpplementation en VItamines et Minéraux AntioXydants. Eur. J. Clin. Nutr. 1998;52:383–388. doi: 10.1038/sj.ejcn.1600561.
    1. Pires S.M., Boué G., Boobis A., Eneroth H., Hoekstra J., Membré J.M., Persson I.M., Poulsen M., Ruzante J., Van Klaveren J., et al. Risk Benefit Assessment of foods: Key findings from an international workshop. Food Res. Int. 2019;116:859–869. doi: 10.1016/j.foodres.2018.09.021.
    1. Murray C.J. Quantifying the burden of disease: The technical basis for disability-adjusted life years. Bull. World Health Organ. 1994;72:429–445.
    1. Nauta M.J., Andersen R., Pilegaard K., Pires S.M., Ravn-Haren G., Tetens I., Poulsen M. Meeting the challenges in the development of risk-benefit assessment of foods. Trends Food Sci. Technol. 2018;76:90–100. doi: 10.1016/j.tifs.2018.04.004.
    1. Vallee L. Iron and Neurodevelopment. Arch. Pediatr. 2017;24:5S18–5S22.
    1. Tseng M. Dietary Patterns and Prostate Cancer Risk in the National Health and Nutrition Examination Survey Epidemiological Follow-up Study Cohort. Cancer Epidemiol. Biomark. Prev. 2004;13:71–77. doi: 10.1158/1055-9965.EPI-03-0076.
    1. Larson L.M., Phiri K.S., Pasricha S.-R. Iron and Cognitive Development: What Is the Evidence? Ann. Nutr. Metab. 2017;71:25–38. doi: 10.1159/000480742.
    1. IHME GBD Compare/Viz Hub. [(accessed on 22 April 2019)]; Available online:
    1. FAO/WHO. Codex Alimentarius Commission . Principles and Guidelines for the Conduct of Microbiological Risk Assessment. FAO; Rome, Italy: 1999. pp. 1–5.
    1. Havelaar A.H., Van Duynhoven Y.T.H.P., Nauta M., Bouwknegt M., Heuvelink A.E., De Wit G.A., Nieuwenhuizen M.G.M., Van De Kar N.C.A.J. Disease burden in The Netherlands due to infections with Shiga toxin-producing Escherichia coli O157. Epidemiol. Infect. 2004;132:467–484. doi: 10.1017/S0950268804001979.
    1. Boué G., Cummins E., Guillou S., Antignac J., Le Bizec B., Membré J. Development and Application of a Probabilistic Risk-Benefit Assessment Model for Infant Feeding Integrating Microbiological, Nutritional, and Chemical Components. Risk Anal. 2017;37:2360–2388. doi: 10.1111/risa.12792.
    1. Thomsen S.T., Pires S.M., Devleesschauwer B., Poulsen M., Fagt S., Ygil K.H., Andersen R. Investigating the risk-benefit balance of substituting red and processed meat with fish in a Danish diet. Food Chem. Toxicol. 2018;120:50–63. doi: 10.1016/j.fct.2018.06.063.
    1. ANSES . Avis et rapport Relatifs à L’actualisation des Repères du PNNS: Révision des Repères de Consommation Alimentaires. ANSES; Maisons-Alfort, France: 2016. pp. 1–192.
    1. WCRF/AICR . Diet, Nutrition, Physical Activity and Colorectal Cancer. WCRF/AICR; Washington, DC, USA: 2017. pp. 1–109.
    1. Bouvard V., Loomis D., Guyton K.Z., Grosse Y., El Ghissassi F., Benbrahim-Tallaa L., Guha N., Mattock H., Straif K. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015;16:1599–1600. doi: 10.1016/S1470-2045(15)00444-1.
    1. Mota J.D.O., Boué G., Guillou S., Pierre F., Membré J.M. Estimation of the burden of disease attributable to red meat consumption in France: Influence on colorectal cancer and cardiovascular diseases. Food Chem. Toxicol. 2019;130:174–186. doi: 10.1016/j.fct.2019.05.023.
    1. Bastide N., Morois S., Cadeau C., Kangas S., Serafini M., Gusto G., Dossus L., Pierre F.H., Clavel-Chapelon F., Boutron-Ruault M.C. Heme iron intake, dietary antioxidant capacity, and risk of colorectal adenomas in a large cohort study of French women. Cancer Epidemiol. Biomark. Prev. 2016;25:640–647. doi: 10.1158/1055-9965.EPI-15-0724.
    1. Bastide N.M., Chenni F., Audebert M., Santarelli R.L., Naud N., Baradat M., Jouanin I., Surya R., Hobbs D.A., Kuhnle G., et al. A Central Role for Heme Iron in Colon Carcinogenesis Associated with Red Meat Intake. Cancer Res. 2015;75:870–879. doi: 10.1158/0008-5472.CAN-14-2554.
    1. Ascherio A., Willett W.C., Rimm E.B., Giovannucci E.L., Stampfer M.J. Dietary iron intake and risk of coronary disease among men. Circulation. 1994;89:969–974. doi: 10.1161/01.CIR.89.3.969.
    1. Qi L., van Dam R.M., Rexrode K., Hu F.B. Heme iron from diet as a risk factor for coronary heart disease in women with type 2 diabetes. Diabetes Care. 2007;30:101–106. doi: 10.2337/dc06-1686.
    1. Sullivan J. Iron and the sex difference in heart disease risk. Lancet. 1981;317:1293–1294. doi: 10.1016/S0140-6736(81)92463-6.
    1. ANSES . Avis de L’AGENCE Nationale de Sécurité Sanitaire de L’alimentation, de L’environnement et du Travail Relatif à L’actualisation des Repères Alimentaires du PNNS Pour les Enfants de 4 à 17 Ans. ANSES; Maisons-Alfort, France: 2019. pp. 1–41.
    1. Nelson M., White J., Rhodes C. Haemoglobin, ferritin, and iron intakes in British children aged 12–14 years: A preliminary investigation. Br. J. Nutr. 1993;70:147–155. doi: 10.1079/BJN19930112.
    1. Donovan U.M., Gibson R.S. Iron and zinc status of young women aged 14 to 19 years consuming vegetarian and omnivorous diets. J. Am. Coll. Nutr. 1995;14:463–472. doi: 10.1080/07315724.1995.10718537.
    1. Alexander D., Ball M.J., Mann J. Nutrient intake and haematological status of vegetarians and age-sex matched omnivores. Eur. J. Clin. Nutr. 1994;48:538–546.
    1. Collings R., Harvey L.J., Hooper L., Hurst R., Brown T.J., Ansett J., King M., Fairweather-Tait S.J. The absorption of iron from whole diets: A systematic review. Am. J. Clin. Nutr. 2013;98:65–81. doi: 10.3945/ajcn.112.050609.
    1. Hurrell R., Egli I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010;91:1461S–1467S. doi: 10.3945/ajcn.2010.28674F.
    1. Agaoglu L., Torun O., Unuvar E., Sefil Y., Demir D. Effects of iron deficiency anemia on cognitive function in children. Arzneimittelforschung. 2007;57:426–430. doi: 10.1055/s-0031-1296691.
    1. ECDC/EFSA . The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-Borne Outbreaks in 2017. European Food Safety Authority; Parma, Italy: 2018. p. 262.
    1. Mota J.D.O., Tounian P., Guillou S., Pierre F., Membré J.-M. Risque et bénéfice nutritionnels associés à la consommation de viande rouge en France. Nutr. Clin. Métabolisme. 2019;33:109. doi: 10.1016/j.nupar.2019.01.430.

Source: PubMed

3
구독하다