Iron, hepcidin, and the metal connection

Olivier Loréal, Thibault Cavey, Edouard Bardou-Jacquet, Pascal Guggenbuhl, Martine Ropert, Pierre Brissot, Olivier Loréal, Thibault Cavey, Edouard Bardou-Jacquet, Pascal Guggenbuhl, Martine Ropert, Pierre Brissot

Abstract

Identification of new players in iron metabolism, such as hepcidin, which regulates ferroportin and divalent metal transporter 1 expression, has improved our knowledge of iron metabolism and iron-related diseases. However, from both experimental data and clinical findings, "iron-related proteins" appear to also be involved in the metabolism of other metals, especially divalent cations. Reports have demonstrated that some metals may affect, directly or indirectly, the expression of proteins involved in iron metabolism. Throughout their lives, individuals are exposed to various metals during personal and/or occupational activities. Therefore, better knowledge of the connections between iron and other metals could improve our understanding of iron-related diseases, especially the variability in phenotypic expression, as well as a variety of diseases in which iron metabolism is secondarily affected. Controlling the metabolism of other metals could represent a promising innovative therapeutic approach.

Keywords: DMT1; disease; ferroportin; iron; metabolism; metal; transferrin.

Figures

FIGURE 1
FIGURE 1
Schematic representation of potential connections between iron, hepcidin and non-iron metals. Special focus has been made on three major processes in iron metabolism – digestive iron absorption, iron mobilization and cell iron delivery (yellow boxes) – and some major proteins and parameters directly involved in iron metabolism (blue boxes). White boxes indicate non-iron metals for which relationships have been reported with adjacent iron metabolism protein (For details see in the text). Red arrows represent an involvement of the protein in the targeted biological process. Blue arrows indicate an impact of the protein on the expression/activity of the targeted protein.

References

    1. Adams P. C., Bradley C., Frei J. V. (1991). Hepatic zinc in hemochromatosis. Clin. Invest. Med. 14 16–20
    1. Akesson A., Stal P., Vahter M. (2000). Phlebotomy increases cadmium uptake in hemochromatosis. Environ. Health Perspect. 108 289–291 10.1289/ehp.00108289
    1. Anderson G. J., Frazer D. M., McKie A. T., Vulpe C. D. (2002). The ceruloplasmin homolog hephaestin and the control of intestinal iron absorption. Blood Cells Mol. Dis. 29 367–375 10.1006/bcmd.2002.0576
    1. Andrews N. C. (1999). Disorders of iron metabolism. N. Engl. J. Med. 341 1986–1995 10.1056/NEJM199912233412607
    1. Andriopoulos B., Corradini E., Xia Y., Faasse S. A., Chen S., Grgurevic L., et al. (2009). BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat. Genet. 41 482–487 10.1038/ng.335
    1. Aschner M., Gannon M. (1994). Manganese (Mn) transport across the rat blood–brain barrier: saturable and transferrin-dependent transport mechanisms. Brain Res. Bull. 33 345–349 10.1016/0361-9230(94)90204-6
    1. Balesaria S., Ramesh B., McArdle H., Bayele H. K., Srai S. K. (2010). Divalent metal-dependent regulation of hepcidin expression by MTF-1. FEBS Lett. 584 719–725 10.1016/j.febslet.2009.12.023
    1. Bao S., Liu M. J., Lee B., Besecker B., Lai J. P., Guttridge D. C., et al. (2010). Zinc modulates the innate immune response in vivo to polymicrobial sepsis through regulation of NF-kappaB. Am. J. Physiol. Lung Cell. Mol. Physiol. 298 L744–L754 10.1152/ajplung.00368.2009
    1. Barnum-Huckins K. M., Martinez A. O., Rivera E. V., Adrian E. K., Herbert D. C., Weaker F. J., et al. (1997). A comparison of the suppression of human transferrin synthesis by lead and lipopolysaccharide. Toxicology 118 11–22 10.1016/S0300-483X(96)03586-X
    1. Barton J. C., Patton M. A., Edwards C. Q., Griffen L., Kushner J. P., Meeks R. G., et al. (1994). Blood lead concentrations in hereditary hemochromatosis. J. Lab. Clin. Med. 124 193–198
    1. Braliou G., Verga Falzacappa M. V., Chachami G., Casanovas G., Muckenthaler M. U., Simos G. (2008). 2-Oxoglutarate-dependent oxygenases control hepcidin gene expression. J. Hepatol. 48 801–810 10.1016/j.jhep.2007.12.021
    1. Brasse-Lagnel C., Karim Z., Letteron P., Bekri S., Bado A., Beaumont C. (2011). Intestinal DMT1 cotransporter is down-regulated by hepcidin via proteasome internalization and degradation. Gastroenterology 140 1261–1271doi 10.1053/j.gastro.2010.12.037
    1. Braun J. (1999). Erythrocyte zinc protoporphyrin. Kidney Int. Suppl. 69 S57–S60 10.1046/j.1523-1755.1999.055Suppl.69057.x
    1. Brissot P., Bardou-Jacquet E., Jouanolle A. M, Loréal O. (2011). Iron disorders of genetic origin: a changing world. Trends Mol. Med. 17 707–713 10.1016/j.molmed.2011.07.004
    1. Brissot P., Le Treut A., Dien G., Cottencin M., Simon M., Bourel M. (1978). Hypovitaminemia A in idiopathic hemochromatosis and hepatic cirrhosis. Role of retinol-binding protein and zinc. Digestion 17 469–478 10.1159/000198153
    1. Brissot P., Ropert M., Le Lan C, Loréal O. (2012). Non-transferrin bound iron: a key role in iron overload and iron toxicity. Biochim. Biophys. Acta 1820 403–410 10.1016/j.bbagen.2011.07.014
    1. Brissot P., Wright T. L., Ma W. L., Weisiger R. A. (1985). Efficient clearance of non-transferrin-bound iron by rat liver. Implications for hepatic iron loading in iron overload states. J. Clin. Invest. 76 1463–1470 10.1172/JCI112125
    1. Chikh Z., Ha-Duong N. T., Miguel G, El Hage Chahine J. M. (2007). Gallium uptake by transferrin and interaction with receptor 1. J. Biol. Inorg. Chem. 12 90–100 10.1007/s00775-006-0169-7
    1. Chua A. C., Morgan E. H. (1996). Effects of iron deficiency and iron overload on manganese uptake and deposition in the brain and other organs of the rat. Biol. Trace Elem. Res. 55 39–54 10.1007/BF02784167
    1. Chua A. C., Morgan E. H. (1997). Manganese metabolism is impaired in the Belgrade laboratory rat. J. Comp. Physiol. B 167 361–369 10.1007/s003600050085
    1. Cox D. H., Hale O. M. (1962). Liver iron depletion without copper loss in swine fed excess zinc. J. Nutr. 77 225–228
    1. Cox D. H., Harris D. L. (1960). Effect of excess dietary zinc on iron and copper in the rat. J. Nutr. 70 514–520
    1. Crichton R. (2001a). “The importance of iron in biological systems,” in Inorganic Chemistry of Iron Metabolism ed. Crichton R. (Chichester: John Wiley and Sons) 17–45 10.1002/0470845791.ch2
    1. Crichton R. (2001b). “Iron and oxidative stress,” in Inorganic Biochemistry of Iron Metabolism: From Molecular Mechanisms to Clinical Consequences (Chichester: John Wiley and Sons Ltd) 235–257 10.1002/0470845791.ch10
    1. Desgrippes R., Lainé F., Morcet J., Perrin M., Manet G., Jezequel C., et al. (2013). Decreased iron burden in overweight C282Y homozygous women: putative role of increased hepcidin production. Hepatology 57 1784–1792 10.1002/hep.26261
    1. Donovan A., Brownlie A., Zhou Y., Shepard J., Pratt S. J., Moynihan J., et al. (2000). Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter [see comments]. Nature 403 776–781 10.1038/35001596
    1. El Hage Chahine J. M., Hemadi M., Ha-Duong N. T. (2012). Uptake and release of metal ions by transferrin and interaction with receptor 1. Biochim. Biophys. Acta 1820 334–347 10.1016/j.bbagen.2011.07.008
    1. Erikson K. M., Syversen T., Steinnes E., Aschner M. (2004). Globus pallidus: a target brain region for divalent metal accumulation associated with dietary iron deficiency. J. Nutr. Biochem. 15 335–341 10.1016/j.jnutbio.2003.12.006
    1. Flanagan P. R., McLellan J. S., Haist J., Cherian G., Chamberlain M. J., Valberg L. S. (1978). Increased dietary cadmium absorption in mice and human subjects with iron deficiency. Gastroenterology 74 841–846
    1. Fleming M. D., Romano M. A., Su M. A., Garrick L. M., Garrick M. D., Andrews N. C. (1998). Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc. Natl. Acad. Sci. U.S.A. 95 1148–1153 10.1073/pnas.95.3.1148
    1. Fleming M. D., Trenor C. C., Su M. A., Foernzler D., Beier D. R., Dietrich W. F., et al. (1997). Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat. Genet. 16 383–386 10.1038/ng0897-383
    1. Ganz T. (2011). Hepcidin and iron regulation, 10 years later. Blood 117 4425–4433 10.1182/blood-2011-01-258467
    1. Ganz T., Nemeth E. (2009). Iron sequestration and anemia of inflammation. Semin. Hematol. 46 387–393 10.1053/j.seminhematol.2009.06.001
    1. Garcia S. J., Gellein K., Syversen T., Aschner M. (2007). Iron deficient and manganese supplemented diets alter metals and transporters in the developing rat brain. Toxicol. Sci. 95 205–214 10.1093/toxsci/kfl139
    1. Gardenghi S., Grady R. W., Rivella S. (2010). Anemia, ineffective erythropoiesis, and hepcidin: interacting factors in abnormal iron metabolism leading to iron overload in beta-thalassemia. Hematol. Oncol. Clin. North Am. 24 1089–1107 10.1016/j.hoc.2010.08.003
    1. Gitlin J. D. (1998). Aceruloplasminemia. Pediatr. Res. 44 271–276 10.1203/00006450-199809000-00001
    1. Gosriwatana I., Loréal O., Lu S., Brissot P., Porter J., Hider R. C. (1999). Quantification of non-transferrin-bound iron in the presence of unsaturated transferrin. Anal. Biochem. 273 212–220 10.1006/abio.1999.4216
    1. Goswami T., Andrews N. C. (2006). Hereditary hemochromatosis protein, HFE, interaction with transferrin receptor 2 suggests a molecular mechanism for mammalian iron sensing. J. Biol. Chem. 281 28494–28498 10.1074/jbc.C600197200
    1. Grossmann J. G., Neu M., Evans R. W., Lindley P. F., Appel H., Hasnain S. S. (1993). Metal-induced conformational changes in transferrins. J. Mol. Biol. 229 585–590 10.1006/jmbi.1993.1063
    1. Gunshin H., Mackenzie B., Berger U. V., Gunshin Y., Romero M. F., Boron W. F., et al. (1997). Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388 482–488 10.1038/41343
    1. Ha-Duong N. T., Hemadi M., Chikh Z., Chahine J. M. (2008). Kinetics and thermodynamics of metal-loaded transferrins: transferrin receptor 1 interactions. Biochem. Soc. Trans. 36 1422–1426 10.1042/BST0361422
    1. Hallgren R., Feltelius N., Garcia R., Venge P., Lindh U. (1989). Metal content of neutrophil granules is altered in chronic inflammation. Inflammation 13 383–392 10.1007/BF00914922
    1. Hansen S. L., Trakooljul N., Liu H. C., Hicks J. A., Ashwell M. S., Spears J. W. (2010). Proteins involved in iron metabolism in beef cattle are affected by copper deficiency in combination with high dietary manganese, but not by copper deficiency alone. J. Anim. Sci. 88 275–283 10.2527/jas.2009-1846
    1. Harrington J. P. (1992). Spectroscopic analysis of the unfolding of transition metal-ion complexes of human lactoferrin and transferrin. Int. J. Biochem. 24 275–280 10.1016/0020-711X(92)90258-3
    1. Harris D. C. (1977). Different metal-binding properties of the two sites of human transferrin. Biochemistry 16 560–564 10.1021/bi00622a033
    1. Harris E. D. (1995). The iron-copper connection: the link to ceruloplasmin grows stronger. Nutr. Rev. 53 170–173 10.1111/j.1753-4887.1995.tb01545.x
    1. Hentze M. W., Caughman S. W., Casey J. L., Koeller D. M., Rouault T. A., Harford J. B., et al. (1988). A model for the structure and functions of iron-responsive elements. Gene 72 201–208 10.1016/0378-1119(88)90145-X
    1. Hentze M. W., Caughman S. W., Rouault T. A., Barriocanal J. G., Dancis A., Harford J. B., et al. (1987). Identification of the iron-responsive element for the translational regulation of human ferritin mRNA. Science 238 1570–1573 10.1126/science.3685996
    1. Herrera C., Pettiglio M. A., Bartnikas T. B. (2014). Investigating the role of transferrin in the distribution of iron, manganese, copper, and zinc. J. Biol. Inorg. Chem. 10.1007/s00775-014-1118-5 [Epub ahead of print]
    1. Hershko C., Peto T. E. (1987). Non-transferrin plasma iron. Br. J. Haematol. 66 149–151 10.1111/j.1365-2141.1987.tb01291.x
    1. Hess S. Y., King J. C. (2009). Effects of maternal zinc supplementation on pregnancy and lactation outcomes. Food Nutr. Bull. 30 S60–S78
    1. Huster D. (2010). Wilson disease. Best Practi. Res. Clin. Gastroenterol. 24 531–539 10.1016/j.bpg.2010.07.014
    1. Illing A. C., Shawki A., Cunningham C. L., Mackenzie B. (2012). Substrate profile and metal-ion selectivity of human divalent metal-ion transporter-1. J. Biol. Chem. 287 30485–30496 10.1074/jbc.M112.364208
    1. Island M. L., Jouanolle A. M., Mosser A., Deugnier Y., David V., Brissot P., et al. (2009). A new mutation in the hepcidin promoter impairs its BMP response and contributes to a severe phenotype in HFE related hemochromatosis. Haematologica 94 720–724 10.3324/haematol.2008.001784
    1. Jouihan H. A., Cobine P. A., Cooksey R. C., Hoagland E. A., Boudina S., Abel E. D., et al. (2008). Iron-mediated inhibition of mitochondrial manganese uptake mediates mitochondrial dysfunction in a mouse model of hemochromatosis. Mol. Med. 14 98–108 10.2119/2007-00114.Jouihan
    1. Karovic O., Tonazzini I., Rebola N., Edstrom E., Lovdahl C., Fredholm B. B., et al. (2007). Toxic effects of cobalt in primary cultures of mouse astrocytes. Similarities with hypoxia and role of HIF-1alpha. Biochem. Pharmacol. 73 694–708 10.1016/j.bcp.2006.11.008
    1. Kasperczyk A., Prokopowicz A., Dobrakowski M., Pawlas N., Kasperczyk S. (2012). The effect of occupational lead exposure on blood levels of zinc, iron, copper, selenium and related proteins. Biol. Trace Elem. Res. 150 49–55 10.1007/s12011-012-9490-x
    1. Kawahara M., Mizuno D., Koyama H., Konoha K., Ohkawara S., Sadakane Y. (2014). Disruption of zinc homeostasis and the pathogenesis of senile dementia. Metallomics 6 209–219 10.1039/c3mt00257h
    1. Ketcheson M. R., Barron G. P., Cox D. H. (1969). Relationship of maternal dietary zinc during gestation and lactation to development and zinc, iron and copper content of the postnatal rat. J. Nutr. 98 303–311
    1. Kim J., Buckett P. D., Wessling-Resnick M. (2013). Absorption of manganese and iron in a mouse model of hemochromatosis. PLoS ONE 8:e64944 10.1371/journal.pone.0064944
    1. Knoell D. L., Julian M. W., Bao S., Besecker B., Macre J. E., Leikauf G. D., et al. (2009). Zinc deficiency increases organ damage and mortality in a murine model of polymicrobial sepsis. Crit. Care Med. 37 1380–1388 10.1097/CCM.0b013e31819cefe4
    1. Ku W. W., Slowiejko D., Bestervelt L. L., Buroker M. R., Piper W. N. (1990). Effects of lead on haem biosynthesis during erythroid differentiation in vitro. Toxicol. In Vitro 4 763–769 10.1016/0887-2333(90)90046-V
    1. Labbe R. F., Vreman H. J., Stevenson D. K. (1999). Zinc protoporphyrin: a metabolite with a mission. Clin. Chem. 45 2060–2072
    1. Lambe T., Simpson R. J., Dawson S., Bouriez-Jones T., Crockford T. L., Lepherd M., et al. (2009). Identification of a Steap3 endosomal targeting motif essential for normal iron metabolism. Blood 113 1805–1808 10.1182/blood-2007-11-120402
    1. Latour C., Kautz L., Besson-Fournie C., Island M. L., Canonne-Hergaux F., Loréal O., et al. (2014). Testosterone perturbs systemic iron balance through activation of epidermal growth factor receptor signaling in the liver and repression of hepcidin. Hepatology 59 683–694 10.1002/hep.26648
    1. Leelakunakorn W., Sriworawit R., Soontaros S. (2005). Ceruloplasmin oxidase activity as a biomarker of lead exposure. J. Occup. Health 47 56–60 10.1539/joh.47.56
    1. Li H., Sadler P. J., Sun H. (1996). Unexpectedly strong binding of a large metal ion (Bi3+) to human serum transferrin. J. Biol. Chem. 271 9483–9489 10.1074/jbc.271.16.9483
    1. Lippi G., Franchini M., Guidi G. C. (2005). Cobalt chloride administration in athletes: a new perspective in blood doping? Br. J. Sports Med. 39 872–873 10.1136/bjsm.2005.019232
    1. Liu M. J., Bao S., Napolitano J. R., Burris D. L., Yu L., Tridandapani S., et al. (2014). Zinc regulates the acute phase response and serum amyloid a production in response to sepsis through JAK-STAT3 signaling. PLoS ONE 9:e94934 10.1371/journal.pone.0094934
    1. Liuzzi J. P., Aydemir F., Nam H., Knutson M. D., Cousins R. J. (2006). Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc. Natl. Acad. Sci. U.S.A. 103 13612–13617 10.1073/pnas.0606424103
    1. Loréal O., Haziza-Pigeon C., Troadec M. B., Detivaud L., Turlin B., Courselaud B., et al. (2005). Hepcidin in iron metabolism. Curr. Protein Pept. Sci. 6 279–291 10.2174/1389203054065392
    1. Loréal O., Turlin B., Pigeon C., Moisan A., Ropert M., Morice P., et al. (2002). Aceruloplasminemia: new clinical, pathophysiological and therapeutic insights. J. Hepatol. 36 851–856 10.1016/S0168-8278(02)00042-9
    1. Martinez-Finley E. J., Gavin C. E., Aschner M., Gunter T. E. (2013). Manganese neurotoxicity and the role of reactive oxygen species. Free Radic. Biol. Med. 62 65–75 10.1016/j.freeradbiomed.2013.01.032
    1. McKie A. T., Barrow D., Latunde-Dada G. O., Rolfs A., Sager G., Mudaly E., et al. (2001). An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291 1755–1759 10.1126/science.1057206
    1. McKie A. T., Marciani P., Rolfs A., Brennan K., Wehr K., Barrow D., et al. (2000). A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol. Cell 5 299–309 10.1016/S1097-2765(00)80425-6
    1. Meneghini R. (1997). Iron homeostasis, oxidative stress, and DNA damage. Free Radic. Biol. Med. 23 783–792 10.1016/S0891-5849(97)00016-6
    1. Merryweather-Clarke A. T., Cadet E., Bomford A., Capron D., Viprakasit V., Miller A., et al. (2003). Digenic inheritance of mutations in HAMP and HFE results in different types of haemochromatosis. Hum. Mol. Genet. 12 2241–2247 10.1093/hmg/ddg225
    1. Meynard D., Kautz L., Darnaud V., Canonne-Hergaux F., Coppin H., Roth M. P. (2009). Lack of the bone morphogenetic protein BMP6 induces massive iron overload. Nat. Genet. 41 478–481 10.1038/ng.320
    1. Milanino R., Cassini A., Conforti A., Franco L., Marrella M., Moretti U., et al. (1986). Copper and zinc status during acute inflammation: studies on blood, liver and kidneys metal levels in normal and inflamed rats. Agents Actions 19 215–223 10.1007/BF01966209
    1. Miller J. L. (2013). Iron deficiency anemia: a common and curable disease. Cold Spring Harbor Perspect. Med. 3 a01186610.1101/cshperspect.a011866
    1. Min K. S., Takano M., Amako K., Ueda H., Tanaka K. (2013). Involvement of the essential metal transporter Zip14 in hepatic Cd accumulation during inflammation. Toxicol. Lett. 218 91–96 10.1016/j.toxlet.2013.01.010
    1. Mitchell C. J., Shawki A., Ganz T., Nemeth E., Mackenzie B. (2014). Functional properties of human ferroportin, a cellular iron exporter reactive also with cobalt and zinc. Am. J. Physiol. Cell Physiol. 306 C450–C459 10.1152/ajpcell.00348.2013
    1. Miyajima H., Nishimura Y., Mizoguchi K., Sakamoto M., Shimizu T., Honda N. (1987). Familial apoceruloplasmin deficiency associated with blepharospasm and retinal degeneration. Neurology 37 761–767 10.1212/WNL.37.5.761
    1. Miyajima H., Takahashi Y., Serizawa M., Kaneko E., Gitlin J. D. (1996). Increased plasma lipid peroxidation in patients with aceruloplasminemia. Free Radic. Biol. Med. 20 757–760 10.1016/0891-5849(95)02178-7
    1. Moshtaghie M., Malekpouri P., Dinko M. R., Moshtaghie A. A. (2013). Changes in serum parameters associated with iron metabolism in male rat exposed to lead. J. Physiol. Biochem. 69 297–304 10.1007/s13105-012-0212-9
    1. Muckenthaler M. U. (2008). Fine tuning of hepcidin expression by positive and negative regulators. Cell Metab. 8 1–3 10.1016/j.cmet.2008.06.009
    1. Munro H. N., Linder M. C. (1978). Ferritin: structure, biosynthesis, and role in iron metabolism. Physiol. Rev. 58 317–396
    1. Nam H., Knutson M. D. (2012). Effect of dietary iron deficiency and overload on the expression of ZIP metal-ion transporters in rat liver. Biometals 25 115–124 10.1007/s10534-011-9487-5
    1. Nations S. P., Boyer P. J., Love L. A., Burritt M. F., Butz J. A., Wolfe G. I., et al. (2008). Denture cream: an unusual source of excess zinc, leading to hypocupremia and neurologic disease. Neurology 71 639–643 10.1212/01.wnl.0000312375.79881.94
    1. Nemeth E., Tuttle M. S., Powelson J., Vaughn M. B., Donovan A., Ward D. M., et al. (2004). Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306 2090–2093 10.1126/science.1104742
    1. Nemeth E., Valore E. V., Territo M., Schiller G., Lichtenstein A., Ganz T. (2003). Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood 101 2461–2463 10.1182/blood-2002-10-3235
    1. Nicolas G., Bennoun M., Devaux I., Beaumont C., Grandchamp B., Kahn A., et al. (2001). Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc. Natl. Acad. Sci. U.S.A. 98 8780–8785 10.1073/pnas.151179498
    1. Olatunbosun D., Corbett W. E., Ludwig J., Valberg L. S. (1970). Alteration of cobalt absorption in portal cirrhosis and idiopathic hemochromatosis. J. Lab. Clin. Med. 75 754–762
    1. O’Neil-Cutting M. A., Bomford A., Munro H. N. (1981). Effect of excess dietary zinc on tissue storage of iron in rats. J. Nutr. 111 1969–1979
    1. Osaki S., Johnson D., Frieden E. (1966). The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum. J. Biol. Chem. 241 2746–2751
    1. Park C. H., Valore E. V., Waring A. J., Ganz T. (2001). Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J. Biol. Chem. 276 7806–7810 10.1074/jbc.M008922200
    1. Peyssonnaux C., Zinkernagel A. S., Schuepbach R. A., Rankin E., Vaulont S., Haase V. H., et al. (2007). Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J. Clin. Invest. 117 1926–1932 10.1172/JCI31370
    1. Pietrangelo A., Dierssen U., Valli L., Garuti C., Rump A., Corradini E., et al. (2007). STAT3 is required for IL-6-gp130-dependent activation of hepcidin in vivo. Gastroenterology 132 294–300 10.1053/j.gastro.2006.10.018
    1. Pigeon C., Ilyin G., Courselaud B., Leroyer P., Turlin B., Brissot P., et al. (2001). A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J. Biol. Chem. 276 7811–7819 10.1074/jbc.M008923200
    1. Pollack S., George J. N., Reba R. C., Kaufman R. M., Crosby W. H. (1965). The absorption of nonferrous metals in iron deficiency. J. Clin. Invest. 44 1470–1473 10.1172/JCI105253
    1. Qian Z. M., Xiao D. S., Wang Q., Tang P. L., Pu Y. M. (1997). Inhibitory mechanism of lead on transferrin-bound iron uptake by rabbit reticulocytes: a fractal analysis. Mol. Cell. Biochem. 173 89–94 10.1023/A:1006884619972
    1. Schilsky M. (2009). Zinc treatment for symptomatic Wilson disease: moving forward by looking back. Hepatology 50 1341–1343 10.1002/hep.23355
    1. Schilsky M. L., Blank R. R., Czaja M. J., Zern M. A., Scheinberg I. H., Stockert R. J., et al. (1989). Hepatocellular copper toxicity and its attenuation by zinc. J. Clin. Invest. 84 1562–1568 10.1172/JCI114333
    1. Schuster S. J., Badiavas E. V., Costa-Giomi P., Weinmann R., Erslev A. J., Caro J. (1989). Stimulation of erythropoietin gene transcription during hypoxia and cobalt exposure. Blood 73 13–16
    1. Shayeghi M., Latunde-Dada G. O., Oakhill J. S., Laftah A. H., Takeuchi K., Halliday N., et al. (2005). Identification of an intestinal heme transporter. Cell 122 789–801 10.1016/j.cell.2005.06.025
    1. Shrivastava K., Ram M. S., Bansal A., Singh S. S., Ilavazhagan G. (2008). Cobalt supplementation promotes hypoxic tolerance and facilitates acclimatization to hypobaric hypoxia in rat brain. High Alt. Med. Biol. 9 63–75 10.1089/ham.2008.1046
    1. Shukla A., Agarwal K. N., Shukla G. S. (1989). Effect of latent iron deficiency on metal levels of rat brain regions. Biol. Trace Elem. Res. 22 141–152 10.1007/BF02916645
    1. Simonsen L. O., Harbak H., Bennekou P. (2012). Cobalt metabolism and toxicology – a brief update. Sci. Total Environ. 432 210–215 10.1016/j.scitotenv.2012.06.009
    1. Six K. M., Goyer R. A. (1972). The influence of iron deficiency on tissue content and toxicity of ingested lead in the rat. J. Lab. Clin. Med. 79 128–136
    1. Tallkvist J., Tjalve H. (1997). Effect of dietary iron-deficiency on the disposition of nickel in rats. Toxicol. Lett. 92 131–138 10.1016/S0378-4274(97)00051-9
    1. Tandon S. K., Khandelwal S., Jain V. K., Mathur N. (1993). Influence of dietary iron deficiency on acute metal intoxication. Biometals 6 133–138 10.1007/BF00140115
    1. Tanzi R. E., Petrukhin K., Chernov I., Pellequer J. L., Wasco W., Ross B., et al. (1993). The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat. Genet. 5 344–350 10.1038/ng1293-344
    1. Theil E. C. (1987). Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu. Rev. Biochem. 56 289–315 10.1146/annurev.bi.56.070187.001445
    1. Troadec M. B., Ward D. M., Lo E., Kaplan J, De Domenico I. (2010). Induction of FPN1 transcription by MTF-1 reveals a role for ferroportin in transition metal efflux. Blood 116 4657–4664 10.1182/blood-2010-04-278614
    1. Tselepis C., Ford S. J., McKie A. T., Vogel W., Zoller H., Simpson R. J., et al. (2010). Characterization of the transition-metal-binding properties of hepcidin. Biochem. J. 427 289–296 10.1042/BJ20091521
    1. Valberg L. S., Ludwig J., Olatunbosun D. (1969). Alteration in cobalt absorption in patients with disorders of iron metabolism. Gastroenterology 56 241–251 10.1016/S0016-5085(69)80123-X
    1. Verga Falzacappa M. V., Vujic Spasic M., Kessler R., Stolte J., Hentze M. W., Muckenthaler M. U. (2007). STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation. Blood 109 353–358 10.1182/blood-2006-07-033969
    1. Videt-Gibou D., Belliard S., Bardou-Jacquet E., Troadec M. B., Le Lan C., Jouanolle A. M., et al. (2009). Iron excess treatable by copper supplementation in acquired aceruloplasminemia: a new form of secondary human iron overload? Blood 114 2360–2361 10.1182/blood-2009-06-226175
    1. Vulpe C. D., Kuo Y. M., Murphy T. L., Cowley L., Askwith C., Libina N., et al. (1999). Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat. Genet. 21 195–199 10.1038/5979
    1. Wardman P., Candeias L. P. (1996). Fenton chemistry: an introduction. Radiat. Res. 145 523–531 10.2307/3579270
    1. Weiss G., Goodnough L. T. (2005). Anemia of chronic disease. N. Engl. J. Med. 352 1011–1023 10.1056/NEJMra041809
    1. Wrighting D. M., Andrews N. C. (2006). Interleukin-6 induces hepcidin expression through STAT3. Blood 108 3204–3209 10.1182/blood-2006-06-027631
    1. Yin Z., Jiang H., Lee E. S., Ni M., Erikson K. M., Milatovic D., et al. (2010). Ferroportin is a manganese-responsive protein that decreases manganese cytotoxicity and accumulation. J. Neurochem. 112 1190–1198 10.1111/j.1471-4159.2009.06534.x
    1. Yuan Y., Hilliard G., Ferguson T., Millhorn D. E. (2003). Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-alpha. J. Biol. Chem. 278 15911–15916 10.1074/jbc.M300463200
    1. Zhang M., Gumerov D. R., Kaltashov I. A., Mason A. B. (2004). Indirect detection of protein-metal binding: interaction of serum transferrin with In3+ and Bi3+. J. Am. Soc. Mass Spectrom. 15 1658–1664 10.1016/j.jasms.2004.08.009
    1. Zhao N., Zhang A. S., Enns C. A. (2013). Iron regulation by hepcidin. J. Clin. Invest. 123 2337–2343 10.1172/JCI67225
    1. Zoller H., Koch R. O., Theurl I., Obrist P., Pietrangelo A., Montosi G., et al. (2001). Expression of the duodenal iron transporters divalent-metal transporter 1 and ferroportin 1 in iron deficiency and iron overload. Gastroenterology 120 1412–1419 10.1053/gast.2001.24033

Source: PubMed

3
구독하다