Non-invasive detection of coronary endothelial response to sequential handgrip exercise in coronary artery disease patients and healthy adults

Allison G Hays, Matthias Stuber, Glenn A Hirsch, Jing Yu, Michael Schär, Robert G Weiss, Gary Gerstenblith, Sebastian Kelle, Allison G Hays, Matthias Stuber, Glenn A Hirsch, Jing Yu, Michael Schär, Robert G Weiss, Gary Gerstenblith, Sebastian Kelle

Abstract

Objectives: Our objective is to test the hypothesis that coronary endothelial function (CorEndoFx) does not change with repeated isometric handgrip (IHG) stress in CAD patients or healthy subjects.

Background: Coronary responses to endothelial-dependent stressors are important measures of vascular risk that can change in response to environmental stimuli or pharmacologic interventions. The evaluation of the effect of an acute intervention on endothelial response is only valid if the measurement does not change significantly in the short term under normal conditions. Using 3.0 Tesla (T) MRI, we non-invasively compared two coronary artery endothelial function measurements separated by a ten minute interval in healthy subjects and patients with coronary artery disease (CAD).

Methods: Twenty healthy adult subjects and 12 CAD patients were studied on a commercial 3.0 T whole-body MR imaging system. Coronary cross-sectional area (CSA), peak diastolic coronary flow velocity (PDFV) and blood-flow were quantified before and during continuous IHG stress, an endothelial-dependent stressor. The IHG exercise with imaging was repeated after a 10 minute recovery period.

Results: In healthy adults, coronary artery CSA changes and blood-flow increases did not differ between the first and second stresses (mean % change ±SEM, first vs. second stress CSA: 14.8%±3.3% vs. 17.8%±3.6%, p = 0.24; PDFV: 27.5%±4.9% vs. 24.2%±4.5%, p = 0.54; blood-flow: 44.3%±8.3 vs. 44.8%±8.1, p = 0.84). The coronary vasoreactive responses in the CAD patients also did not differ between the first and second stresses (mean % change ±SEM, first stress vs. second stress: CSA: -6.4%±2.0% vs. -5.0%±2.4%, p = 0.22; PDFV: -4.0%±4.6% vs. -4.2%±5.3%, p = 0.83; blood-flow: -9.7%±5.1% vs. -8.7%±6.3%, p = 0.38).

Conclusion: MRI measures of CorEndoFx are unchanged during repeated isometric handgrip exercise tests in CAD patients and healthy adults. These findings demonstrate the repeatability of noninvasive 3T MRI assessment of CorEndoFx and support its use in future studies designed to determine the effects of acute interventions on coronary vasoreactivity.

Conflict of interest statement

Competing Interests: One of the authors (Michael Schär) is employed by a commercial company (Philips Healthcare). This affiliation does not alter the PLOS ONE policies on sharing data and materials, as detailed in the online guide for authors.

Figures

Figure 1. Diagram illustrating MRI study flow…
Figure 1. Diagram illustrating MRI study flow with measured parameters.
Hemodynamic parameters have been measured at all time-points (blood pressure and heart rate).
Figure 2. Typical anatomical and flow-velocity encoded…
Figure 2. Typical anatomical and flow-velocity encoded coronary images using magnetic resonance imaging at rest and with sequential isometric handgrip stresses in a healthy subject.
In image (A), a scout scan obtained parallel to the RCA is shown together with the location for cross-sectional imaging (white line). (B) shows (white arrow) the region (corresponding to the cross-sectional location from A) that was selected for analysis at rest (B), during the first handgrip stress (C) and second handgrip stress (D). The white arrow in E shows a cross-section of the RCA that was selected for analysis of coronary flow velocity measures in the healthy volunteer. The signal intensity is proportional to flow velocity with a black signal indicating high velocity down through the imaging plane. In the view of the RCA (white arrow) at baseline (E) and during the first handgrip stress (F) and second handgrip stress (G) the change in luminal coronary signal intensity (increased blackness) indicates a proportional change in through-plane coronary flow velocity.
Figure 3. Typical anatomical and flow-velocity encoded…
Figure 3. Typical anatomical and flow-velocity encoded coronary images using magnetic resonance imaging at rest and during sequential isometric handgrip stress in a CAD patient.
A scout scan obtained parallel to the left anterior descending (LAD) artery (A) is shown together with the location for cross-sectional imaging (white line). The corresponding cross-section of the LAD is shown at rest (B) and during the first (C), and second handgrip stress (D, white arrows) and indicates no significant change in coronary cross sectional area during each stress. The white arrow in E shows a velocity-encoded image of the same LAD cross section at rest, during the first handgrip (F) and second handgrip stress (G). In this case, because the direction of blood flow is being analyzed in the LAD, the change in luminal coronary signal intensity (degree of “whiteness”) indicates a proportional change in through-plane coronary flow velocity.
Figure 4. Rate pressure product (RPP, systolic…
Figure 4. Rate pressure product (RPP, systolic blood pressure X heart rate) is shown at baseline and during isometric handgrip stress (first and second) in both healthy subjects (blue bars) and coronary artery disease patients (red bars).
* signifies p

Figure 5. Percent change in coronary endothelial…

Figure 5. Percent change in coronary endothelial vasoreactive parameters (area, velocity and flow) is shown…

Figure 5. Percent change in coronary endothelial vasoreactive parameters (area, velocity and flow) is shown during first and second isometric handgrip stress for both healthy subjects (blue bars) and CAD patients (red bars).
Error bars indicate standard error of the mean. In the healthy group, a normal coronary endothelial response is seen with an increase in coronary artery area, velocity and flow with stress, and no significant difference between stress 1 and stress 2 response. In the CAD group, there is an abnormal coronary endothelial response with no increase or decrease in the same three parameters with stress, and no significant difference in response between stress 1 and 2.

Figure 6. Bland-Altman plots for intra-observer and…

Figure 6. Bland-Altman plots for intra-observer and inter-observer variability.

Bland-Altman plots for intra-observer variability (A…

Figure 6. Bland-Altman plots for intra-observer and inter-observer variability.
Bland-Altman plots for intra-observer variability (A and C) and inter-observer variability (B and D) of coronary artery cross-sectional area (A and B) and peak diastolic flow velocity (C and D) measurements in CAD patients and healthy subjects. Solid lines above and below the mean represent ±2 standard deviations and the mean differences are shown. P-values are derived from Pitman’s test of differences.
Figure 5. Percent change in coronary endothelial…
Figure 5. Percent change in coronary endothelial vasoreactive parameters (area, velocity and flow) is shown during first and second isometric handgrip stress for both healthy subjects (blue bars) and CAD patients (red bars).
Error bars indicate standard error of the mean. In the healthy group, a normal coronary endothelial response is seen with an increase in coronary artery area, velocity and flow with stress, and no significant difference between stress 1 and stress 2 response. In the CAD group, there is an abnormal coronary endothelial response with no increase or decrease in the same three parameters with stress, and no significant difference in response between stress 1 and 2.
Figure 6. Bland-Altman plots for intra-observer and…
Figure 6. Bland-Altman plots for intra-observer and inter-observer variability.
Bland-Altman plots for intra-observer variability (A and C) and inter-observer variability (B and D) of coronary artery cross-sectional area (A and B) and peak diastolic flow velocity (C and D) measurements in CAD patients and healthy subjects. Solid lines above and below the mean represent ±2 standard deviations and the mean differences are shown. P-values are derived from Pitman’s test of differences.

References

    1. Nitenberg A, Chemla D, Antony I (2004) Epicardial coronary artery constriction to cold pressor test is predictive of cardiovascular events in hypertensive patients with angiographically normal coronary arteries and without other major coronary risk factor. Atherosclerosis 173: 115–123.
    1. Schachinger V, Britten MB, Zeiher AM (2000) Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 101: 1899–1906.
    1. Suwaidi JA, Hamasaki S, Higano ST, Nishimura RA, Holmes DR Jr, et al. (2000) Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation 101: 948–954.
    1. Treasure CB, Klein JL, Weintraub WS, Talley JD, Stillabower ME, et al. (1995) Beneficial effects of cholesterol-lowering therapy on the coronary endothelium in patients with coronary artery disease. N Engl J Med 332: 481–487.
    1. Schindler TH, Nitzsche EU, Munzel T, Olschewski M, Brink I, et al. (2003) Coronary vasoregulation in patients with various risk factors in response to cold pressor testing: contrasting myocardial blood flow responses to short- and long-term vitamin C administration. J Am Coll Cardiol 42: 814–822.
    1. Targonski PV, Bonetti PO, Pumper GM, Higano ST, Holmes DR Jr, et al. (2003) Coronary endothelial dysfunction is associated with an increased risk of cerebrovascular events. Circulation 107: 2805–2809.
    1. Hays AG, Hirsch GA, Kelle S, Gerstenblith G, Weiss RG, et al. (2010) Noninvasive visualization of coronary artery endothelial function in healthy subjects and in patients with coronary artery disease. J Am Coll Cardiol 56: 1657–1665.
    1. Hays AG, Kelle S, Hirsch GA, Soleimanifard S, Yu J, et al. (2012) Regional coronary endothelial function is closely related to local early coronary atherosclerosis in patients with mild coronary artery disease: pilot study. Circ Cardiovasc Imaging 5: 341–348.
    1. Kelle S, Hays AG, Hirsch GA, Gerstenblith G, Miller JM, et al. (2011) Coronary artery distensibility assessed by 3.0 tesla coronary magnetic resonance imaging in subjects with and without coronary artery disease. Am J Cardiol 108: 491–497.
    1. Ceriello A, Esposito K, Ihnat M, Thorpe J, Giugliano D (2010) Effect of acute hyperglycaemia, long-term glycaemic control and insulin on endothelial dysfunction and inflammation in Type 1 diabetic patients with different characteristics. Diabet Med 27: 911–917.
    1. Grassi D, Desideri G, Necozione S, Ruggieri F, Blumberg JB, et al. (2012) Protective effects of flavanol-rich dark chocolate on endothelial function and wave reflection during acute hyperglycemia. Hypertension 60: 827–832.
    1. Rudolph TK, Ruempler K, Schwedhelm E, Tan-Andresen J, Riederer U, et al. (2007) Acute effects of various fast-food meals on vascular function and cardiovascular disease risk markers: the Hamburg Burger Trial. Am J Clin Nutr 86: 334–340.
    1. Gielen S, Erbs S, Linke A, Mobius-Winkler S, Schuler G, et al. (2003) Home-based versus hospital-based exercise programs in patients with coronary artery disease: effects on coronary vasomotion. Am Heart J 145: E3.
    1. Green DJ, Cable NT, Fox C, Rankin JM, Taylor RR (1994) Modification of forearm resistance vessels by exercise training in young men. J Appl Physiol 77: 1829–1833.
    1. Green DJ, Maiorana A, O’Driscoll G, Taylor R (2004) Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol 561: 1–25.
    1. Hambrecht R, Wolf A, Gielen S, Linke A, Hofer J, et al. (2000) Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med 342: 454–460.
    1. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, et al. (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15: 827–832.
    1. Stuber M, Botnar RM, Danias PG, Sodickson DK, Kissinger KV, et al. (1999) Double-oblique free-breathing high resolution three-dimensional coronary magnetic resonance angiography. J Am Coll Cardiol 34: 524–531.
    1. Kim WY, Stuber M, Kissinger KV, Andersen NT, Manning WJ, et al. (2001) Impact of bulk cardiac motion on right coronary MR angiography and vessel wall imaging. J Magn Reson Imaging 14: 383–390.
    1. Meyer CH, Hu BS, Nishimura DG, Macovski A (1992) Fast spiral coronary artery imaging. Magn Reson Med 28: 202–213.
    1. Keegan J, Gatehouse PD, Yang GZ, Firmin DN (2004) Spiral phase velocity mapping of left and right coronary artery blood flow: correction for through-plane motion using selective fat-only excitation. J Magn Reson Imaging 20: 953–960.
    1. Weiss RG, Bottomley PA, Hardy CJ, Gerstenblith G (1990) Regional myocardial metabolism of high-energy phosphates during isometric exercise in patients with coronary artery disease. N Engl J Med 323: 1593–1600.
    1. Terashima M, Meyer CH, Keeffe BG, Putz EJ, de la Pena-Almaguer E, et al. (2005) Noninvasive assessment of coronary vasodilation using magnetic resonance angiography. J Am Coll Cardiol 45: 104–110.
    1. Doucette JW, Corl PD, Payne HM, Flynn AE, Goto M, et al. (1992) Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation 85: 1899–1911.
    1. Botnar RM, Stuber M, Kissinger KV, Kim WY, Spuentrup E, et al. (2000) Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation 102: 2582–2587.
    1. Fayad ZA, Fuster V, Fallon JT, Jayasundera T, Worthley SG, et al. (2000) Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation 102: 506–510.
    1. Kim WY, Stuber M, Bornert P, Kissinger KV, Manning WJ, et al. (2002) Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with nonsignificant coronary artery disease. Circulation 106: 296–299.
    1. von Birgelen C, Klinkhart W, Mintz GS, Papatheodorou A, Herrmann J, et al. (2001) Plaque distribution and vascular remodeling of ruptured and nonruptured coronary plaques in the same vessel: an intravascular ultrasound study in vivo. J Am Coll Cardiol 37: 1864–1870.
    1. Brown BG, Lee AB, Bolson EL, Dodge HT (1984) Reflex constriction of significant coronary stenosis as a mechanism contributing to ischemic left ventricular dysfunction during isometric exercise. Circulation 70: 18–24.
    1. Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, et al. (1986) Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 315: 1046–1051.
    1. Nabel EG, Ganz P, Gordon JB, Alexander RW, Selwyn AP (1988) Dilation of normal and constriction of atherosclerotic coronary arteries caused by the cold pressor test. Circulation 77: 43–52.
    1. Wang J, Wolin MS, Hintze TH (1993) Chronic exercise enhances endothelium-mediated dilation of epicardial coronary artery in conscious dogs. Circ Res 73: 829–838.
    1. Sessa WC, Pritchard K, Seyedi N, Wang J, Hintze TH (1994) Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res 74: 349–353.
    1. Woodman CR, Muller JM, Laughlin MH, Price EM (1997) Induction of nitric oxide synthase mRNA in coronary resistance arteries isolated from exercise-trained pigs. Am J Physiol 273: H2575–2579.
    1. Bank AJ, Shammas RA, Mullen K, Chuang PP (1998) Effects of short-term forearm exercise training on resistance vessel endothelial function in normal subjects and patients with heart failure. J Card Fail 4: 193–201.
    1. Hambrecht R, Fiehn E, Weigl C, Gielen S, Hamann C, et al. (1998) Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation 98: 2709–2715.
    1. Green DJ, O’Driscoll G, Blanksby BA, Taylor RR (1996) Control of skeletal muscle blood flow during dynamic exercise: contribution of endothelium-derived nitric oxide. Sports Med 21: 119–146.
    1. Gould KL, Nakagawa Y, Nakagawa K, Sdringola S, Hess MJ, et al. (2000) Frequency and clinical implications of fluid dynamically significant diffuse coronary artery disease manifest as graded, longitudinal, base-to-apex myocardial perfusion abnormalities by noninvasive positron emission tomography. Circulation 101: 1931–1939.
    1. Schindler TH, Facta AD, Prior JO, Cadenas J, Zhang XL, et al. (2009) Structural alterations of the coronary arterial wall are associated with myocardial flow heterogeneity in type 2 diabetes mellitus. Eur J Nucl Med Mol Imaging 36: 219–229.
    1. Manning WJ, Li W, Boyle NG, Edelman RR (1993) Fat-suppressed breath-hold magnetic resonance coronary angiography. Circulation 87: 94–104.
    1. Scheidegger MB, Stuber M, Boesiger P, Hess OM (1996) Coronary artery imaging by magnetic resonance. Herz 21: 90–96.
    1. Hundley WG, Lange RA, Clarke GD, Meshack BM, Payne J, et al. (1996) Assessment of coronary arterial flow and flow reserve in humans with magnetic resonance imaging. Circulation 93: 1502–1508.
    1. Nagel E, Bornstedt A, Hug J, Schnackenburg B, Wellnhofer E, et al. (1999) Noninvasive determination of coronary blood flow velocity with magnetic resonance imaging: comparison of breath-hold and navigator techniques with intravascular ultrasound. Magn Reson Med 41: 544–549.

Source: PubMed

3
구독하다