Health Benefits of β-Hydroxy-β-Methylbutyrate (HMB) Supplementation in Addition to Physical Exercise in Older Adults: A Systematic Review with Meta-Analysis

Javier Courel-Ibáñez, Tomas Vetrovsky, Klara Dadova, Jesús G Pallarés, Michal Steffl, Javier Courel-Ibáñez, Tomas Vetrovsky, Klara Dadova, Jesús G Pallarés, Michal Steffl

Abstract

Both regular exercise training and beta-hydroxy-beta-methylbutyrate (HMB) supplementation are shown as effective treatments to delay or reverse frailty and reduce cognitive impairment in older people. However, there is very little evidence on the true benefits of combining both strategies. The aim of this meta-analysis was to quantify the effects of exercise in addition to HMB supplementation, on physical and cognitive health in older adults. Data from 10 randomized controlled trials (RCTs) investigating the effect of HMB supplementation and physical function in adults aged 50 years or older were analyzed, involving 384 participants. Results showed that HMB supplementation in addition to physical exercise has no or fairly low impact in improving body composition, muscle strength, or physical performance in adults aged 50 to 80 years, compared to exercise alone. There is a gap of knowledge on the beneficial effects of HMB combined with exercise to preserve cognitive functions in aging and age-related neurodegenerative diseases. Future RCTs are needed to refine treatment choices combining HMB and exercises for older people in particular populations, ages, and health status. Specifically, interventions in older adults aged 80 years or older, with cognitive impairment, frailty, or limited mobility are required.

Keywords: elderly; leucine; neuromuscular function; nutrition; resistance training; sarcopenia.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Flowchart illustrating the different phases of the search and study selection, according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statements.
Figure 2
Figure 2
Effects meta-analysis of HMB on handgrip strength. Squares are effect sizes. The area of each square is proportional to the study’s weight in the meta-analysis. Vertical line and diamond indicate the overall measure of effects and confidence intervals.
Figure 3
Figure 3
Effects meta-analysis of HMB on leg strength. Squares are effect sizes. The area of each square is proportional to the study’s weight in the meta-analysis. Vertical line and diamond indicate the overall measure of effects and confidence intervals.
Figure 4
Figure 4
Effects meta-analysis of HMB on muscle mass. Squares are effect sizes. The area of each square is proportional to the study’s weight in the meta-analysis. Vertical line and diamond indicate the overall measure of effects and confidence intervals.
Figure 5
Figure 5
Effects meta-analysis of HMB on fat mass. Squares are effect sizes. The area of each square is proportional to the study’s weight in the meta-analysis. Vertical line and diamond indicate the overall measure of effects and confidence intervals.
Figure 6
Figure 6
Effects meta-analysis of HMB on muscle mass and strength. Squares are effect sizes. The area of each square is proportional to the study’s weight in the meta-analysis. Vertical line and diamond indicate the overall measure of effects and confidence intervals.

References

    1. Travers J., Romero-Ortuno R., Bailey J., Cooney M.T. Delaying and reversing frailty: A systematic review of primary care interventions. Br. J. Gen. Pract. 2019;69:e61–e69. doi: 10.3399/bjgp18X700241.
    1. Lazarus N.R., Izquierdo M., Higginson I.J., Harridge S.D.R. Exercise Deficiency Diseases of Ageing: The Primacy of Exercise and Muscle Strengthening as First-Line Therapeutic Agents to Combat Frailty. J. Am. Med. Dir. Assoc. 2018;19:741–743. doi: 10.1016/j.jamda.2018.04.014.
    1. Sáez de Asteasu M.L., Martínez-Velilla N., Zambom-Ferraresi F., Casas-Herrero Á., Izquierdo M. Role of physical exercise on cognitive function in healthy older adults: A systematic review of randomized clinical trials. Ageing Res. Rev. 2017;37:117–134. doi: 10.1016/j.arr.2017.05.007.
    1. Martínez-Velilla N., Casas-Herrero A., Zambom-Ferraresi F., Sáez de Asteasu M.L., Lucia A., Galbete A., García-Baztán A., Alonso-Renedo J., González-Glaría B., Gonzalo-Lázaro M., et al. Effect of Exercise Intervention on Functional Decline in Very Elderly Patients During Acute Hospitalization. JAMA Intern. Med. 2019;179:28. doi: 10.1001/jamainternmed.2018.4869.
    1. Tarazona-Santabalbina F.J., Gómez-Cabrera M.C., Pérez-Ros P., Martínez-Arnau F.M., Cabo H., Tsaparas K., Salvador-Pascual A., Rodriguez-Mañas L., Viña J. A Multicomponent Exercise Intervention that Reverses Frailty and Improves Cognition, Emotion, and Social Networking in the Community-Dwelling Frail Elderly: A Randomized Clinical Trial. J. Am. Med. Dir. Assoc. 2016;17:426–433. doi: 10.1016/j.jamda.2016.01.019.
    1. García-Molina R., Ruíz-Grao M.C., Noguerón-García A., Martínez-Reig M., Esbrí-Víctor M., Izquierdo M., Abizanda P. Benefits of a multicomponent Falls Unit-based exercise program in older adults with falls in real life. Exp. Gerontol. 2018;110:79–85. doi: 10.1016/j.exger.2018.05.013.
    1. Cadore E.L., Casas-Herrero A., Zambom-Ferraresi F., Idoate F., Millor N., Gómez M., Rodriguez-Mañas L., Izquierdo M. Multicomponent exercises including muscle power training enhance muscle mass, power output, and functional outcomes in institutionalized frail nonagenarians. Age. 2014;36:773–785. doi: 10.1007/s11357-013-9586-z.
    1. Sáez de Asteasu M.L., Martínez-Velilla N., Zambom-Ferraresi F., Casas-Herrero Á., Cadore E.L., Galbete A., Izquierdo M. Assessing the impact of physical exercise on cognitive function in older medical patients during acute hospitalization: Secondary analysis of a randomized trial. PLoS Med. 2019;16:e1002852. doi: 10.1371/journal.pmed.1002852.
    1. Izquierdo M., Rodriguez-Mañas L., Casas-Herrero A., Martinez-Velilla N., Cadore E.L., Sinclair A.J. Is It Ethical Not to Precribe Physical Activity for the Elderly Frail? J. Am. Med. Dir. Assoc. 2016;17:779–781. doi: 10.1016/j.jamda.2016.06.015.
    1. De Souto Barreto P., Demougeot L., Vellas B., Rolland Y. How much exercise are older adults living in nursing homes doing in daily life? A cross-sectional study. J. Sports Sci. 2015;33:116–124. doi: 10.1080/02640414.2014.928828.
    1. Gutiérrez-Valencia M., Izquierdo M., Lacalle-Fabo E., Marín-Epelde I., Ramón-Espinoza M.F., Domene-Domene T., Casas-Herrero Á., Galbete A., Martínez-Velilla N. Relationship between frailty, polypharmacy, and underprescription in older adults living in nursing homes. Eur. J. Clin. Pharmacol. 2018;74:961–970. doi: 10.1007/s00228-018-2452-2.
    1. Casas-Herrero A., Cadore E.L., Zambom-Ferraresi F., Idoate F., Millor N., Martínez-Ramirez A., Gómez M., Rodriguez-Mañas L., Marcellán T., de Gordoa A.R., et al. Functional Capacity, Muscle Fat Infiltration, Power Output, and Cognitive Impairment in Institutionalized Frail Oldest Old. Rejuvenation Res. 2013;16:396–403. doi: 10.1089/rej.2013.1438.
    1. Cadore E.L., Sáez de Asteasu M.L., Izquierdo M. Multicomponent exercise and the hallmarks of frailty: Considerations on cognitive impairment and acute hospitalization. Exp. Gerontol. 2019;122:10–14. doi: 10.1016/j.exger.2019.04.007.
    1. Hörder H., Johansson L., Guo X., Grimby G., Kern S., Östling S., Skoog I. Midlife cardiovascular fitness and dementia: A 44-year longitudinal population study in women. Neurology. 2018;90:e1298–e1305. doi: 10.1212/WNL.0000000000005290.
    1. Kossioni A.E. The Association of Poor Oral Health Parameters with Malnutrition in Older Adults: A Review Considering the Potential Implications for Cognitive Impairment. Nutrients. 2018;10:1709. doi: 10.3390/nu10111709.
    1. Crichton M., Craven D., Mackay H., Marx W., de van der Schueren M., Marshall S. A systematic review, meta-analysis and meta-regression of the prevalence of protein-energy malnutrition: Associations with geographical region and sex. Age Ageing. 2018;48:38–48. doi: 10.1093/ageing/afy144.
    1. Landi F., Calvani R., Tosato M., Martone A.M., Ortolani E., Savera G., D’Angelo E., Sisto A., Marzetti E. Protein intake and muscle health in old age: From biological plausibility to clinical evidence. Nutrients. 2016;8:295. doi: 10.3390/nu8050295.
    1. Doorduijn A.S., Visser M., van de Rest O., Kester M.I., de Leeuw F.A., Boesveldt S., Fieldhouse J.L.P., van den Heuvel E.G.H.M., Teunissen C.E., Scheltens P., et al. Associations of AD Biomarkers and Cognitive Performance with Nutritional Status: The NUDAD Project. Nutrients. 2019;11:1161. doi: 10.3390/nu11051161.
    1. Meijers J.M.M., Halfens R.J.G., Wilson L., Schols J.M.G.A. Estimating the costs associated with malnutrition in Dutch nursing homes. Clin. Nutr. 2012;31:65–68. doi: 10.1016/j.clnu.2011.08.009.
    1. Holeček M. Beta-hydroxy-beta-methylbutyrate supplementation and skeletal muscle in healthy and muscle-wasting conditions. J. Cachexia Sarcopenia Muscle. 2017;8:529–541. doi: 10.1002/jcsm.12208.
    1. Nissen S.L., Abumrad N.N. Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB) J. Nutr. Biochem. 1997;8:300–311. doi: 10.1016/S0955-2863(97)00048-X.
    1. Holecek M., Muthny T., Kovarik M., Sispera L. Effect of beta-hydroxy-beta-methylbutyrate (HMB) on protein metabolism in whole body and in selected tissues. Food Chem. Toxicol. 2009;47:255–259. doi: 10.1016/j.fct.2008.11.021.
    1. Wilkinson D.J., Hossain T., Hill D.S., Phillips B.E., Crossland H., Williams J., Loughna P., Churchward-Venne T.A., Breen L., Phillips S.M., et al. Effects of leucine and its metabolite β-hydroxy-β-methylbutyrate on human skeletal muscle protein metabolism. J. Physiol. 2013;591:2911–2923. doi: 10.1113/jphysiol.2013.253203.
    1. Wu H., Xia Y., Jiang J., Du H., Guo X., Liu X., Li C., Huang G., Niu K. Effect of beta-hydroxy-beta-methylbutyrate supplementation on muscle loss in older adults: A systematic review and meta-analysis. Arch. Gerontol. Geriatr. 2015;61:168–175. doi: 10.1016/j.archger.2015.06.020.
    1. Bear D.E., Langan A., Dimidi E., Wandrag L., Harridge S.D.R., Hart N., Connolly B., Whelan K. Beta-hydroxy-beta-methylbutyrate and its impact on skeletal muscle mass and physical function in clinical practice: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2019;109:1119–1132. doi: 10.1093/ajcn/nqy373.
    1. Munroe M., Mahmassani Z.S., Dvoretskiy S., Reid J.J., Miller B.F., Hamilton K., Rhodes J.S., Boppart M.D. Cognitive function is preserved in aged mice following long-term β-hydroxy-β-methylbutyrate supplementation. Nutr. Neurosci. 2018:1–13. doi: 10.1080/1028415X.2018.1483101.
    1. Hankosky E.R., Sherrill L.K., Ruvola L.A., Haake R.M., Kim T., Hammerslag L.R., Kougias D.G., Juraska J.M., Gulley J.M. Effects of β-hydroxy-β-methyl butyrate on working memory and cognitive flexibility in an animal model of aging. Nutr. Neurosci. 2017;20:379–387. doi: 10.1080/1028415X.2016.1145376.
    1. Kougias D.G., Das T., Perez A.B., Pereira S.L. A role for nutritional intervention in addressing the aging neuromuscular junction. Nutr. Res. 2018;53:1–14. doi: 10.1016/j.nutres.2018.02.006.
    1. Landi F., Calvani R., Picca A., Marzetti E. Beta-hydroxy-beta-methylbutyrate and sarcopenia: From biological plausibility to clinical evidence. Curr. Opin. Clin. Nutr. Metab. Care. 2019;22:37–43. doi: 10.1097/MCO.0000000000000524.
    1. Shreeram S., Ramesh S., Puthan J.K., Balakrishnan G., Subramanian R., Reddy M.T., Pereira S.L. Age associated decline in the conversion of leucine to β-hydroxy-β-methylbutyrate in rats. Exp. Gerontol. 2016;80:6–11. doi: 10.1016/j.exger.2016.03.021.
    1. Moher D., Liberati A., Tetzlaff J., Altman D.G., Group T.P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097.
    1. Centre for Reviews and Dissemination . Systematic Reviews: CRD’s Guidance for Undertaking Systematic Reviews in Health Care. University of York; York, UK: 2009.
    1. Higgins J.P.T., Sterne J.A.C., Savovic J., Page M.J., Hróbjartsson A., Boutron I., Reeves B., Eldridge S. A revised tool for assessing risk of bias in randomized trials. Cochrane Database Syst. Rev. 2016;10:29–31. doi: 10.1002/14651858.CD201601.
    1. Tipton E. Small sample adjustments for robust variance estimation with meta-regression. Psychol. Methods. 2015;20:375. doi: 10.1037/met0000011.
    1. Hedges L.V., Tipton E., Johnson M.C. Robust variance estimation in meta-regression with dependent effect size estimates. Res. Synth. Methods. 2010;1:39–65. doi: 10.1002/jrsm.5.
    1. Olveira G., Olveira C., Doña E., Palenque F.J., Porras N., Dorado A., Godoy A.M., Rubio-Martínez E., Rojo-Martínez G., Martín-Valero R. Oral supplement enriched in HMB combined with pulmonary rehabilitation improves body composition and health related quality of life in patients with bronchiectasis (Prospective, Randomised Study) Clin. Nutr. 2016;35:1015–1022. doi: 10.1016/j.clnu.2015.10.001.
    1. Berton L., Bano G., Carraro S., Veronese N., Pizzato S., Bolzetta F., De Rui M., Valmorbida E., De Ronch I., Perissinotto E., et al. Effect of Oral Beta-hydroxy-Beta-methylbutyrate (HMB) Supplementation on Physical Performance in Healthy Old Women Over 65 Years: An Open Label Randomized Controlled Trial. PLoS ONE. 2015;10:e0141757. doi: 10.1371/journal.pone.0141757.
    1. Din U.S.U., Brook M.S., Selby A., Quinlan J., Boereboom C., Abdullah H., Franchi M., Narici M.V., Phillips B.E., Williams J.W., et al. A double-blind placebo controlled trial into the impacts of HMB supplementation and exercise on free-living muscle protein synthesis, muscle mass and function, in older adults. Clin. Nutr. 2018 doi: 10.1016/j.clnu.2018.09.025.
    1. Standley R.A., Distefano G., Pereira S.L., Tian M., Kelly O.J., Coen P.M., Deutz N.E.P., Wolfe R.R., Goodpaster B.H. Effects of β-hydroxy-β-methylbutyrate on skeletal muscle mitochondrial content and dynamics, and lipids after 10 days of bed rest in older adults. J. Appl. Physiol. 2017;123:1092–1100. doi: 10.1152/japplphysiol.00192.2017.
    1. Deutz N.E.P., Pereira S.L., Hays N.P., Oliver J.S., Edens N.K., Evans C.M., Wolfe R.R. Effect of β-hydroxy-β-methylbutyrate (HMB) on lean body mass during 10 days of bed rest in older adults. Clin. Nutr. 2013;32:704–712. doi: 10.1016/j.clnu.2013.02.011.
    1. Vukovich M.D., Stubbs N.B., Bohlken R.M. Body composition in 70-year-old adults responds to dietary beta-hydroxy-beta-methylbutyrate similarly to that of young adults. J. Nutr. 2001;131:2049–2052. doi: 10.1093/jn/131.7.2049.
    1. Stout J.R., Fukuda D.H., Kendall K.L., Smith-Ryan A.E., Moon J.R., Hoffman J.R. Beta-hydroxy-beta-methylbutyrate (HMB) supplementation and resistance exercise significantly reduce abdominal adiposity in healthy elderly men. Exp. Gerontol. 2015;64:33–34. doi: 10.1016/j.exger.2015.02.012.
    1. Stout J.R., Smith-Ryan A.E., Fukuda D.H., Kendall K.L., Moon J.R., Hoffman J.R., Wilson J.M., Oliver J.S., Mustad V.A. Effect of calcium β-hydroxy-β-methylbutyrate (CaHMB) with and without resistance training in men and women 65+ yrs: A randomized, double-blind pilot trial. Exp. Gerontol. 2013;48:1303–1310. doi: 10.1016/j.exger.2013.08.007.
    1. Malafarina V., Uriz-Otano F., Malafarina C., Martinez J.A., Zulet M.A. Effectiveness of nutritional supplementation on sarcopenia and recovery in hip fracture patients. A multi-centre randomized trial. Maturitas. 2017;101:42–50. doi: 10.1016/j.maturitas.2017.04.010.
    1. Nissen S., Sharp R.L., Panton L., Vukovich M., Trappe S., Fuller J.C. Beta-hydroxy-beta-methylbutyrate (HMB) supplementation in humans is safe and may decrease cardiovascular risk factors. J. Nutr. 2000;130:1937–1945. doi: 10.1093/jn/130.8.1937.
    1. Oktaviana J., Zanker J., Vogrin S., Duque G. The Effect of beta-hydroxy-beta-methylbutyrate (HMB) on Sarcopenia and Functional Frailty in Older Persons: A Systematic Review. J. Nutr. Heal. Aging. 2019;23:145–150. doi: 10.1007/s12603-018-1153-y.
    1. Sanz-Paris A., Camprubi-Robles M., Lopez-Pedrosa J.M., Pereira S.L., Rueda R., Ballesteros-Pomar M.D., Garcia Almeida J.M., Cruz-Jentoft A.J. Role of Oral Nutritional Supplements Enriched with B-hydroxy-B-Methylbutyrate in Maintaining Muscle Function and Improving Clinical Outcomes in Various Clinical Settings. J. Nutr. Heal. Aging. 2018;22:664–675. doi: 10.1007/s12603-018-0995-7.
    1. Fragala M.S., Cadore E.L., Dorgo S., Izquierdo M., Kraemer W.J., Peterson M.D., Ryan E.D. Resistance Training for Older Adults. Position Statement from the National Strength and Conditioning Association. J. Strength Cond. Res. 2019;33:2019–2052. doi: 10.1519/JSC.0000000000003230.
    1. Lopez P., Pinto R.S., Radaelli R., Rech A., Grazioli R., Izquierdo M., Cadore E.L. Benefits of resistance training in physically frail elderly: A systematic review. Aging Clin. Exp. Res. 2018;30:889–899. doi: 10.1007/s40520-017-0863-z.
    1. Ekinci O., Yanik S., Terzioglu Bebitoglu B., Yilmaz Akyuz E., Dokuyucu A., Erdem S. Effect of Calcium beta-hydroxy-beta-methylbutyrate (CaHMB), Vitamin D, and Protein Supplementation on Postoperative Immobilization in Malnourished Older Adult Patients with Hip Fracture: A Randomized Controlled Study. Nutr. Clin. Pract. 2016;31:829–835. doi: 10.1177/0884533616629628.
    1. Yamamoto K., Nagatsuma Y., Fukuda Y., Hirao M., Nishikawa K., Miyamoto A., Ikeda M., Nakamori S., Sekimoto M., Fujitani K., et al. Effectiveness of a preoperative exercise and nutritional support program for elderly sarcopenic patients with gastric cancer. Gastric Cancer. 2017;20:913–918. doi: 10.1007/s10120-016-0683-4.
    1. Eley H.L., Russell S.T., Baxter J.H., Mukerji P., Tisdale M.J. Signaling pathways initiated by β-hydroxy-β-methylbutyrate to attenuate the depression of protein synthesis in skeletal muscle in response to cachectic stimuli. Am. J. Physiol. Metab. 2007;293:E923–E931. doi: 10.1152/ajpendo.00314.2007.
    1. Eley H.L., Russell S.T., Tisdale M.J. Attenuation of depression of muscle protein synthesis induced by lipopolysaccharide, tumor necrosis factor, and angiotensin II by β-hydroxy-β-methylbutyrate. Am. J. Physiol. Metab. 2008;295:E1409–E1416. doi: 10.1152/ajpendo.90530.2008.
    1. Sánchez-Rodríguez D., Marco E., Ronquillo-Moreno N., Miralles R., Mojal S., Vázquez-Ibar O., Escalada F., Muniesa J.M. The PSSMAR study. Postacute sarcopenia: Supplementation with β-hydroxy-β-methylbutyrate after resistance training: Study protocol of a randomized, double-blind controlled trial. Maturitas. 2016;94:117–124. doi: 10.1016/j.maturitas.2016.08.019.
    1. Courel-Ibáñez J., Pallarés J.G. Effects of β-hydroxy-β-methylbutyrate (HMB) supplementation in addition to multicomponent exercise in adults older than 70 years living in nursing homes, a cluster randomized placebo-controlled trial: The HEAL study protocol. BMC Geriatr. 2019;19:188. doi: 10.1186/s12877-019-1200-5.
    1. Osuka Y., Kojima N., Wakaba K., Miyauchi D., Tanaka K., Kim H. Effects of resistance training and/or beta-hydroxy-beta-methylbutyrate supplementation on muscle mass, muscle strength and physical performance in older women with reduced muscle mass: Protocol for a randomised, double-blind, placebo-controlled trial. BMJ Open. 2019;9:e025723. doi: 10.1136/bmjopen-2018-025723.
    1. Santos-Fandila A., Zafra-Gómez A., Barranco A., Navalón A., Rueda R., Ramírez M. Quantitative determination of β-hydroxy-β-methylbutyrate and leucine in culture media and microdialysates from rat brain by UHPLC-tandem mass spectrometry. Anal. Bioanal. Chem. 2014;406:2863–2872. doi: 10.1007/s00216-014-7694-y.
    1. Kougias D.G., Hankosky E.R., Gulley J.M., Juraska J.M. Beta-hydroxy-beta-methylbutyrate (HMB) ameliorates age-related deficits in water maze performance, especially in male rats. Physiol. Behav. 2017;170:93–99. doi: 10.1016/j.physbeh.2016.12.025.
    1. Kougias D.G., Nolan S.O., Koss W.A., Kim T., Hankosky E.R., Gulley J.M., Juraska J.M. Beta-hydroxy-beta-methylbutyrate ameliorates aging effects in the dendritic tree of pyramidal neurons in the medial prefrontal cortex of both male and female rats. Neurobiol. Aging. 2016;40:78–85. doi: 10.1016/j.neurobiolaging.2016.01.004.
    1. Salto R., Vílchez J.D., Girón M.D., Cabrera E., Campos N., Manzano M., Rueda R., López-Pedrosa J.M. β-hydroxy-β-methylbutyrate (HMB) Promotes Neurite Outgrowth in Neuro2a Cells. PLoS ONE. 2015;10:e0135614. doi: 10.1371/journal.pone.0135614.

Source: PubMed

3
구독하다