CD7-directed CAR T-cell therapy: a potential immunotherapy strategy for relapsed/refractory acute myeloid leukemia

Xuanqi Cao, Haiping Dai, Qingya Cui, Zheng Li, Wenhong Shen, Jinlan Pan, Hongjie Shen, Qinfen Ma, Mengyun Li, Sifan Chen, Juncheng Chen, Xiaming Zhu, Huimin Meng, Lin Yang, Depei Wu, Xiaowen Tang, Xuanqi Cao, Haiping Dai, Qingya Cui, Zheng Li, Wenhong Shen, Jinlan Pan, Hongjie Shen, Qinfen Ma, Mengyun Li, Sifan Chen, Juncheng Chen, Xiaming Zhu, Huimin Meng, Lin Yang, Depei Wu, Xiaowen Tang

Abstract

Relapsed/refractory acute myeloid leukemia (AML) patients generally have a dismal prognosis and the treatment remains challenging. Due to the expression of CD7 on 30% AML and not on normal myeloid and erythroid cells, CD7 is an attractive target for immunotherapy of AML. CD7-targeted CAR T-cells had demonstrated encouraging efficacy in xenograft models of AML. We report here on the use of autologous CD7 CAR T-cells in the treatment of a relapsed/refractory AML patient with complex karyotype, TP53 deletion, FLT3-ITD mutation, and SKAP2-RUNX1 fusion gene. Before the CAR T-cell therapy, the patient achieved partial remission with IA regimen and attained complete remission after reinduction therapy (decitabine and venentoclax). Relapse occurred after consolidation (CLAG regimen). Then she failed CLIA regimen combined with venetoclax and exhibited resistance to FLT3 inhibitors. Bone marrow showed 20% blasts (CD7+ 95.6%). A total dose of 5 × 106/kg CD7 CAR T-cells was administered after the decitabine +FC regimen. Seventeen days after CAR T-cells infusion, she achieved morphologic leukemia-free state. The patient developed grade 3 cytokine release syndrome. No severe organ toxicity or immune effector cell-associated neurotoxicity syndrome was observed. In summary, the autologous CD7 CAR T-cell therapy could be considered a potential approach for AML with CD7 expression (NCT04762485).Trial registration Clinical Trials.gov, NCT04762485. Registered on February 21, 2021, prospectively registered.

Keywords: Acute myeloid leukemia; CD7; Chimeric antigen receptor T‑cells; Relapsed/refractory.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
CD7 CAR T-cell therapy regime and clinical characteristic after infusion. a Schematic of the CD7 CAR T-cell therapy regimen, the total infusion dose of CAR T-cells was 5 × 106/kg for 2 days; b qPCR analysis of the CAR T-cells copies in PB after the infusion. The highest level was on day 14. The patient still has 5,084 CAR-T copies/µg  by day 28; c Change of the temperature and CRP after CD7 CAR T-cells infusion; d Change of cytokines after CD7 CAR T-cells infusion; e Change of the blood cell counts after CD7 CAR T-cells infusion
Fig. 2
Fig. 2
Treatment response of CD7 CAR T-cells infusion. a BM morphology before and after CD7 CAR T-cells infusion; b Change of percentage of blasts and MRD in BM after CD7 CAR T-cells infusion; c Flow cytometry analysis in BM before and after CD7 CAR T-cells infusion; d Change of molecular markers before and after CD7 CAR T-cells infusion

References

    1. Wang J, Chen S, Xiao W, Li W, Wang L, Yang S, et al. CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia. J Hematol Oncol. 2018;11(1):7. doi: 10.1186/s13045-017-0553-5.
    1. Walter RB, Appelbaum FR, Estey EH, Bernstein ID. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood. 2012;119(26):6198–6208. doi: 10.1182/blood-2011-11-325050.
    1. Wermke M, Kraus S, Ehninger A, Bargou RC, Goebeler ME, Middeke JM, et al. Proof of concept for a rapidly switchable universal CAR-T platform with UniCAR-T-CD123 in relapsed/refractory AML. Blood. 2021;137(22):3145–3148. doi: 10.1182/blood.2020009759.
    1. Cui Q, Qian C, Xu N, Kang L, Dai H, Cui W, et al. CD38-directed CAR-T cell therapy: a novel immunotherapy strategy for relapsed acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation. J Hematol Oncol. 2021;14(1):82. doi: 10.1186/s13045-021-01092-4.
    1. Fiorenza S, Turtle CJ. CAR-T cell therapy for acute myeloid leukemia: preclinical rationale, current clinical progress, and barriers to success. BioDrugs. 2021;35(3):281–302. doi: 10.1007/s40259-021-00477-8.
    1. Chang H, Yeung J, Brandwein J, Yi QL. CD7 expression predicts poor disease free survival and post-remission survival in patients with acute myeloid leukemia and normal karyotype. Leuk Res. 2007;31(2):157–162. doi: 10.1016/j.leukres.2006.06.001.
    1. Ogata K, Yokose N, Shioi Y, Ishida Y, Tomiyama J, Hamaguchi H, et al. Reappraisal of the clinical significance of CD7 expression in association with cytogenetics in de novo acute myeloid leukaemia. Br J Haematol. 2001;115(3):612–615. doi: 10.1046/j.1365-2141.2001.03139.x.
    1. Gomes-Silva D, Atilla E, Atilla PA, Mo F, Tashiro H, Srinivasan M, et al. CD7 CAR t cells for the therapy of acute myeloid leukemia. Mol Ther. 2019;27(1):272–280. doi: 10.1016/j.ymthe.2018.10.001.
    1. Kadia TM, Reville PK, Borthakur G, Yilmaz M, Kornblau S, Alvarado Y, et al. Venetoclax plus intensive chemotherapy with cladribine, idarubicin, and cytarabine in patients with newly diagnosed acute myeloid leukaemia or high-risk myelodysplastic syndrome: a cohort from a single-centre, single-arm, phase 2 trial. Lancet Haematol. 2021;8(8):e552–e561. doi: 10.1016/S2352-3026(21)00192-7.
    1. Zhang M, Chen D, Fu X, Meng H, Nan F, Sun Z, et al. Autologous Nanobody-Derived Fratricide-Resistant CD7-CAR t-cell therapy for patients with relapsed and refractory t-cell acute lymphoblastic leukemia/lymphoma. Clin Cancer Res. 2022;28(13):2830–2843. doi: 10.1158/1078-0432.CCR-21-4097.
    1. Dai HP, Cui W, Cui QY, Zhu WJ, Meng HM, Zhu MQ, et al. Haploidentical CD7 CAR T-cells induced remission in a patient with TP53 mutated relapsed and refractory early T-cell precursor lymphoblastic leukemia/lymphoma. Biomark Res. 2022;10(1):6. doi: 10.1186/s40364-022-00352-w.
    1. Lee DW, Santomasso BD, Locke FL, Ghobadi A, Turtle CJ, Brudno JN, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transpl. 2019;25(4):625–638. doi: 10.1016/j.bbmt.2018.12.758.
    1. Porter D, Frey N, Wood PA, Weng Y, Grupp SA. Grading of cytokine release syndrome associated with the CAR T cell therapy tisagenlecleucel. J Hematol Oncol. 2018;11(1):35. doi: 10.1186/s13045-018-0571-y.

Source: PubMed

3
구독하다