The impact of summer vacation on children's obesogenic behaviors and body mass index: a natural experiment

R Glenn Weaver, Bridget Armstrong, Ethan Hunt, Michael W Beets, Keith Brazendale, R Dugger, Gabrielle Turner-McGrievy, Russell R Pate, Alberto Maydeu-Olivares, Brian Saelens, Shawn D Youngstedt, R Glenn Weaver, Bridget Armstrong, Ethan Hunt, Michael W Beets, Keith Brazendale, R Dugger, Gabrielle Turner-McGrievy, Russell R Pate, Alberto Maydeu-Olivares, Brian Saelens, Shawn D Youngstedt

Abstract

Background: Children's BMI gain accelerates during summer. The Structured Days Hypothesis posits that the lack of the school day during summer vacation negatively impacts children's obesogenic behaviors (i.e., physical activity, screen time, diet, sleep). This natural experiment examined the impact of summer vacation on children's obesogenic behaviors and body mass index (BMI).

Methods: Elementary-aged children (n = 285, 5-12 years, 48.7% male, 57.4% African American) attending a year-round (n = 97) and two match-paired traditional schools (n = 188) in the United States participated in this study. Rather than taking a long break from school during the summer like traditional schools, year-round schools take shorter and more frequent breaks from school. This difference in school calendars allowed for obesogenic behaviors to be collected during three conditions: Condition 1) all children attend school, Condition 2) year-round children attend school while traditional children were on summer vacation, and Condition 3) summer vacation for all children. Changes in BMI z-score were collected for the corresponding school years and summers. Multi-level mixed effects regressions estimated obesogenic behaviors and monthly zBMI changes. It was hypothesized that children would experience unhealthy changes in obesogenic behaviors when entering summer vacation because the absence of the school day (i.e., Condition 1 vs. 2 for traditional school children and 2 vs. 3 for year-round school children).

Results: From Condition 1 to 2 traditional school children experienced greater unhealthy changes in daily minutes sedentary (∆ = 24.2, 95CI = 10.2, 38.2), screen time minutes (∆ = 33.7, 95CI = 17.2, 50.3), sleep midpoint time (∆ = 73:43, 95CI = 65:33, 81:53), and sleep efficiency percentage (-∆ = 0.7, 95CI = -1.1, - 0.3) when compared to year-round school children. Alternatively, from Condition 2 to 3 year-round school children experienced greater unhealthy changes in daily minutes sedentary (∆ = 54.5, 95CI = 38.0, 70.9), light physical activity minutes (∆ = - 42.2, 95CI = -56.2, - 28.3) MVPA minutes (∆ = - 11.4, 95CI = -3.7, - 19.1), screen time minutes (∆ = 46.5, 95CI = 30.0, 63.0), and sleep midpoint time (∆ = 95:54, 95CI = 85:26, 106:22) when compared to traditional school children. Monthly zBMI gain accelerated during summer for traditional (∆ = 0.033 95CI = 0.019, 0.047) but not year-round school children (∆ = 0.004, 95CI = -0.014, 0.023).

Conclusions: This study suggests that the lack of the school day during summer vacation negatively impacts sedentary behaviors, sleep timing, and screen time. Changes in sedentary behaviors, screen time, and sleep midpoint may contribute to accelerated summer BMI gain. Providing structured programming during summer vacation may positively impact these behaviors, and in turn, mitigate accelerated summer BMI gain.

Trial registration: ClinicalTrials.gov Identifier: NCT03397940 . Registered January 12th 2018.

Keywords: Children; Obesity; Policy.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Schedule of Measures. Abbreviations: YR, Year-round; Trad, Traditional; H&W, Height and weight. Condition 1 = Both traditional and year-round students attend school. Condition 2 = Traditional students are on summer vacation from school while year-round students are attending school. Condition 3 = Both traditional and year-round students are on summer vacation from school
Fig. 2
Fig. 2
Difference in zBMI change school to summer. Bolded values represent statistically significant point estimates at Benjamini-Hochberg critical value of ≤0.05 with a 10% false discovery rate

References

    1. Moreno JP, Johnston CA, Chen TA, O'Connor TA, Hughes SO, Baranowski J, et al. Seasonal variability in weight change during elementary school. Obesity. 2015;23(2):422–428. doi: 10.1002/oby.20977.
    1. von Hippel PT, Workman J. From kindergarten through second grade, US Children's obesity prevalence grows only during summer vacations. Obesity. 2016;24(11):2296–2300. doi: 10.1002/oby.21613.
    1. Weaver RG, Beets MW, Brazendale K, Brusseau TA. Summer weight gain and fitness loss: causes and potential solutions. Am J Lifestyle Med. 2018;1559827617750576.
    1. Franckle R, Adler R, Davison K. Peer reviewed: accelerated weight gain among children during summer versus school year and related racial/ethnic disparities: a systematic review. Prev Chronic Dis. 2014;11.
    1. Watson A, Maher C, Tomkinson GR, Golley R, Fraysse F, Dumuid D, et al. Life on holidays: study protocol for a 3-year longitudinal study tracking changes in children’s fitness and fatness during the in-school versus summer holiday period. BMC Public Health. 2019;19(1):1–8. doi: 10.1186/s12889-018-6343-3.
    1. Brazendale K, Beets M, Pate RR, Turner-McGrievy B, Kaczynski AT, Weaver RG, et al. Understanding differences between summer vs. school obesogenic behaviors of children: The Structured Days Hypothesis. Int J Behav Nutr Phys Act. 2017:14(1).
    1. Moreno JP, Crowley SJ, Alfano CA, Hannay KM, Thompson D, Baranowski T. Potential circadian and circannual rhythm contributions to the obesity epidemic in elementary school age children. Int J Behav Nutr Phys Act. 2019;16(1):25. doi: 10.1186/s12966-019-0784-7.
    1. Tambalis KD, Panagiotakos DB, Psarra G, Sidossis LS. Insufficient sleep duration is associated with dietary habits, screen time, and obesity in children. J Clin Sleep Med. 2018;14(10):1689–1696. doi: 10.5664/jcsm.7374.
    1. Rey-Lopez JP, Vicente-Rodríguez G, Biosca M, Moreno LA. Sedentary behaviour and obesity development in children and adolescents. Nutr Metab Cardiovasc Dis. 2008;18(3):242–251. doi: 10.1016/j.numecd.2007.07.008.
    1. Hills AP, Andersen LB, Byrne NM. Physical activity and obesity in children. Br J Sports Med. 2011;45(11):866–870. doi: 10.1136/bjsports-2011-090199.
    1. Kreitsch KN, Chardon ML, Beebe DW, Janicke DM. Sleep and weight-related factors in youth: a systematic review of recent studies. Sleep Med Rev. 2019.
    1. Osei-Assibey G, Dick S, Macdiarmid J, Semple S, Reilly JJ, Ellaway A, et al. The influence of the food environment on overweight and obesity in young children: a systematic review. BMJ Open. 2012;2(6):e001538. doi: 10.1136/bmjopen-2012-001538.
    1. Lobstein T, Jackson-Leach R, Moodie ML, Hall KD, Gortmaker SL, Swinburn BA, et al. Child and adolescent obesity: part of a bigger picture. Lancet. 2015;385(9986):2510–2520. doi: 10.1016/S0140-6736(14)61746-3.
    1. Olds TS, Maher CA, Matricciani L. Sleep duration or bedtime? Exploring the relationship between sleep habits and weight status and activity patterns. Sleep. 2011;34(10):1299–1307. doi: 10.5665/SLEEP.1266.
    1. Staiano AE, Broyles ST, Katzmarzyk PT. School term vs. school holiday: associations with Children’s physical activity, screen-time, diet and sleep. Int J Environ Res Public Health. 2015;12(8):8861–8870. doi: 10.3390/ijerph120808861.
    1. Wing YK, Li SX, Li AM, Zhang J, Kong APS. The effect of weekend and holiday sleep compensation on childhood overweight and obesity. Pediatrics. 2009;124(5):e994–e1000. doi: 10.1542/peds.2008-3602.
    1. Agostini A, Pignata S, Camporeale R, Scott K, Dorrian J, Way A, et al. Changes in growth and sleep across school nights, weekends and a winter holiday period in two Australian schools. Chronobiol Int. 2018:1–14.
    1. Wang YC, Vine S, Hsiao A, Rundle A, Goldsmith J. Weight-related behaviors when children are in school versus on summer breaks: does income matter? J School Health. 2015;85(7):458–466. doi: 10.1111/josh.12274.
    1. Lanningham-Foster L, Foster RC, McCrady SK, Manohar CU, Jensen TB, Mitre NG, et al. Changing the school environment to increase physical activity in children. Obesity. 2008;16(8):1849–1853. doi: 10.1038/oby.2008.282.
    1. Nixon GM, Thompson JM, Han DY, Becroft DM, Clark PM, Robinson E, et al. Short sleep duration in middle childhood: risk factors and consequences. Sleep. 2008;31(1):71–78. doi: 10.1093/sleep/31.1.71.
    1. McCue MC, Marlatt KL, Sirard J. Examination of changes in youth diet and physical activity over the summer vacation period. Int J Allied Health Sciences and Practice. 2013;11(1):8.
    1. Brazendale K, Beets MW, Turner-McGrievy GM, Kaczynski AT, Pate RR, Weaver RG. Children’s obesogenic behaviors during summer versus school: a within-person comparison. J Sch Health. 2018;88(12):886–892. doi: 10.1111/josh.12699.
    1. Atkin AJ, Sharp SJ, Harrison F, Brage S, Van Sluijs EM. Seasonal variation in children’s physical activity and sedentary time. Med Sci Sports Exerc. 2016;48(3):449. doi: 10.1249/MSS.0000000000000786.
    1. Hjorth MF, Chaput J-P, Michaelsen K, Astrup A, Tetens I, Sjödin A. Seasonal variation in objectively measured physical activity, sedentary time, cardio-respiratory fitness and sleep duration among 8–11 year-old Danish children: a repeated-measures study. BMC Public Health. 2013;13(1):808. doi: 10.1186/1471-2458-13-808.
    1. Zheng C, Huang WY, Wong SH-S. Associations of weather conditions with adolescents’ daily physical activity, sedentary time, and sleep duration. Appl Physiol Nutr Metab. 2019;44(12):1339–1344. doi: 10.1139/apnm-2019-0309.
    1. Tucker P, Gilliland J. The effect of season and weather on physical activity: a systematic review. Public Health. 2007;121(12):909–922. doi: 10.1016/j.puhe.2007.04.009.
    1. Kripke DF, Elliott JA, Youngstedt SD, Rex KM. Circadian phase response curves to light in older and young women and men. J Circadian Rhythms. 2007;5(1):4. doi: 10.1186/1740-3391-5-4.
    1. Weaver RG, Hunt E, Rafferty A, Beets MW, Brazendale K, Turner-McGrievy B, et al. The potential of a year-round school calendar for maintaining Children’s weight status and fitness: preliminary outcomes from a natural experiment. J Sport Health Sci. 2019.
    1. Hsieh F, Lavori PW, Cohen HJ, Feussner JR. An overview of variance inflation factors for sample-size calculation. Evaluation & the Health Professions. 2003;26(3):239–257. doi: 10.1177/0163278703255230.
    1. Hunt ET, Whitfield ML, Brazendale K, Beets MW, Weaver RG. Examining the impact of a summer learning program on children's weight status and cardiorespiratory fitness: a natural experiment. Eval Program Plann. 2019;74:84–90. doi: 10.1016/j.evalprogplan.2019.02.009.
    1. Weaver RG, Beets MW, Perry M, Hunt E, Brazendale K, Decker L, et al. Changes in Children’s Sleep and Physical Activity During a One-week versus a Three-week Break from School: A natural experiment. Sleep. 2019;42:1. doi: 10.1093/sleep/zsy205.
    1. de Zambotti M, Baker FC, Willoughby AR, Godino JG, Wing D, Patrick K, et al. Measures of sleep and cardiac functioning during sleep using a multi-sensory commercially-available wristband in adolescents. Physiol Behav. 2016;158:143–149. doi: 10.1016/j.physbeh.2016.03.006.
    1. Brazendale K, Decker L, Hunt ET, Perry MW, Brazendale AB, Weaver RG, et al. Validity and Wearability of consumer-based fitness trackers in free-living children. Int J Exercise Sci. 2019;12(5):471.
    1. Brazendale K, Beets MW, Weaver RG, Perry MW, Tyler EB, Hunt ET, et al. Comparing measures of free-living sleep in school-aged children. Sleep Med. 2019;60:197–201. doi: 10.1016/j.sleep.2019.04.006.
    1. Tudor-Locke C, Barreira TV, Schuna JM, Mire EF, Chaput J-P, Fogelholm M, et al. Improving wear time compliance with a 24-hour waist-worn accelerometer protocol in the international study of childhood obesity, lifestyle and the environment (ISCOLE) Int J Behav Nutr Phys Act. 2015;12(1):11. doi: 10.1186/s12966-015-0172-x.
    1. Carissimi A, Dresch F, Martins AC, Levandovski RM, Adan A, Natale V, et al. The influence of school time on sleep patterns of children and adolescents. Sleep Med. 2016;19:33–39. doi: 10.1016/j.sleep.2015.09.024.
    1. Bei B, Wiley JF, Trinder J, Manber R. Beyond the mean: a systematic review on the correlates of daily intraindividual variability of sleep/wake patterns. Sleep Med Rev. 2016;28:108–124. doi: 10.1016/j.smrv.2015.06.003.
    1. Acebo C, Sadeh A, Seifer R, Tzischinsky O, Wolfson AR, Hafer A, et al. Estimating sleep patterns with activity monitoring in children and adolescents: how many nights are necessary for reliable measures? Sleep. 1999;22(1):95–103. doi: 10.1093/sleep/22.1.95.
    1. Welk GJ, Corbin CB. The validity of the Tritrac-R3D activity monitor for the assessment of physical activity in children. Res Q Exerc Sport. 1995;66(3):202–209. doi: 10.1080/02701367.1995.10608834.
    1. Sallis JF, Buono MJ, Roby JJ, Carlson D, Nelson JA. The Caltrac accelerometer as a physical activity monitor for school-age children. Med Sci Sports Exerc. 1990;22(5):698–703. doi: 10.1249/00005768-199010000-00023.
    1. Janz KF. Validation of the CSA accelerometer for assessing children's physical activity. Med Sci Sports Exerc. 1994.
    1. Simons-Morton BG, Taylor WC, Huang IW. Validity of the physical activity interview and Caltrac with preadolescent children. Res Q Exerc Sport. 1994;65(1):84–88. doi: 10.1080/02701367.1994.10762212.
    1. Epstein LH, Paluch RA, Kalakanis LE, Goldfield GS, Cerny FJ, Roemmich JN. How much activity do youth get? A quantitative review of heart-rate measured activity. Pediatrics. 2001;108(3):e44. doi: 10.1542/peds.108.3.e44.
    1. Chandler J, Brazendale K, Beets M, Mealing B. Classification of physical activity intensities using a wrist-worn accelerometer in 8–12-year-old children. Pediatric Obesity. 2015.
    1. Gavarry O, Bernard T, Giacomoni M, Seymat M, Euzet J, Falgairette G. Continuous heart rate monitoring over 1 week in teenagers aged 11–16 years. Eur J Appl Physiol Occup Physiol. 1997;77(1–2):125–132. doi: 10.1007/s004210050310.
    1. Eisenmann JC, Bartee RT, Wang MQ. Physical activity, TV viewing, and weight in US youth: 1999 youth risk behavior survey. Obesity. 2002;10(5):379–385. doi: 10.1038/oby.2002.52.
    1. Tandon PS, Zhou C, Sallis JF, Cain KL, Frank LD, Saelens BE. Home environment relationships with children’s physical activity, sedentary time, and screen time by socioeconomic status. Int J Behav Nutr Phys Act. 2012;9(1):88. doi: 10.1186/1479-5868-9-88.
    1. Hunt E, Whitfield M, Brazendale K, Beets MW, Weaver RG. Examining the impact of a summer learning program on Children's weight status and cardiorespiratory fitness. J Community Health. in press.
    1. Neuhouser ML, Lilley S, Lund A, Johnson DB. Development and validation of a beverage and snack questionnaire for use in evaluation of school nutrition policies. J Am Diet Assoc. 2009;109(9):1587–1592. doi: 10.1016/j.jada.2009.06.365.
    1. Kasper N, Mandell C, Ball S, Miller AL, Lumeng J, Peterson KE. The healthy meal index: a tool for measuring the healthfulness of meals served to children. Appetite. 2016;103:54–63. doi: 10.1016/j.appet.2016.02.160.
    1. Kuczmarski R, Ogden C, Guo S, Grummer-Strawn L, Flegal K, Mei Z, et al. CDC growth charts for the US: methods and development. Vital Health Stat. 2002;11(246):1–190.
    1. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57(1):289–300.
    1. Stoner L, Castro N, Signal L, Skidmore P, Faulkner J, Lark S, et al. Sleep and adiposity in preadolescent children: the importance of social jetlag. Child Obes. 2018.
    1. Golley RK, Maher CA, Matricciani L, Olds TS. Sleep duration or bedtime? Exploring the association between sleep timing behaviour, diet and BMI in children and adolescents. Int J Obesity (2005) 2013;37(4):546–551. doi: 10.1038/ijo.2012.212.
    1. Jarrin DC, McGrath JJ, Drake CL. Beyond sleep duration: distinct sleep dimensions are associated with obesity in children and adolescents. Int J Obes. 2013;37(4):552. doi: 10.1038/ijo.2013.4.
    1. Arora T, Taheri S. Associations among late chronotype, body mass index and dietary behaviors in young adolescents. Int J Obes. 2015;39(1):39. doi: 10.1038/ijo.2014.157.
    1. Adamo KB, Wilson S, Belanger K, Chaput J-P. Later bedtime is associated with greater daily energy intake and screen time in obese adolescents independent of sleep duration. J Sleep Disord Ther. 2013;2(126):2167–0277.1000126.
    1. Okada C, Tabuchi T, Iso H. Association between skipping breakfast in parents and children and childhood overweight/obesity among children: a nationwide 10.5-year prospective study in Japan. Int J Obesity. 2018;1.
    1. Keski-Rahkonen A, Kaprio J, Rissanen A, Virkkunen M, Rose RJ. Breakfast skipping and health-compromising behaviors in adolescents and adults. Eur J Clin Nutr. 2003;57(7):842. doi: 10.1038/sj.ejcn.1601618.
    1. Zerón-Rugerio MF, Hernáez Á, Porras-Loaiza AP, Cambras T, Izquierdo-Pulido M. Eating jet lag: a marker of the variability in meal timing and its association with body mass index. Nutrients. 2019;11(12):2980. doi: 10.3390/nu11122980.
    1. Tanskey LA, Goldberg JP, Chui K, Must A, Sacheck JM. Accelerated summer weight gain in a low-income, Ethnically Diverse Sample of Elementary School Children in Massachusetts. Childhood Obesity. 2019.
    1. Burrows TL, Martin RJ, Collins CE. A systematic review of the validity of dietary assessment methods in children when compared with the method of doubly labeled water. J Am Diet Assoc. 2010;110(10):1501–10. doi: 10.1016/j.jada.2010.07.008.
    1. Park K-S, Lee M-G. Effects of summer school participation and psychosocial outcomes on changes in body composition and physical fitness during summer break. J Exerc Nutr Biochem. 2015;19(2):81. doi: 10.5717/jenb.2015.15052005.
    1. Pamungkas RA, Chamroonsawasdi K. Home-based interventions to treat and prevent childhood obesity: a systematic review and meta-analysis. Behav Sciences. 2019;9(4):38. doi: 10.3390/bs9040038.
    1. Showell NN, Fawole O, Segal J, Wilson RF, Cheskin LJ, Bleich SN, et al. A systematic review of home-based childhood obesity prevention studies. Pediatrics. 2013;132(1):e193–e200. doi: 10.1542/peds.2013-0786.
    1. Painter JE, Borba CP, Hynes M, Mays D, Glanz K. The use of theory in health behavior research from 2000 to 2005: a systematic review. Ann Behav Med. 2008;35(3):358–362. doi: 10.1007/s12160-008-9042-y.
    1. Liang Z, Martell MAC. Validity of consumer activity wristbands and wearable EEG for measuring overall sleep parameters and sleep structure in free-living conditions. Journal of Healthcare Informatics Research. 2018:1–27.
    1. de Zambotti M, Goldstone A, Claudatos S, Colrain IM, Baker FC. A validation study of Fitbit charge 2™ compared with polysomnography in adults. Chronobiol Int. 2018;35(4):465–476. doi: 10.1080/07420528.2017.1413578.

Source: PubMed

3
구독하다