Lipotoxicity in obese pregnancy and its potential role in adverse pregnancy outcome and obesity in the offspring

Eleanor Jarvie, Sylvie Hauguel-de-Mouzon, Scott M Nelson, Naveed Sattar, Patrick M Catalano, Dilys J Freeman, Eleanor Jarvie, Sylvie Hauguel-de-Mouzon, Scott M Nelson, Naveed Sattar, Patrick M Catalano, Dilys J Freeman

Abstract

Increasing maternal obesity is a challenge that has an impact on all aspects of female reproduction. Lean and obese pregnant women gain similar fat mass, but lean women store fat in the lower-body compartment and obese women in central compartments. In the non-pregnant, central storage of fat is associated with adipocyte hypertrophy and represents a failure to adequately store excess fatty acids, resulting in metabolic dysregulation and ectopic fat accumulation (lipotoxicity). Obese pregnancy is associated with exaggerated metabolic adaptation, endothelial dysfunction and increased risk of adverse pregnancy outcome. We hypothesize that the preferential storage of fat in central rather than 'safer' lower-body depots in obese pregnancy leads to lipotoxicity. The combination of excess fatty acids and oxidative stress leads to the production of oxidized lipids, which can be cytotoxic and influence gene expression by acting as ligands for nuclear receptors. Lipid excess and oxidative stress provoke endothelial dysfunction. Oxidized lipids can inhibit trophoblast invasion and influence placental development, lipid metabolism and transport and can also affect fetal developmental pathways. As lipotoxicity has the capability of influencing both maternal endothelial function and placental function, it may link maternal obesity and placentally related adverse pregnancy outcomes such as miscarriage and pre-eclampsia. The combination of excess/altered lipid nutrient supply, suboptimal in utero metabolic environment and alterations in placental gene expression, inflammation and metabolism may also induce obesity in the offspring.

Figures

Figure 1. Fatty acid metabolism in pregnancy
Figure 1. Fatty acid metabolism in pregnancy
A central fat accumulation during pregnancy leads to fatty acid overspill from adipose depots and lipotoxicity. Lipotoxic effects include maternal endothelial dysfunction, decreased trophoblast invasion and altered placental metabolism. These may result in adverse pregnancy outcome (such as pre-eclampsia or miscarriage) and programming of obesity in the offspring. A lower-body fat accumulation allows ‘safe’ storage of fatty acids and a normal metabolic and physiological adaptation to pregnancy with appropriate nutrient transfer to the offspring. TG, triacylglycerol.

References

    1. Jarvie E., Ramsay J. E. Obstetric management of obesity in pregnancy. Semin. Fetal Neonatal Med. 2010;15:83–88.
    1. Jensen M. D. Role of body fat distribution and the metabolic complications of obesity. J. Clin. Endocrinol. Metab. 2008;93:S57–S63.
    1. Snijder M. B., Visser M., Dekker J. M., Goodpaster B. H., Harris T. B., Kritchevsky S. B., De Rekeneire N., Kanaya A. M., Newman A. B., Tylavsky F. A., Seidell J. C. Low subcutaneous thigh fat is a risk factor for unfavourable glucose and lipid levels, independently of high abdominal fat. The Health ABC Study. Diabetologia. 2005;48:301–308.
    1. den T. I., Seidell J. C., van Noord P. A., Baanders-van Halewijn E. A., Ouwehand I. J. Fat distribution in relation to age, degree of obesity, smoking habits, parity and estrogen use: a cross-sectional study in 11,825 Dutch women participating in the DOM-project. Int. J. Obes. 1990;14:753–761.
    1. Gustafson B., Gogg S., Hedjazifar S., Jenndahl L., Hammarstedt A., Smith U. Inflammation and impaired adipogenesis in hypertrophic obesity in man. Am. J. Physiol. Endocrinol. Metab. 2009;297:E999–E1003.
    1. Trauner M., Arrese M., Wagner M. Fatty liver and lipotoxicity. Biochim. Biophys. Acta. 2010;1801:299–310.
    1. Pou K. M., Massaro J. M., Hoffmann U., Vasan R. S., Maurovich-Horvat P., Larson M. G., Keaney J. F., Jr, Meigs J. B., Lipinska I., Kathiresan S., et al. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham Heart Study. Circulation. 2007;116:1234–1241.
    1. Bjorkhem I., Diczfalusy U. Oxysterols: friends, foes, or just fellow passengers? Arterioscler. Thromb. Vasc. Biol. 2002;22:734–742.
    1. Vejux A., Lizard G. Cytotoxic effects of oxysterols associated with human diseases: Induction of cell death (apoptosis and/or oncosis), oxidative and inflammatory activities, and phospholipidosis. Mol. Aspects Med. 2009;30:153–170.
    1. Endo K., Oyama T., Saiki A., Ban N., Ohira M., Koide N., Murano T., Watanabe H., Nishii M., Miura M., et al. Determination of serum 7-ketocholesterol concentrations and their relationships with coronary multiple risks in diabetes mellitus. Diabetes Res. Clin. Pract. 2008;80:63–68.
    1. Alkazemi D., Egeland G., Vaya J., Meltzer S., Kubow S. Oxysterol as a marker of atherogenic dyslipidemia in adolescence. J. Clin. Endocrinol. Metab. 2008;93:4282–4289.
    1. Brown A. J., Jessup W. Oxysterols: sources, cellular storage and metabolism, and new insights into their roles in cholesterol homeostasis. Mol. Aspects Med. 2009;30:111–122.
    1. Rasmussen J. G., Eschen R. B., Aardestrup I. V., Dethlefsen C., Griffin B. A., Schmidt E. B. Flow-mediated vasodilatation: variation and interrelationships with plasma lipids and lipoproteins. Scand. J. Clin. Lab. Invest. 2009;69:156–160.
    1. Zhao R., Ma X., Xie X., Shen G. X. Involvement of NADPH oxidase in oxidized LDL-induced upregulation of heat shock factor-1 and plasminogen activator inhibitor-1 in vascular endothelial cells. Am. J. Physiol. Endocrinol. Metab. 2009;297:E104–E111.
    1. Morello F., Saglio E., Noghero A., Schiavone D., Williams T. A., Verhovez A., Bussolino F., Veglio F., Mulatero P. LXR-activating oxysterols induce the expression of inflammatory markers in endothelial cells through LXR-independent mechanisms. Atherosclerosis. 2009;207:38–44.
    1. Zhou Q., Wasowicz E., Handler B., Fleischer L., Kummerow F. A. An excess concentration of oxysterols in the plasma is cytotoxic to cultured endothelial cells. Atherosclerosis. 2000;149:191–197.
    1. Williams I. L., Wheatcroft S. B., Shah A. M., Kearney M. T. Obesity, atherosclerosis and the vascular endothelium: mechanisms of reduced nitric oxide bioavailability in obese humans. Int. J. Obes. Relat. Metab. Disord. 2002;26:754–764.
    1. Imrie H., Abbas A., Kearney M. Insulin resistance, lipotoxicity and endothelial dysfunction. Biochim. Biophys. Acta. 2010;1801:320–326.
    1. Silver A. E., Beske S. D., Christou D. D., Donato A. J., Moreau K. L., Eskurza I., Gates P. E., Seals D. R. Overweight and obese humans demonstrate increased vascular endothelial NAD(P)H oxidase-p47phox expression and evidence of endothelial oxidative stress. Circulation. 2007;115:627–637.
    1. Williams I. L., Chowienczyk P. J., Wheatcroft S. B., Patel A., Sherwood R., Momin A., Shah A. M., Kearney M. T. Effect of fat distribution on endothelial-dependent and endothelial-independent vasodilatation in healthy humans. Diabetes Obes. Metab. 2006;8:296–301.
    1. Snijder M. B., Henry R. M., Visser M., Dekker J. M., Seidell J. C., Ferreira I., Bouter L. M., Yudkin J. S., Westerhof N., Stehouwer C. D. Regional body composition as a determinant of arterial stiffness in the elderly: The Hoorn Study. J. Hypertens. 2004;22:2339–2347.
    1. Pipe N. G., Smith T., Halliday D., Edmonds C. J., Williams C., Coltart T. M. Changes in fat, fat-free mass and body water in human normal pregnancy. Br. J. Obstet. Gynaecol. 1979;86:929–940.
    1. Kinoshita T., Itoh M. Longitudinal variance of fat mass deposition during pregnancy evaluated by ultrasonography: the ratio of visceral fat to subcutaneous fat in the abdomen. Gynecol. Obstet. Invest. 2006;61:115–118.
    1. Catalano P. M., Roman-Drago N. M., Amini S. B., Sims E. A. Longitudinal changes in body composition and energy balance in lean women with normal and abnormal glucose tolerance during pregnancy. Am. J. Obstet. Gynecol. 1998;179:156–165.
    1. Okereke N. C., Huston-Presley L., Amini S. B., Kalhan S., Catalano P. M. Longitudinal changes in energy expenditure and body composition in obese women with normal and impaired glucose tolerance. Am. J. Physiol. Endocrinol. Metab. 2004;287:E472–E479.
    1. Ehrenberg H. M., Huston-Presley L., Catalano P. M. The influence of obesity and gestational diabetes mellitus on accretion and the distribution of adipose tissue in pregnancy. Am. J. Obstet. Gynecol. 2003;189:944–948.
    1. Soltani H., Fraser R. B. A longitudinal study of maternal anthropometric changes in normal weight, overweight and obese women during pregnancy and postpartum. Br. J. Nutr. 2000;84:95–101.
    1. Santosa S., Hensrud D. D., Votruba S. B., Jensen M. D. The influence of sex and obesity phenotype on meal fatty acid metabolism before and after weight loss. Am. J. Clin. Nutr. 2008;88:1134–1141.
    1. Huda S. S., Sattar N., Freeman D. J. Lipoprotein metabolism and vascular complications in pregnancy. Clin. Lipidol. 2009;4:91–102.
    1. Catalano P. M., Ehrenberg H. M. The short- and long-term implications of maternal obesity on the mother and her offspring. Br. J. Obstet. Gynaecol. 2006;113:1126–1133.
    1. Stewart F. M., Freeman D. J., Ramsay J. E., Greer I. A., Caslake M., Ferrell W. R. Longitudinal assessment of maternal endothelial function and markers of inflammation and placental function throughout pregnancy in lean and obese mothers. J. Clin. Endocrinol. Metab. 2007;92:969–975.
    1. Little R. E., Gladen B. C. Levels of lipid peroxides in uncomplicated pregnancy: a review of the literature. Reprod. Toxicol. 1999;13:347–352.
    1. Sanchez-Vera I., Bonet B., Viana M., Quintanar A., Martin M. D., Blanco P., Donnay S., Albi M. Changes in plasma lipids and increased low-density lipoprotein susceptibility to oxidation in pregnancies complicated by gestational diabetes: consequences of obesity. Metab., Clin. Exp. 2007;56:1527–1533.
    1. Bodzek P., Olejek A., Zamlynski J. Concentration of the oxygenated derivates of cholesterol in pregnant women suffering from diabetes type I. Wiad. Lek. 2002;55(Suppl. 1):50–53.
    1. Amundsen A. L., Khoury J., Sandset P. M., Seljeflot I., Ose L., Tonstad S., Henriksen T., Retterstol K., Iversen P. O. Altered hemostatic balance and endothelial activation in pregnant women with familial hypercholesterolemia. Thromb. Res. 2007;120:21–27.
    1. Khoury J., Amundsen A. L., Tonstad S., Henriksen T., Ose L., Retterstol K., Iversen P. O. Evidence for impaired physiological decrease in the uteroplacental vascular resistance in pregnant women with familial hypercholesterolemia. Acta Obstet. Gynecol. Scand. 2009;88:222–226.
    1. Catalano P. M., Huston L., Amini S. B., Kalhan S. C. Longitudinal changes in glucose metabolism during pregnancy in obese women with normal glucose tolerance and gestational diabetes mellitus. Am. J. Obstet. Gynecol. 1999;180:903–916.
    1. Chen X., Scholl T. O. Oxidative stress: changes in pregnancy and with gestational diabetes mellitus. Curr. Diab. Rep. 2005;5:282–288.
    1. Paradisi G., Biaggi A., Ferrazzani S., De Carolis S., Caruso A. Abnormal carbohydrate metabolism during pregnancy: association with endothelial dysfunction. Diabetes Care. 2002;25:560–564.
    1. Pavan L., Hermouet A., Tsatsaris V., Therond P., Sawamura T., Evain-Brion D., Fournier T. Lipids from oxidized low-density lipoprotein modulate human trophoblast invasion: involvement of nuclear liver X receptors. Endocrinology. 2004;145:4583–4591.
    1. Catalano P. M. Obesity and pregnancy: the propagation of a viscous cycle? J. Clin. Endocrinol. Metab. 2003;88:3505–3506.
    1. Freeman D. J. Effects of maternal obesity on fetal growth and body composition: implications for programming and future health. Semin. Fetal Neonatal Med. 2010;15:113–118.
    1. Javitt N. B. Oxysterols: functional significance in fetal development and the maintenance of normal retinal function. Curr. Opin. Lipidol. 2007;18:283–288.
    1. Plosch T., van Straten E. M., Kuipers F. Cholesterol transport by the placenta: placental liver X receptor activity as a modulator of fetal cholesterol metabolism? Placenta. 2007;28:604–610.
    1. Weedon-Fekjaer M. S., Duttaroy A. K., Nebb H. I. Liver X receptors mediate inhibition of hCG secretion in a human placental trophoblast cell line. Placenta. 2005;26:721–728.
    1. Radaelli T., Lepercq J., Varastehpour A., Basu S., Catalano P. M., Hauguel-De Mouzon S. Differential regulation of genes for fetoplacental lipid pathways in pregnancy with gestational and type 1 diabetes mellitus. Am. J. Obstet. Gynecol. 2009;201:209.
    1. Elchalal U., Schaiff W. T., Smith S. D., Rimon E., Bildirici I., Nelson D. M., Sadovsky Y. Insulin and fatty acids regulate the expression of the fat droplet-associated protein adipophilin in primary human trophoblasts. Am. J. Obstet. Gynecol. 2005;193:1716–1723.
    1. Challier J. C., Basu S., Bintein T., Minium J., Hotmire K., Catalano P. M., Hauguel-De Mouzon S. Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta. Placenta. 2008;29:274–281.
    1. McCurdy C. E., Bishop J. M., Williams S. M., Grayson B. E., Smith M. S., Friedman J. E., Grove K. L. Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J. Clin. Invest. 2009;119:323–335.
    1. Erridge C., Attina T., Spickett C. M., Webb D. J. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am. J. Clin. Nutr. 2007;86:1286–1292.
    1. Chu S. Y., Bachman D. J., Callaghan W. M., Whitlock E. P., Dietz P. M., Berg C. J., O'Keeffe-Rosetti M., Bruce F. C., Hornbrook M. C. Association between obesity during pregnancy and increased use of health care. N. Engl. J. Med. 2008;358:1444–1453.

Source: PubMed

3
구독하다