The Profile of Urinary Headspace Volatile Organic Compounds After 12-Week Intake of Oligofructose-Enriched Inulin by Children and Adolescents with Celiac Disease on a Gluten-Free Diet: Results of a Pilot, Randomized, Placebo-Controlled Clinical Trial

Natalia Drabińska, Elżbieta Jarocka-Cyrta, Norman Mark Ratcliffe, Urszula Krupa-Kozak, Natalia Drabińska, Elżbieta Jarocka-Cyrta, Norman Mark Ratcliffe, Urszula Krupa-Kozak

Abstract

The concentration of volatile organic compounds (VOCs) can inform about the metabolic condition of the body. In the small intestine of untreated persons with celiac disease (CD), chronic inflammation can occur, leading to nutritional deficiencies, and consequently to functional impairments of the whole body. Metabolomic studies showed differences in the profile of VOCs in biological fluids of patients with CD in comparison to healthy persons; however, there is scarce quantitative and nutritional intervention information. The aim of this study was to evaluate the effect of the supplementation of a gluten-free diet (GFD) with prebiotic oligofructose-enriched inulin (Synergy 1) on the concentration of VOCs in the urine of children and adolescents with CD. Twenty-three participants were randomized to the group receiving Synergy 1 (10 g per day) or placebo for 12 weeks. Urinary VOCs were analyzed using solid-phase microextraction and gas chromatography⁻mass spectrometry. Sixteen compounds were identified and quantified in urine samples. The supplementation of GFD with Synergy 1 resulted in an average concentration drop (36%) of benzaldehyde in urine samples. In summary, Synergy 1, applied as a supplement of GFD for 12 weeks had a moderate impact on the VOC concentrations in the urine of children with CD.

Keywords: celiac disease; gas chromatography–mass spectrometry; gluten-free diet; prebiotic; solid-phase microextraction; volatile organic compounds.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
An example of a chromatogram of urinary volatile organic compounds (VOCs) obtained with gas chromatography–mass spectrometry (GC–MS): (1) acetone; (2) butane-2,3-dione; (3) butan-2-one; (4) pentan-2-one; (5) heptan-4-one; (6) heptan-2-one; (7) 6-methylhept-5-en-2-one; (8) trans-3-octen-2-one; (9) hexanal; (10) benzaldehyde; (11) octanal; (12) dimethyl disulfide; (13) dimethyl trisulfide; (14) d-limonene; (15) linalool; (16) 2-pentylfuran; (17) 4-methylphenol; (18) 1,3-di-tert-butylbenzene.
Figure 2
Figure 2
Results of principal component analysis (PCA) of urinary VOCs at baseline (A), and after the intervention (B). Red circles—Synergy 1 group; green triangles—placebo group. Left graphs—score plot; right graphs—correlation circle presenting correlations between individual VOCs and anthropometric indices.

References

    1. Probert C.S.J., Ahmed I., Khalid T., Johnson E., Smith S., Ratcliffe N. Volatile Organic Compounds as Diagnostic Biomarkers in Gastrointestinal and Liver Diseases. J. Gastrointest. Liver Dis. 2009;18:337–343.
    1. Buljubasic F., Buchbauer G. The scent of human diseases: A review on specific volatile organic compounds as diagnostic biomarkers. Flavour Fragr. J. 2015;30:5–25. doi: 10.1002/ffj.3219.
    1. Garner C.E., Smith S., de Lacy Costello B., White P., Spencer R., Probert C.S.J., Ratcliffe N.M. Volatile organic compounds from feces and their potential for diagnosis of gastrointestinal disease. FASEB J. 2007;21:1675–1688. doi: 10.1096/fj.06-6927com.
    1. Di Cagno R., De Angelis M., De Pasquale I., Ndagijimana M., Vernocchi P., Ricciuti P., Gagliardi F., Laghi L., Crecchio C., Guerzoni M., et al. Duodenal and faecal microbiota of celiac children: Molecular, phenotype and metabolome characterization. BMC Microbiol. 2011;11:219. doi: 10.1186/1471-2180-11-219.
    1. Arasaradnam R.P., Ouaret N., Thomas M.G., Quraishi N., Heatherington E., Nwokolo C.U., Bardhan K.D., Covington J.A. A novel tool for noninvasive diagnosis and tracking of patients with inflammatory bowel disease. Inflamm. Bowel Dis. 2013;19:999–1003. doi: 10.1097/MIB.0b013e3182802b26.
    1. Arasaradnam R.P., Westenbrink E., McFarlane M.J., Harbord R., Chambers S., O’Connell N., Bailey C., Nwokolo C.U., Bardhan K.D., Savage R., et al. Differentiating coeliac disease from irritable bowel syndrome by urinary volatile organic compound analysis—A pilot study. PLoS ONE. 2014;9:e107312. doi: 10.1371/journal.pone.0107312.
    1. McGuire N.D., Ewen R.J., De Lacy Costello B., Garner C.E., Probert C.S.J., Vaughan K., Ratcliffe N.M. Towards point of care testing for C. difficile infection by volatile profiling, using the combination of a short multi–capillary gas chromatography column with metal oxide sensor detection. Meas. Sci. Technol. 2014;25 doi: 10.1088/0957-0233/25/6/065108.
    1. Ahmed I., Greenwood R., de Costello B.L., Ratcliffe N.M., Probert C.S. An Investigation of Fecal Volatile Organic Metabolites in Irritable Bowel Syndrome. PLoS ONE. 2013;8:e58204. doi: 10.1371/journal.pone.0058204.
    1. Cauchi M., Fowler D.P., Walton C., Turner C., Jia W., Whitehead R.N., Griffiths L., Dawson C., Bai H., Waring R.H., et al. Application of gas chromatography mass spectrometry (GC–MS) in conjunction with multivariate classification for the diagnosis of gastrointestinal diseases. Metabolomics. 2014;10:1113–1120. doi: 10.1007/s11306-014-0650-1.
    1. Aprea E., Cappellin L., Gasperi F., Morisco F., Lembo V., Rispo A., Tortora R., Vitaglione P., Caporaso N., Biasioli F. Application of PTR-TOF-MS to investigate metabolites in exhaled breath of patients affected by coeliac disease under gluten free diet. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014;966:208–213. doi: 10.1016/j.jchromb.2014.02.015.
    1. Baranska A., Tigchelaar E., Smolinska A., Dallinga J.W., Moonen E.J.C., Dekens J.A.M., Wijmenga C., Zhernakova A., Van Schooten F.J. Profile of volatile organic compounds in exhaled breath changes as a result of gluten-free diet. J. Breath Res. 2013;7:037104. doi: 10.1088/1752-7155/7/3/037104.
    1. Hicks L.C., Huang J., Kumar S., Powles S.T., Orchard T.R., Hanna G.B., Williams H.R.T. Analysis of Exhaled Breath Volatile Organic Compounds in Inflammatory Bowel Disease: A Pilot Study. J. Crohns. Colitis. 2015;9:731–737. doi: 10.1093/ecco-jcc/jjv102.
    1. Broza Y.Y., Mochalski P., Ruzsanyi V., Amann A., Haick H. Hybrid Volatolomics and Disease Detection. Angew. Chemie Int. Ed. 2015;54:11036–11048. doi: 10.1002/anie.201500153.
    1. Rossi M., Aggio R., Staudacher H.M., Lomer M.C., Lindsay J.O., Irving P., Probert C., Whelan K. Volatile Organic Compounds in Feces Associate With Response to Dietary Intervention in Patients With Irritable Bowel Syndrome. Clin. Gastroenterol. Hepatol. 2018;16:385–391. doi: 10.1016/j.cgh.2017.09.055.
    1. Wu G.D., Compher C., Chen E.Z., Smith S.A., Shah R.D., Bittinger K., Chehoud C., Albenberg L.G., Nessel L., Gilroy E., et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut. 2016;65:63–72. doi: 10.1136/gutjnl-2014-308209.
    1. Beaumont M., Portune K.J., Steuer N., Lan A., Cerrudo V., Audebert M., Dumont F., Mancano G., Khodorova N., Andriamihaja M., et al. Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: A randomized, parallel, double–blind trial in overweight humans. Am. J. Clin. Nutr. 2017;106:1005–1019. doi: 10.3945/ajcn.117.158816.
    1. Drabińska N., Jarocka-Cyrta E., Markiewicz L.H., Krupa-Kozak U. The Effect of Oligofructose-Enriched Inulin on Faecal Bacterial Counts and Microbiota-Associated Characteristics in Celiac Disease Children Following a Gluten-Free Diet: Results of a Randomized, Placebo-Controlled Trial. Nutrients. 2018;10:201. doi: 10.3390/nu10020201.
    1. De Lacy Costello B., Amann A., Al-Kateb H., Flynn C., Filipiak W., Khalid T., Osborne D., Ratcliffe N.M. A review of the volatiles from the healthy human body. J. Breath Res. 2014;8:014001. doi: 10.1088/1752-7155/8/1/014001.
    1. Bischoff S.C., Barbara G., Buurman W., Ockhuizen T., Schulzke J.D., Serino M., Tilg H., Watson A., Wells J.M. Intestinal permeability—A new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:189. doi: 10.1186/s12876-014-0189-7.
    1. Heyman M., Abed J., Lebreton C., Cerf-Bensussan N. Intestinal permeability in coeliac disease: Insight into mechanisms and relevance to pathogenesis. Gut. 2012;61:1355–1364. doi: 10.1136/gutjnl-2011-300327.
    1. Mills G.A., Walker V. Headspace solid-phase microextraction profiling of volatile compounds in urine: Application to metabolic investigations. J. Chromatogr. B Biomed. Sci. Appl. 2001;753:259–268. doi: 10.1016/S0378-4347(00)00554-5.
    1. Benkebil F., Combescure C., Anghel S.I., Besson Duvanel C., Schäppi M.G. Diagnostic accuracy of a new point-of-care screening assay for celiac disease. World J. Gastroenterol. 2013;19:5111–5117. doi: 10.3748/wjg.v19.i31.5111.
    1. Nistal E., Caminero A., Vivas S., Ruiz De Morales J.M., Sáenz De Miera L.E., Rodríguez-Aparicio L.B., Casqueiro J. Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and celiac disease patients. Biochimie. 2012;94:1724–1729. doi: 10.1016/j.biochi.2012.03.025.
    1. Galli G., Esposito G., Lahner E., Pilozzi E., Corleto V.D., Di Giulio E., Aloe Spiriti M.A., Annibale B. Histological recovery and gluten–free diet adherence: A prospective 1-year follow-up study of adult patients with coeliac disease. Aliment. Pharmacol. Ther. 2014;40:639–647. doi: 10.1111/apt.12893.
    1. Bardella M.T., Velio P., Cesana B.M., Prampolini L., Casella G., Di Bella C., Lanzini A., Gambarotti M., Bassotti G., Villanacci V. Coeliac disease: A histological follow-up study. Histopathology. 2007;50:465–471. doi: 10.1111/j.1365-2559.2007.02621.x.
    1. Vici G., Belli L., Biondi M., Polzonetti V. Gluten free diet and nutrient deficiencies: A review. Clin. Nutr. 2016;35:1236–1241. doi: 10.1016/j.clnu.2016.05.002.
    1. Gibson G.R., Hutkins R., Sanders M.E., Prescott S.L., Reimer R.A., Salminen S.J., Scott K., Stanton C., Swanson K.S., Cani P.D., et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017;14:491–502. doi: 10.1038/nrgastro.2017.75.
    1. Holloway L., Moynihan S., Abrams S.A., Kent K., Hsu A.R., Friedlander A.L. Effects of oligofructose-enriched inulin on intestinal absorption of calcium and magnesium and bone turnover markers in postmenopausal women. Br. J. Nutr. 2007;97:365–372. doi: 10.1017/S000711450733674X.
    1. Liu T.-W., Cephas K.D., Holscher H.D., Kerr K.R., Mangian H.F., Tappenden K.A., Swanson K.S. Nondigestible Fructans Alter Gastrointestinal Barrier Function, Gene Expression, Histomorphology, and the Microbiota Profiles of Diet-Induced Obese C57BL/6J Mice. J. Nutr. 2016;146:949–956. doi: 10.3945/jn.115.227504.
    1. Drabińska N., Krupa-Kozak U., Ciska E., Jarocka-Cyrta E. Plasma profile and urine excretion of amino acids in children with celiac disease on gluten-free diet after oligofructose-enriched inulin intervention: Results of a randomised placebo-controlled pilot study. Amino Acids. 2018;50:1451–1460. doi: 10.1007/s00726-018-2622-7.
    1. Drabińska N., Krupa-Kozak U., Abramowicz P., Jarocka-Cyrta E. Beneficial Effect of Oligofructose-Enriched Inulin on Vitamin D and E Status in Children with Celiac Disease on a Long-Term Gluten-Free Diet: A Preliminary Randomized, Placebo-Controlled Nutritional Intervention Study. Nutrients. 2018;10:1768. doi: 10.3390/nu10111768.
    1. Drabińska N., Jarocka-Cyrta E., Złotkowska D., Abramowicz P., Krupa-Kozak U. Daily oligofructose-enriched inulin intake impacts bone turnover markers but not the cytokine profile in paediatric patients with coeliac disease on a gluten-free diet: Results of a randomised, placebo-controlled pilot study. Bone. 2019;122:184–192. doi: 10.1016/j.bone.2019.03.001.
    1. Drabińska N., Azeem H.A., Krupa-Kozak U. A targeted metabolomic protocol for quantitative analysis of volatile organic compounds in urine of children with celiac disease. RSC Adv. 2018;8:36534–36541. doi: 10.1039/C8RA07342B.
    1. Nierop Groot M.N., De Bont J.A.M. Conversion of phenylalanine to benzaldehyde initiated by an aminotransferase in Lactobacillus plantarum. Appl. Environ. Microbiol. 1998;64:3009–3013.
    1. Jeon D.H., Park G.Y., Kwak I.S., Lee K.H., Park H.J. Antioxidants and their migration into food simulants on irradiated LLDPE film. LWT Food Sci. Technol. 2007;40:151–156. doi: 10.1016/j.lwt.2005.05.017.
    1. Duerksen D.R., Wilhelm-Boyles C., Parry D.M. Intestinal permeability in long-term follow-up of patients with celiac disease on a gluten-free diet. Dig. Dis. Sci. 2005;50:785–790. doi: 10.1007/s10620-005-2574-0.
    1. Russo F., Linsalata M., Clemente C., Chiloiro M., Orlando A., Marconi E., Chimienti G., Riezzo G. Inulin-enriched pasta improves intestinal permeability and modifies the circulating levels of zonulin and glucagon-like peptide 2 in healthy young volunteers. Nutr. Res. 2012;32:940–946. doi: 10.1016/j.nutres.2012.09.010.
    1. Westerbeek E.A.M., Van Den Berg A., Lafeber H.N., Fetter W.P.F., Van Elburg R.M. The effect of enteral supplementation of a prebiotic mixture of non-human milk galacto-, fructo- and acidic oligosaccharides on intestinal permeability in preterm infants. Br. J. Nutr. 2011;105:268–274. doi: 10.1017/S0007114510003405.
    1. Wilms E., Gerritsen J., Smidt H., Besseling-Van Der Van Vaart I., Rijkers G.T., Fuentes A.R.G., Masclee A.A.M., Troost F.J. Effects of supplementation of the synbiotic Ecologic®825/FOS P6 on intestinal barrier function in healthy humans: A randomized controlled trial. PLoS ONE. 2016;11:e0167775. doi: 10.1371/journal.pone.0167775.
    1. Ten Bruggencate S.J.M., Bovee-Oudenhoven I.M.J., Lettink-Wissink M.L.G., Katan M.B., van der Meer R. Dietary fructooligosaccharides affect intestinal barrier function in healthy men. J. Nutr. 2006;136:70–74. doi: 10.1093/jn/136.1.70.
    1. Krusinska B., Hawrysz I., Wadolowska L., Slowinska M.A., Biernacki M., Czerwinska A., Golota J.J. Associations of mediterranean diet and a posteriori derived dietary patterns with breast and lung cancer risk: A case-control study. Nutrients. 2018;10 doi: 10.3390/nu10040470.
    1. Krupa-Kozak U., Drabińska N., Jarocka-Cyrta E. The effect of oligofructose-enriched inulin supplementation on gut microbiota, nutritional status and gastrointestinal symptoms in paediatric coeliac disease patients on a gluten-free diet: Study protocol for a pilot randomized controlled trial. Nutr. J. 2017;16:47. doi: 10.1186/s12937-017-0268-z.
    1. Feruś K., Drabińska N., Krupa–Kozak U., Jarocka-Cyrta E. A Randomized, Placebo-Controlled, Pilot Clinical Trial to Evaluate the Effect of Supplementation with Prebiotic Synergy 1 on Iron Homeostasis in Children and Adolescents with Celiac Disease Treated with a Gluten-Free Diet. Nutrients. 2018;10:1818. doi: 10.3390/nu10111818.

Source: PubMed

3
구독하다