A Randomized, Placebo-Controlled, Pilot Clinical Trial to Evaluate the Effect of Supplementation with Prebiotic Synergy 1 on Iron Homeostasis in Children and Adolescents with Celiac Disease Treated with a Gluten-Free Diet

Klaudia Feruś, Natalia Drabińska, Urszula Krupa-Kozak, Elżbieta Jarocka-Cyrta, Klaudia Feruś, Natalia Drabińska, Urszula Krupa-Kozak, Elżbieta Jarocka-Cyrta

Abstract

Iron deficiency anemia (IDA) occurs in 15⁻46% of patients with celiac disease (CD), and in some cases, it may be its only manifestation. Studies in animal models have shown that prebiotics, including inulin, may help to increase intestinal absorption of iron. The aim of this study was to evaluate the effect of a prebiotic, oligofructose-enriched inulin (Synergy 1), on iron homeostasis in non-anemic children and adolescents with celiac disease (CD) in association with a gluten-free diet (GFD). Thirty-four CD patients (4⁻18 years old) were randomized into two groups receiving Synergy 1 (10 g/day) or a placebo (maltodextrin) for three months. Before and after intervention, blood samples were collected from all patients for assessment of blood morphology, biochemical parameters and serum hepcidin concentration. We found that serum hepcidin concentration after the intervention was significantly decreased by 60.9% (p = 0.046) in the Synergy 1 group, whereas no significant difference was observed in the placebo group. No differences in morphological and biochemical blood parameters (including ferritin, hemoglobin and C-reactive protein (CRP)) were observed after intervention in either group. Given that hepcidin decrease may improve intestinal iron absorption, these results warrant further investigation in a larger cohort and especially in patients with IDA.

Keywords: celiac disease; gluten-free diet; hepcidin; inulin; iron absorption; iron deficiency anemia; prebiotics.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Serum hepcidin concentration before (T0) and after (T1) intervention, expressed as a median (cross) (P25-P75) (box). * p = 0.046.

References

    1. Guandalini S., Assiri A. Celiac disease: A review. JAMA Pediatr. 2014;168:272–278. doi: 10.1001/jamapediatrics.2013.3858.
    1. Dickson B.C., Streutker C.J., Chetty R. Coeliac disease: An update for pathologists. J. Clin. Pathol. 2006;59:1008–1016. doi: 10.1136/jcp.2005.035345.
    1. Crocker H., Jenkinson C., Churchman D., Peters M. The Coeliac Disease Assessment Questionnaire (CDAQ): Development of a patient-reported outcome measure. Value Health. 2016;9:A595. doi: 10.1016/j.jval.2016.09.1429.
    1. Schumann M., Siegmund B., Schulzke J.D., Fromm M. Celiac Disease: Role of the Epithelial Barrier. Cell. Mol. Gastroenterol. Hepatol. 2017;3:150–162. doi: 10.1016/j.jcmgh.2016.12.006.
    1. Roma E., Roubani A., Kolia E., Panayiotou J., Zellos A., Syriopoulou V.P. Dietary compliance and life style of children with coeliac disease. J. Hum. Nutr. Diet. 2010;23:176–182. doi: 10.1111/j.1365-277X.2009.01036.x.
    1. Efthymakis K., Milano A., Laterza F., Serio M., Neri M. Iron deficiency anemia despite effective gluten-free diet in celiac disease: Diagnostic role of small bowel capsule endoscopy. Dig. Liver Dis. 2017;49:412–416. doi: 10.1016/j.dld.2016.12.007.
    1. Freeman H.J. Iron deficiency anemia in celiac disease. World J. Gastroenterol. 2015;21:9233–9238. doi: 10.3748/wjg.v21.i31.9233.
    1. Nemeth E., Ganz T. The role of hepcidin in iron metabolism. Acta Haematol. 2009;122:78–86. doi: 10.1159/000243791.
    1. Choi H.S., Song S.H., Lee J.H., Kim H.-J., Yang H.R. Serum hepcidin levels and iron parameters in children with iron deficiency. Korean J. Hematol. 2012;47:286–292. doi: 10.5045/kjh.2012.47.4.286.
    1. Harper J.W., Holleran S.F., Ramakrishnan R., Bhagat G., Green P.H.R. Anemia in celiac disease is multifactorial in etiology. Am. J. Hematol. 2007;82:996–1000. doi: 10.1002/ajh.20996.
    1. Gulec S., Anderson G.J., Collins J.F. Mechanistic and regulatory aspects of intestinal iron absorption. AJP Gastrointest. Liver Physiol. 2014;307:G397–G409. doi: 10.1152/ajpgi.00348.2013.
    1. Elli L., Poggiali E., Tomba C., Andreozzi F., Nava I., Bardella M.T., Campostrini N., Girelli D., Conte D., Cappellini M.D. Does TMPRSS6 RS855791 polymorphism contribute to iron deficiency in treated celiac disease. Am. J. Gastroenterol. 2015;110:200–202. doi: 10.1038/ajg.2014.354.
    1. Garcia-Manzanares A., Lucendo A.J. Nutritional and dietary aspects of celiac disease. Nutr. Clin. Pract. 2011;26:163–173. doi: 10.1177/0884533611399773.
    1. Rubio-Tapia A., Hill I.D., Kelly C.P., Calderwood A.H., Murray J.A. ACG clinical guidelines: Diagnosis and management of celiac disease. Am. J. Gastroenterol. 2013;108:656–676. doi: 10.1038/ajg.2013.79.
    1. Deora V., Aylward N., Sokoro A., El-Matry W. Serum vitamins and minerals at diagnosis an follow-up in children with celiac disease. J. Pediatr. Gastroenterol. Nutr. 2017;65:185–189. doi: 10.1097/MPG.0000000000001475.
    1. Galli G., Esposito G., Lahner E., Pilozzi E., Corleto V.D., Di Giulio E., Aloe Spiriti M.A., Annibale B. Histological recovery and gluten-free diet adherence: A prospective 1-year follow-up study of adult patients with coeliac disease. Aliment. Pharmacol. Ther. 2014;40:639–647. doi: 10.1111/apt.12893.
    1. Bardella M.T., Velio P., Cesana B.M. Coeliac disease: A histological follow-up study. Histopathology. 2007;50:465–471. doi: 10.1111/j.1365-2559.2007.02621.x.
    1. Vici G., Belli L., Biondi M., Polzonetti V. Gluten free diet and Nutrient deficiencies: A revive. Clin. Nutr. 2016;35:1236–1241. doi: 10.1016/j.clnu.2016.05.002.
    1. Theethira T.G., Dennis M., Leffler D.A. Nutritional consequences of celiac disease and gluten-free diet. Expert Rev. Gastroenterol. Hepatol. 2014;8:123–129. doi: 10.1586/17474124.2014.876360.
    1. Thomson T., Dennis M., Higgins L.A., Lee A.R., Sharrett M.K. Gluten-free diet survey: Are Americans with celiac disease consuming recommended amounts of fiber, iron, calcium and grain foods? J. Hum. Nutr. Diet. 2005;18:163–169. doi: 10.1111/j.1365-277X.2005.00607.x.
    1. Yeung C.K., Glahn R.E., Welch R.M., Miller D.D. Prebiotics and Iron Bioavailability-Is There a Connection? J. Food Sci. 2005;70:R88–R92. doi: 10.1111/j.1365-2621.2005.tb09984.x.
    1. Marciano R., Santamarina A.B., De Santana A.A., Silva M.D.L.C., Amancio O.M.S., Do Nascimento C.M.D.P.O., Oyama L.M., De Morais M.B. Effects of prebiotic supplementation on the expression of proteins regulating iron absorption in anaemic growing rats. Br. J. Nutr. 2015;113:901–908. doi: 10.1017/S0007114514004334.
    1. Krupa-Kozak U., Drabińska N., Jarocka-Cyrta E. The effect of oligofructose-enriched inulin supplementation on gut microbiota, nutritional status and gastrointestinal symptoms in paediatric coeliac disease patients on a gluten-free diet: Study protocol for a pilot randomized controlled trial. Nutr. J. 2017;16:47. doi: 10.1186/s12937-017-0268-z.
    1. Drabińska N., Jarocka-Cyrta E., Markiewicz L.H., Krupa-Kozak U. The Effect of Oligofructose-Enriched Inulin on Faecal Bacterial Counts and Microbiota-Associated Characteristics in Celiac Disease Children Following a Gluten-Free Diet: Results of a Randomized, Placebo-Controlled Trial. Nutrients. 2018;10:201. doi: 10.3390/nu10020201.
    1. Husby S., Koletzko I.R., Korponay-Szabo M.L., Mearin A.P., Shamir R., Troncone R., Giersiepen K., Branksi D., Catasssi C., Lelgeman M., et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition Guidelines for the Diagnosis of Coeliac Disease. J. Pediatr. Gastroenterol. Nutr. 2012;54:136–160. doi: 10.1097/MPG.0b013e31821a23d0.
    1. WHO . Iron Deficiency Anaemia: Assessment, Prevention, and Control. A Guide for Programme Managers. World Health Organization; Geneva, Switzerland: 2001.
    1. U.S. National Institutes of Health. [(accessed on 27 February 2017)]; Available online:
    1. Yasuda K., Dawson H.D., Wasmuth E.V., Roneker C.A., Chen C., Urban J.F., Welch R.M., Miller D.D., Lei X.G. Supplemental Dietary Inulin Influences Expression of Iron and Inflammation Related Genes in Young Pigs. J. Nutr. 2009;139:2018–2023. doi: 10.3945/jn.109.110528.
    1. Patterson J.K., Yasuda K., Welch R.M., Miller D.D., Lei X.G. Supplemental Dietary Inulin of Variable Chain Lengths Alters Intestinal Bacterial Populations in Young Pigs. J. Nutr. 2010;140:2158–2161. doi: 10.3945/jn.110.130302.
    1. Ohta A., Ohtsuki M., Baba S., Takizawa T., Adachi T., Kimura S. Effects of fructooligosaccharides on the absorption of iron, calcium and magnesium in iron-deficient anemic rats. J. Nutr. Sci. Vitaminol. 1995;41:281–291. doi: 10.3177/jnsv.41.281.
    1. Delzenne N., Aertssens J., Verplaetse H., Roccaro M., Roberfroid M. Effect of fermentable fructo-oligosaccharides on mineral, nitrogen and energy digestive balance in the rat. Life Sci. 1995;57:1579–1587. doi: 10.1016/0024-3205(95)02133-4.
    1. Laparra J.M., Tako E., Glahn R.P., Miller D.D. Supplemental inulin does not enhance iron bioavailability to Caco-2 cells from milk- or soy-based, probiotic-containing, yogurts but incubation at 37 °C does. Food Chem. 2008;109:122–128. doi: 10.1016/j.foodchem.2007.12.027.
    1. Laparra J.M., Glahn R.P., Miller D.D. Assessing potential effects of inulin and probiotic bacteria on Fe availability from common beans (Phaseolus vulgaris L.) to Caco-2 cells. J. Food Sci. 2009;74:40–46. doi: 10.1111/j.1750-3841.2008.01027.x.
    1. Vitali D., Radić M., Cetina-Čižmek B., Vedrina Dragojević I. Caco-2 cell uptake of Ca, Mg and Fe from biscuits as affected by enrichment with pseudocereal/inulin mixtures. Acta Aliment. 2011;40:480–489. doi: 10.1556/AAlim.40.2011.4.7.
    1. Christides T., Ganis J.C., Sharp P.A. In vitro assessment of iron availability from commercial Young Child Formulae supplemented with prebiotics. Eur. J. Nutr. 2018;57:669–678. doi: 10.1007/s00394-016-1353-3.
    1. Van den Heuvel E.G.H.M., Schaafsma G., Muys T., Van Dokkum W. Nondigestible oligosaccharides do not interfere with calcium and nonheme-iron absorption in young, healthy men. Am. J. Clin. Nutr. 1998;67:445–451. doi: 10.1093/ajcn/67.3.445.
    1. Petry N., Egli I., Chassard C., Lacroix C., Hurrell R. Inulin modifies the bifidobacteria population, fecal lactate concentration, and fecal pH but does not influence iron absorption in women with low iron status. Am. J. Clin. Nutr. 2012;96:325–331. doi: 10.3945/ajcn.112.035717.
    1. Abu Daya H., Lebwohl B., Lewis S.K., Green P.H. Celiac disease patients presenting with anemia have more severe disease than those presenting with diarrhea. Clin. Gastroenterol. Hepatol. 2013;11:1472–1477. doi: 10.1016/j.cgh.2013.05.030.
    1. Rubio-Tapia A., Rahim M.W., See J.A., Lahr B.D., Wu T.T., Murray J.A. Mucosal recovery and mortality in adults with celiac disease after treatment with a gluten-free diet. Am. J. Gastroenterol. 2010;105:1412–1420. doi: 10.1038/ajg.2010.10.

Source: PubMed

3
구독하다