The effect of oligofructose-enriched inulin supplementation on gut microbiota, nutritional status and gastrointestinal symptoms in paediatric coeliac disease patients on a gluten-free diet: study protocol for a pilot randomized controlled trial

Urszula Krupa-Kozak, Natalia Drabińska, Elżbieta Jarocka-Cyrta, Urszula Krupa-Kozak, Natalia Drabińska, Elżbieta Jarocka-Cyrta

Abstract

Background: A lifelong gluten-free diet (GFD) is regarded as the only proven and accepted therapy for coeliac disease (CD). However, even patients who strictly follow a GFD often suffer from intestinal symptoms and malabsorption. Selective modulation of intestinal microbiota with prebiotics could remedy various symptoms associated with CD. The use of prebiotics in the treatment of intestinal diseases remains insufficiently investigated. To our knowledge, this study makes the first attempt to evaluate the effect of prebiotic supplementation on gastrointestinal symptoms and nutritional status of children with CD. We hypothesized that adherence to a GFD supplemented with oligofructose-enriched inulin (Synergy 1) would deliver health benefits to children suffering from CD without any side effects, and that it would alleviate intestinal inflammation, restore and stabilize gut microbial balance and reverse nutritional deficiencies through enhanced absorption of vitamins and minerals.

Methods: A randomized, placebo-controlled clinical trial was designed to assess the impact of the Synergy 1 on paediatric CD patients following a GFD. We randomized 34 children diagnosed with CD into an intervention group receiving 10 g of the Synergy 1 supplement daily and a placebo group (receiving maltodextrin) during a 12-week nutritional intervention. Selected biochemical parameters, nutritional status and the characteristics of faecal bacteria will be determined in samples collected before and after the intervention. Analysis of vitamins and amino acids concentration in biological fluids will allow to assess the dietary intake of crucial nutrients. The compliance to a GFD will be confirmed by a Food Frequency Questionnaire (FFQ-6) and the analysis of serum anti-tissue transglutaminase and faecal gluten immunogenic peptides (GIP).

Conclusion: The identification of the beneficial effects of the Synergy 1 supplement on children with CD could have important implications for nutritional recommendations for CD patients and for alleviating the harmful effects of the disease.

Trial registration: ClinicalTrials.gov Registration Number: NCT03064997 .

Keywords: Coeliac disease; Gluten-free diet; Gut microbiota; Oligofructose-enriched inulin; Prebiotic; Supplementation.

Conflict of interest statement

Ethics approval and consent to participate

Parents and caregivers were informed about the potential benefits and risks of the dietary intervention, and they signed an informed consent form during the enrolment visit. The experimental design and procedures were approved by the Bioethics Committee of the Faculty of Medical Sciences of the University of Warmia and Mazury in Olsztyn (agreement No: 23/2015 of 16 June 2015).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Content for the schedule of enrolment, interventions, and assessments according to SPIRIT requirements
Fig. 2
Fig. 2
Flow diagram of participant recruitment during the trial according to CONSORT

References

    1. Guandalini S, Assiri A. Celiac disease a review. JAMA Pediatr. 2014;168(3):272–278. doi: 10.1001/jamapediatrics.2013.3858.
    1. Leffler DA, Green PHR, Fasano A. Extraintestinal manifestations of coeliac disease. Nat Rev Gastroenterol Hepatol. 2015;12:561–571. doi: 10.1038/nrgastro.2015.131.
    1. Krupa-Kozak U. Pathologic bone alterations in celiac disease: etiology, epidemiology, and treatment. Nutrition. 2014;30:16–24. doi: 10.1016/j.nut.2013.05.027.
    1. Murray JA, Watson T, Clearman B, Mitros F. Effect of a gluten free diet on gastrointestinal symptoms in celiac disease. Am J Clin Nutr. 2004;79:669–673.
    1. Kohout P. Small bowel permeability in diagnosis of celiac disease and monitoring of compliance of a gluten-free diet. Acta Med (Hradec Kralove) 2001;44:101–104.
    1. Roma E, Roubani A, Kolia E, Panayiotou J, Zellos A, Syriopoulou VP. Dietary compliance and life style of children with coeliac disease. J Hum Nutr Diet. 2010;23(2):176–182. doi: 10.1111/j.1365-277X.2009.01036.x.
    1. Ilus T, Kaukinen K, Virta LJ, Pukkala E, Collin P. Incidence of malignancies in diagnosed celiac patients: a population-based estimate. Am J Gastroenterol. 2014;109(9):1471–1477. doi: 10.1038/ajg.2014.194.
    1. De Palma G, Nadal I, Medina M, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol. 2010;10:63. doi: 10.1186/1471-2180-10-63.
    1. Di Cagno R, De Angelis M, De Pasquale I, Ndagijimana M, Vernocchi P, Ricciuti P, et al. Duodenal and faecal microbiota of celiac children: molecular, phenotype and metabolome characterization. BMC Microbiol. 2011;11:219. doi: 10.1186/1471-2180-11-219.
    1. Nistal E, Caminero A, Vivas S, Ruiz de Morales JM, Sáenz de Miera LE, Rodríguez-Aparicio LB, Casqueiro J. Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and celiac disease patients. Biochimie. 2012;94(8):1724–1729. doi: 10.1016/j.biochi.2012.03.025.
    1. Wacklin P, Kaukinen K, Tuovinen E, Collin P, Lindfors K, Partanen J, et al. The duodenal microbiota composition of adult celiac disease patients is associated with the clinical manifestation of the disease. Inflamm Bowel Dis. 2014;19(5):934–941. doi: 10.1097/MIB.0b013e31828029a9.
    1. Halfdanarson TR, Litzow MR, Murray JA. Hematologic manifestations of celiac disease. Blood. 2007;109:412–421. doi: 10.1182/blood-2006-07-031104.
    1. Lerner A. New therapeutic strategies for celiac disease. Autoimmun Rev. 2010;9:144–147. doi: 10.1016/j.autrev.2009.05.002.
    1. Furrie E, Macfarlane S, Kennedy A, Cummings JH, Walsh SV, O'neil DA, Macfarlane GT. Synbiotic therapy (Bifidobacterium longum/synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial. Gut. 2005;54:242–249. doi: 10.1136/gut.2004.044834.
    1. Smecuol E, Hwang HJ, Sugai E, Corso L, Cherñavsky AC, Bellavite FP, et al. Exploratory, randomized, double-blind, placebo-controlled study on the effects of Bifidobacterium infantis natren life start strain super strain in active celiac disease. J Clin Gastroenterol. 2013;47(2):139–147. doi: 10.1097/MCG.0b013e31827759ac.
    1. Lachat C, Hawwash D, Ocké MC, Berg C, Forsum E, Hörnell A, et al. Strengthening the reporting of observational studies in epidemiology-nutritional epidemiology (STROBE-nut): an extension of the STROBE statement. PLoS Med. 2016;13:e1002036. doi: 10.1371/journal.pmed.1002036.
    1. Husby S, Koletzko S, Korponay-Szabó IR, Mearin ML, Phillips A, Shamir R, et al. European Society for Pediatric Gastroenterology, Hepatology, and nutrition guidelines for the diagnosis of coeliac disease. J Pediatr Gastroenterol Nutr. 2012;54:136–160. doi: 10.1097/MPG.0b013e31821a23d0.
    1. Abrams SA, Griffin IJ, Hawthorne KM, Liang L, Gunn SK, Darlington G, Ellis KJ. A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am J Clin Nutr. 2005;82(2):471–476.
    1. Ho J, Reimer RA, Doulla M, Huang C. Effect of prebiotic intake on gut microbiota, intestinal permeability and glycemic control in children with type 1 diabetes: study protocol for a randomized controlled trial. Trials. 2016;17:347. doi: 10.1186/s13063-016-1486-y.
    1. Wądołowska L. Food Questionnaires. 2016. . Accessed 26 Feb 2016
    1. Bhupathiraju SN, Wedick NM, Pan A, Manson JE, Rexrode KM, Willett WC, et al. Quantity and variety in fruit and vegetable intake and risk of coronary heart disease. Am J Clin Nutr. 2013;98:1514–1523. doi: 10.3945/ajcn.113.066381.
    1. Deniz MS, Alsaffar AA. Assessing the validity and reliability of a questionnaire on dietary fibre-related knowledge in a Turkish student population. J Health Popul Nutr. 2013;31(4):497–503.
    1. Guarner F. Studies with Inulin-type Fructans on intestinal infections, permeability, and inflammation. J Nutr. 2007;137:2568S–2571S.
    1. Videla S, Vilaseca J, Antolín M, García-Lafuente A, Guarner F, Crespo E, et al. Dietary inulin improves distal colitis induced by dextran sodium sulfate in the rat. Am J Gastroenterol. 2001;96:1486–1493. doi: 10.1111/j.1572-0241.2001.03802.x.
    1. Cherbut C, Michel C, Lecannu G. The Prebiotic characteristics of Fructooligosaccharides are necessary for reduction of TNBS-induced colitis in rats. J Nutr. 2003;133:21–27.
    1. Hoentjen F, Welling GW, Harmsen HJM, Zhang X, Snart J, Tannock GW, et al. Reduction of colitis by prebiotics in HLA-B27 transgenic rats is associated with microflora changes and immunomodulation. Inflamm Bowel Dis. 2005;11:977–985. doi: 10.1097/01.MIB.0000183421.02316.d5.
    1. Welters CFM, Heineman E, Thunnissen BJM, van den Bogaard AEJM, Soeters PB, Baeten CGMI. Effect of dietary inulin supplementation on inflammation of pouch mucosa in patients with an ileal pouch-anal anastomosis. Dis Colon rectum. 2002;45:621–627. doi: 10.1007/s10350-004-6257-2.

Source: PubMed

3
구독하다