Biocompatibility of Advanced Manufactured Titanium Implants-A Review

Alfred T Sidambe, Alfred T Sidambe

Abstract

Titanium (Ti) and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing) or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys in the manufacture of devices because of associated advantages that include design flexibility, reduced processing costs, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. The emerging advanced manufacturing approaches of metal injection moulding and additive layer manufacturing are receiving particular attention from the implant fabrication industry because they could overcome some of the difficulties associated with traditional implant fabrication techniques such as titanium casting. Using advanced manufacturing, it is also possible to produce more complex porous structures with improved mechanical performance, potentially matching the modulus of elasticity of local bone. While the economic and engineering potential of advanced manufacturing for the manufacture of musculo-skeletal implants is therefore clear, the impact on the biocompatibility of the materials has been less investigated. In this review, the capabilities of advanced powder manufacturing routes in producing components that are suitable for biomedical implant applications are assessed with emphasis placed on surface finishes and porous structures. Given that biocompatibility and host bone response are critical determinants of clinical performance, published studies of in vitro and in vivo research have been considered carefully. The review concludes with a future outlook on advanced Ti production for biomedical implants using powder metallurgy.

Keywords: 3-D printing; CP-Ti; Ti6Al4V; additive manufacturing; biocompatibility; cytotoxicity; implants; metal injection moulding; powder metallurgy; titanium.

Conflict of interest statement

The author declares no conflict of interest.

Figures

Figure 1
Figure 1
Flow diagram of ALM system from computer-aided design (CAD) file through to component manufacture.
Figure 2
Figure 2
Schematic drawing of an electron beam melting system.
Figure 3
Figure 3
Schematic overview of selective laser melting (SLM) cycle.
Figure 4
Figure 4
Example of an exact CT-based part of a complex human vertebra processed by SLM using additive manufacturing [37].
Figure 5
Figure 5
Metal injection moulding flow diagram.
Figure 6
Figure 6
Topographic 3D view of machined CP-Ti (a) and MIM CP-Ti (b) surfaces, 1 × 1 mm [45].
Figure 7
Figure 7
Micrograph showing surrounding tissue on the MIM Ti-64 implant showing continuous contact [46].
Figure 8
Figure 8
Schematic representation of LENS process.
Figure 9
Figure 9
SEM micrographs of OPC1 cells after 3 days of culture on: (a,b) porous Ti (27% porosity), showing flattened and well-spread morphology; (c) Ti plate, showing more rounded shape [47].
Figure 10
Figure 10
Fused deposition modelling schematic.
Figure 11
Figure 11
Comparison of cytotoxicity between titanium scaffolds and control cylinder [49].

References

    1. Elias C.N., Lima J.H.C., Valiev R., Meyers M.A. Biomedical applications of titanium and its alloys. JOM. 2008;60:46–49.
    1. BomBač D., Brojan M., Fajfar P., Kosel F., Turk R. Review of materials in medical applications. RMZ Mater. Geoenviron. 2007;54:471–499.
    1. Mueller E., Kammula R., Marlowe D. Regulation of biomaterials and medical devices. MRS Bull. 1991;16:39–41. doi: 10.1557/S0883769400056037.
    1. Froes F.H. Titanium powder metallurgy: A review—Part 1. Adv. Mater. Process. 2012;170:16–22.
    1. Guo S., Qu X., He X., Zhou T., Duan B. Powder injection molding of Ti-6Al-4V alloy. J. Mater. Process. Technol. 2006;173:310–314. doi: 10.1016/j.jmatprotec.2005.12.001.
    1. Sidambe A.T., Figueroa I.A., Hamilton H.G.C., Todd I. Metal injection moulding of CP-Ti components for biomedical applications. J. Mater. Process. Technol. 2012;212:1591–1597. doi: 10.1016/j.jmatprotec.2012.03.001.
    1. Quinn R.K., Armstrong N.R. Electrochemical and surface analytical characterization of titanium and titanium hydride thin-film electrode oxidation. J. Electrochem. Soc. 1978;125:1790–1796. doi: 10.1149/1.2131295.
    1. Schiff N., Grosgogeat B., Lissac M., Dalard F. Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys. Biomaterials. 2002;23:1995–2002. doi: 10.1016/S0142-9612(01)00328-3.
    1. Tengvall P., Lundström I. Physico-chemical considerations of titanium as a biomaterial. Clin. Mater. 1992;9:115–134. doi: 10.1016/0267-6605(92)90056-Y.
    1. Paschalis E.I., Chodosh J., Spurr-Michaud S., Cruzat A., Tauber A., Behlau I., Gipson I., Dohlman C.H. In vitro and in vivo assessment of titanium surface modification for coloring the backplate of the boston keratoprosthesis. Investig. Ophthalmol. Vis. Sci. 2013;54:3863–3873. doi: 10.1167/iovs.13-11714.
    1. Adell R., Lekholm U., Rockler B., Brånemark P.I. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int. J. Oral Maxillof. 1981;10:387–416.
    1. Standard Specification for Unalloyed Titanium for Surgical Implant Applications (UNS R50250, UNS R50400, UNS R50550, UNS R50700) American Society for Testing Materials; West Conshohocken, PA, USA: 2013. ASTM F67–13.
    1. Standard Specification for Wrought Titanium-6 Aluminum-4 Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401) American Society for Testing Materials; West Conshohocken, PA, USA: 2013. ASTM F136–13.
    1. Sidambe A.T., Choong W.L., Hamilton H.G.C., Todd I. Correlation of metal injection moulded Ti6Al4V yield strength with resonance frequency (PCRT) measurements. Mater. Sci. Eng. A Struct. 2013;568:220–227. doi: 10.1016/j.msea.2013.01.040.
    1. Zhao X., Chen L., Xin L., Huang W. Study on microstructure and mechanical properties of laser rapid forming Inconel 718. Mater. Sci. Eng. A Struct. 2008;478:119–124. doi: 10.1016/j.msea.2007.05.079.
    1. Bidaux J.E., Closuit C., Rodriguez-Arbaizar M., Zufferey D., Carreno-Morelli E. Metal injection moulding of low modulus Ti-Nb alloys for biomedical applications. Powder Metall. 2013;56:263–266. doi: 10.1179/0032589913Z.000000000118.
    1. Ponader S., von Wilmowsky C., Widenmayer M., Lutz R., Heinl P., Körner C., Singer R.F., Nkenke E., Neukam F.W., Schlegel K.A. In vivo performance of selective electron beam-melted Ti-6Al-4V structures. J. Bio. Mater. Res. A. 2009;92:56–62.
    1. Parthasarathy J., Starly B., Raman S., Christensen A. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM) J. Mech. Behav. Biomed. Mater. 2010;3:249–259. doi: 10.1016/j.jmbbm.2009.10.006.
    1. Murr L.E., Amato K.N., Li S.J., Tian Y.X., Cheng X.Y., Gaytan S.M., Martinez E., Shindo P.W., Medina F., Wicker R.B. Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. J. Mech. Behav. Biomed. Mater. 2011;4:1396–1411. doi: 10.1016/j.jmbbm.2011.05.010.
    1. Standard Specification for Metal Injection Molded Titanium-6Aluminum-4Vanadium Components for Surgical Implant Applications. American Society for Testing Materials; West Conshohocken, PA, USA: 2011. ASTM F2885–11.
    1. Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium ELI with Powder Bed Fusion. American Society for Testing Materials; West Conshohocken, PA, USA: 2014. ASTM F2924–14.
    1. Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium ELI (Extra Low Interstitial) with Powder Bed Fusion. American Society for Testing Materials; West Conshohocken, PA, USA: 2014. ASTM F3001–14.
    1. Sintered-Metal Injection-Moulded Materials—Specifications. International Organisation for Standardisation ISO; Geneva, Switzerland: 2014. ISO 22068-14.
    1. Sidambe A.T., Figueroa I.A., Hamilton H.G.C., Todd I. Taguchi optimization of MIM titanium sintering. Int. J. Powder Metall. 2011;47:21–28.
    1. Froes F.H. Titanium powder metallurgy: A review—Part 2. Adv. Mater. Process. 2012;170:26–29.
    1. Van Noort R. The future of dental devices is digital. Dent. Mater. 2012;28:3–12. doi: 10.1016/j.dental.2011.10.014.
    1. Ferri O.M., Ebel T., Bormann R. High cycle fatigue behaviour of Ti-6Al-4V fabricated by metal injection moulding technology. Mat. Sci. Eng. A Struct. 2009;504:107–113. doi: 10.1016/j.msea.2008.10.039.
    1. Ebel T., Blawert C., Willumeit R., Luthringer B.J.C., Ferri O.M., Feyerabend F. Ti-6Al-4V-0.5B: A modified alloy for implants produced by injection molding. Adv. Eng. Mater. 2011;13:B440–B453. doi: 10.1002/adem.201180017.
    1. Haslauer C.M., Springer J.C., Harrysson O.L.A., Loboa E.G., Monteiro-Riviere N.A., Marcellin-Little D.J. In vitro biocompatibility of titanium alloy discs made using direct metal fabrication. Med. Eng. Phys. 2010;32:645–652. doi: 10.1016/j.medengphy.2010.04.003.
    1. Chen H., Sago A., West S., Farina J., Eckert J., Broadley M. Biocompatibility of metal injection molded versus wrought ASTM F562 (MP35N) and ASTM F1537 (CCM) cobalt alloys. BioMed. Mater. Eng. 2011;21:1–7.
    1. Ivanova O., Williams C., Campbell T. Additive manufacturing (AM) and nanotechnology: Promises and challenges. Rapid Prototyp. J. 2013;19:353–364. doi: 10.1108/RPJ-12-2011-0127.
    1. Al-Bermani S.S., Blackmore M.L., Zhang W., Todd I. The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti-6Al-4V. Metall. Mater. Trans. A. 2010;41A:3422–3434. doi: 10.1007/s11661-010-0397-x.
    1. Ponader S., Vairaktaris E., Heinl P., Wilmowsky C.V., Rottmair A., Körner C., Singer R.F., Holst S., Schlegel K.A., Neukam F.W., et al. Effects of topographical surface modifications of electron beam melted Ti-6Al-4V titanium on human fetal osteoblasts. J. Biomed. Mater. Res. A. 2008;84A:1111–1119. doi: 10.1002/jbm.a.31540.
    1. Thomsen P., Malmström J., Emanuelsson L., René M., Snis A. Electron beam-melted, free-form-fabricated titanium alloy implants: Material surface characterization and early bone response in rabbits. J. Biomed. Mater. Res. B. 2009;90B:35–44.
    1. Li X., Feng Y.F., Wang C.T., Li G.C., Lei W., Zhang Z.Y., Wang L. Evaluation of biological properties of electron beam melted Ti6Al4V implant with biomimetic coating in vitro and in vivo. PLos One. 2012;7:e52049. doi: 10.1371/journal.pone.0052049.
    1. Palmquist A., Snis A., Emanuelsson L., Browne M., Thomsen P. Long-term biocompatibility and osseointegration of electron beam melted, free-form-fabricated solid and porous titanium alloy: Experimental studies in sheep. J. BioMater. Appl. 2013;27:1003–1016. doi: 10.1177/0885328211431857.
    1. Hollander D.A., Wirtz T., Walter M.V., Linker R., Schultheis A., Paar O. Development of individual three-dimensional bone substitutes using “selective laser melting”. Eur. J. Trauma. 2003;4:228–234. doi: 10.1007/s00068-003-1332-2.
    1. Hollister S.J., Lin C.Y., Saito E., Lin C.Y., Schek R.D., Taboas J.M., Williams J.M., Partee B., Flanagan C.L., Diggs A., et al. Engineering craniofacial scaffolds. Orthod. Craniofac. Res. 2005;8:162–173. doi: 10.1111/j.1601-6343.2005.00329.x.
    1. Mangano C., Piattelli A., d’Avila S., Iezzi G., Mangano F., Onuma T., Shibli J.A. Early human bone response to laser metal sintering surface topography: A histologic report. J. Oral Implantol. 2010;36:91–96. doi: 10.1563/AAID-JOI-D-09-00003.
    1. Warnke P.H., Douglas T., Wollny P., Sherry E., Steiner M., Galonska S., Becker S.T., Springer I.N., Wiltfang J., Sivananthan S. Rapid prototyping: Porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering. Tissue Eng. Part C Methods. 2009;15:115–124. doi: 10.1089/ten.tec.2008.0288.
    1. Todd I., Sidambe A.T. Developments in metal injection moulding (MIM) In: Isaac Chang Y.Z., editor. Advances in Powder Metallurgy: Properties, Processing and Applications. Woodhead Publishing Limited; Sawston, UK: 2013. pp. 109–146.
    1. Sago J.A., Broadley M.W., Eckert J.K., Chen H. Manufacturing of implantable biomedical devices by metal injection moulding. Adv. Powder Metall. Part Mater. 2010;4:89–99.
    1. Sago J.A., Broadley M.W., Eckert J.K. Metal injection molding of alloys for implantable medical devices. 2012;48:41–49.
    1. Auzene D., Mallejac C., Demangel C., Lebel F., Duval J.L., Vigneron P., Puippe J.C. Influence of surface aspects and properties of MIM titanium alloys for medical applications. PIM Int. 2012;6:57–61.
    1. Demangel C., Auzène D., Vayssade M., Duval J.-L., Vigneron P., Nagel M.-D., Puippe J.-C. Cytocompatibility of titanium metal injection molding with various anodic oxidation post-treatments. Mater Sci. Eng. C. 2012;32:1919–1925. doi: 10.1016/j.msec.2012.05.037.
    1. Ibrahim R., Azmirruddin M., Jabir M., Muhamad N., Rafiq M., Hayaty N., Kasim A., Muhamad S., Hanada K., Shimizu T., et al. Pre-Clinical Study on the Oral Maxillofacial (OMF) Titanium Alloy Implants Produced By Metal Injection Molding (MIM) Using Palm Oil Based Binder System. Euro PM Congress and Exhibition and EPMA; Gothenburg, Sweden: 2013.
    1. Xue W., Krishna B.V., Bandyopadhyay A., Bose S. Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater. 2007;3:1007–1018. doi: 10.1016/j.actbio.2007.05.009.
    1. Bandyopadhyay A., Espana F., Balla V.K., Bose S., Ohgami Y., Davies N.M. Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta Biomater. 2010;6:1640–1648. doi: 10.1016/j.actbio.2009.11.011.
    1. Wiria F.E., Shyan J.Y.M., Lim P.N., Wen F.G.C., Yeo J.F., Cao T. Printing of titanium implant prototype. Mater. Des. 2010;31:S101–S105. doi: 10.1016/j.matdes.2009.12.050.

Source: PubMed

3
구독하다