Detection Methods of Human and Animal Influenza Virus-Current Trends

Karolina Dziąbowska, Elżbieta Czaczyk, Dawid Nidzworski, Karolina Dziąbowska, Elżbieta Czaczyk, Dawid Nidzworski

Abstract

The basic affairs connected to the influenza virus were reviewed in the article, highlighting the newest trends in its diagnostic methods. Awareness of the threat of influenza arises from its ability to spread and cause a pandemic. The undiagnosed and untreated viral infection can have a fatal effect on humans. Thus, the early detection seems pivotal for an accurate treatment, when vaccines and other contemporary prevention methods are not faultless. Public health is being attacked with influenza containing new genes from a genetic assortment between animals and humankind. Unfortunately, the population does not have immunity for mutant genes and is attacked in every viral outbreak season. For these reasons, fast and accurate devices are in high demand. As currently used methods like Rapid Influenza Diagnostic Tests lack specificity, time and cost-savings, new methods are being developed. In the article, various novel detection methods, such as electrical and optical were compared. Different viral elements used as detection targets and analysis parameters, such as sensitivity and specificity, were presented and discussed.

Keywords: ELISA; PCR; Rapid Influenza Diagnostic Tests RIDTs; electrochemical detection; influenza virus; optical detection.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
RIDT mode of action: (a) Bounding dye-labeled antibodies specific for target antigen onto the nitrocellulose strip; (b) Addition of respiratory specimen with buffer to the strip; (c) Trapping antibodies on the test line if target antigen is presented. Reproduced with permission from WHO on behalf of the Special Programme for Research and Training in Tropical Diseases, Use of Influenza Rapid Diagnostic Tests; published by WHO Library Cataloguing-in-Publication Data, 2010.
Figure 2
Figure 2
Different approaches for influenza virus detection: (a) Reuse of known devices like glucometers; (b) Electrical detection system; (c) Strip-based sensor/ ELISA modifications; (d) Optical approaches using nanoparticles.
Figure 3
Figure 3
An example of electrode surface modification. Boron-doped diamond electrode modified via click reaction for infectious flacherie virus (IFV) electrochemical detection. Reproduced with permission from Matsubara et al., PNAS; published by PNAS, 2016.
Figure 4
Figure 4
Novel Isoprene Sensor readout with Bluetooth mode. Reproduced with permission from Gouma et al., Sensors; published by MPDI, 2017.

References

    1. Zaki S.R., Keating M.K. 13—Viral Diseases. In: Zander D.S., Farver C.F., editors. Pulmonary Pathology (Second Edition) Taylor & Francis; Philadelphia, PA, USA: 2018. pp. 244–288. Foundations in Diagnostic Pathology.
    1. Barrett B. Chapter 18—Viral Upper Respiratory Infection. In: Rakel D., editor. Integrative Medicine (Fourth Edition) Elsevier; Amsterdam, The Netherlands: 2018. pp. 170–179.e7.
    1. Paules C., Subbarao K. Influenza. Lancet. 2017;390:697–708. doi: 10.1016/S0140-6736(17)30129-0.
    1. Past Pandemics | Pandemic Influenza (Flu) | CDC. [(accessed on 6 September 2018)]; Available online: .
    1. Cui X., Das A., Dhawane A.N., Sweeney J., Zhang X., Chivukula V., Iyer S.S. Highly specific and rapid glycan based amperometric detection of influenza viruses. Chem. Sci. 2017;8:3628–3634. doi: 10.1039/C6SC03720H.
    1. Anderson C.E., Holstein C.A., Strauch E.-M., Bennett S., Chevalier A., Nelson J., Fu E., Baker D., Yager P. Rapid Diagnostic Assay for Intact Influenza Virus Using a High Affinity Hemagglutinin Binding Protein. Anal. Chem. 2017;89:6608–6615. doi: 10.1021/acs.analchem.7b00769.
    1. Influenza (Seasonal) [(accessed on 6 September 2018)]; Available online:
    1. Bouvier N.M., Palese P. The biology of influenza viruses. Vaccine. 2008;26(Suppl. 4):D49–D53. doi: 10.1016/j.vaccine.2008.07.039.
    1. Song H., Qi J., Khedri Z., Diaz S., Yu H., Chen X., Varki A., Shi Y., Gao G.F. An Open Receptor-Binding Cavity of Hemagglutinin-Esterase-Fusion Glycoprotein from Newly-Identified Influenza D Virus: Basis for Its Broad Cell Tropism. PLoS Pathog. 2016;12:e1005411. doi: 10.1371/journal.ppat.1005411.
    1. McCauley J.W., Mahy B.W. Structure and function of the influenza virus genome. Biochem. J. 1983;211:281–294. doi: 10.1042/bj2110281.
    1. Drake J.W. Rates of spontaneous mutation among RNA viruses. Proc. Natl. Acad. Sci. USA. 1993;90:4171–4175. doi: 10.1073/pnas.90.9.4171.
    1. WHO | Avian and Other Zoonotic Influenza. [(accessed on 6 September 2018)]; Available online:
    1. Gavin P.J., Thomson R.B. Review of Rapid Diagnostic Tests for Influenza. Clin. Appl. Immunol. Rev. 2004;4:151–172. doi: 10.1016/S1529-1049(03)00064-3.
    1. Orthomyxoviridae—Negative Sense RNA Viruses—Negative Sense RNA Viruses. [(accessed on 6 September 2018)];2011 Available online: .
    1. Manzoor R., Igarashi M., Takada A. Influenza A Virus M2 Protein: Roles from Ingress to Egress. Int. J. Mol. Sci. 2017;18 doi: 10.3390/ijms18122649.
    1. Faccini S., De Mattia A., Chiapponi C., Barbieri I., Boniotti M.B., Rosignoli C., Franzini G., Moreno A., Foni E., Nigrelli A.D. Development and evaluation of a new Real-Time RT-PCR assay for detection of proposed influenza D virus. J. Virol. Methods. 2017;243:31–34. doi: 10.1016/j.jviromet.2017.01.019.
    1. Tseng Y.-T., Wang C.-H., Chang C.-P., Lee G.-B. Integrated microfluidic system for rapid detection of influenza H1N1 virus using a sandwich-based aptamer assay. Biosens. Bioelectron. 2016;82:105–111. doi: 10.1016/j.bios.2016.03.073.
    1. Shelby T., Banerjee T., Kallu J., Sulthana S., Zegar I., Santra S. Novel magnetic relaxation nanosensors: An unparalleled “spin” on influenza diagnosis. Nanoscale. 2016;8:19605–19613. doi: 10.1039/C6NR05889B.
    1. Hushegyi A., Bertok T., Damborsky P., Katrlik J., Tkac J. An ultrasensitive impedimetric glycan biosensor with controlled glycan density for detection of lectins and influenza hemagglutinins. Chem. Commun. 2015;51:7474–7477. doi: 10.1039/C5CC00922G.
    1. Peaper D.R., Landry M.L. Rapid diagnosis of influenza: State of the art. Clin. Lab. Med. 2014;34:365–385. doi: 10.1016/j.cll.2014.02.009.
    1. Storch G.A. Rapid diagnostic tests for influenza. Curr. Opin. Pediatr. 2003;15:77–84. doi: 10.1097/00008480-200302000-00013.
    1. Jarocka U., Sawicka R., Góra-Sochacka A., Sirko A., Dehaen W., Radecki J., Radecka H. An electrochemical immunosensor based on a 4,4′-thiobisbenzenethiol self-assembled monolayer for the detection of hemagglutinin from avian influenza virus H5N1. Sens. Actuators B Chem. 2016;228:25–30. doi: 10.1016/j.snb.2016.01.001.
    1. Couch R.B. Seasonal Inactivated Influenza Virus Vaccines. Vaccine. 2008;26:D5–D9. doi: 10.1016/j.vaccine.2008.05.076.
    1. Jia W., Cao C., Lin Y., Zhong L., Xie S., Wang X., Yin S., Xu Z., Dai Y., Li Z., et al. Detection of a novel highly pathogenic H7 influenza virus by duplex real-time reverse transcription polymerase chain reaction. J. Virol. Methods. 2017;246:100–103. doi: 10.1016/j.jviromet.2017.03.014.
    1. Rowell J., Lo C.-Y., Price G.E., Misplon J.A., Epstein S.L., Garcia M. Conventional influenza vaccines influence the performance of a universal influenza vaccine in mice. Vaccine. 2018;36:1008–1015. doi: 10.1016/j.vaccine.2017.11.065.
    1. Ultrasensitive Detection and Glycan Analysis of a Prostate Cancer Biomarker | Atlas of Science. [(accessed on 6 September 2018)]; Available online:
    1. Dinh H., Zhang X., Sweeney J., Yang Y., He Y., Dhawane A., Iyer S.S. Glycan based Detection and Drug Susceptibility of Influenza Virus. Anal. Chem. 2014;86:8238–8244. doi: 10.1021/ac501624v.
    1. Influenza Signs and Symptoms and the Role of Laboratory Diagnostics | Seasonal Influenza (Flu) | CDC. [(accessed on 6 September 2018)]; Available online: .
    1. WHO . Use of Influenza Rapid Diagnostic Tests. WHO; Rome, Italy: 2010.
    1. McMullen A.R., Anderson N.W., Burnham C.-A.D., Education Committee of the Academy of Clinical Laboratory Physicians and Scientists Pathology Consultation on Influenza Diagnostics. Am. J. Clin. Pathol. 2016;145:440–448. doi: 10.1093/ajcp/aqw039.
    1. Koski R.R., Klepser M.E. A systematic review of rapid diagnostic tests for influenza: Considerations for the community pharmacist. J. Am. Pharm. Assoc. 2017;57:13–19. doi: 10.1016/j.japh.2016.08.018.
    1. González-Del Vecchio M., Catalán P., de Egea V., Rodríguez-Borlado A., Martos C., Padilla B., Rodríguez-Sanchez B., Bouza E. An algorithm to diagnose influenza infection: Evaluating the clinical importance and impact on hospital costs of screening with rapid antigen detection tests. Eur. J. Clin. Microbiol. Infect. Dis. 2015;34:1081–1085. doi: 10.1007/s10096-015-2328-7.
    1. WHO | Recommendations and Laboratory Procedures for Detection of Avian Influenza A(H5N1) Virus in Specimens from Suspected Human Cases. [(accessed on 6 September 2018)]; Available online:
    1. Ryu S.W., Suh I.B., Ryu S.-M., Shin K.S., Kim H.-S., Kim J., Uh Y., Yoon K.J., Lee J.-H. Comparison of three rapid influenza diagnostic tests with digital readout systems and one conventional rapid influenza diagnostic test. J. Clin. Lab. Anal. 2017 doi: 10.1002/jcla.22234.
    1. Table 2: Characteristics of Rapid Influenza Diagnostic Tests (Antigen Detection Only) [(accessed on 6 September 2018)]; Available online: .
    1. Rapid Influenza Diagnostic Tests | Seasonal Influenza (Flu) | CDC. [(accessed on 6 September 2018)]; Available online: .
    1. Akaishi Y., Matsumoto T., Harada Y., Hirayama Y. Evaluation of the rapid influenza detection tests GOLD SIGN FLU and Quick Navi-Flu for the detection of influenza A and B virus antigens in adults during the influenza season. Int. J. Infect. Dis. 2016;52:55–58. doi: 10.1016/j.ijid.2016.10.002.
    1. Melchers W.J.G., Kuijpers J., Sickler J.J., Rahamat-Langendoen J. Lab-in-a-tube: Real-time molecular point-of-care diagnostics for influenza A and B using the cobas® Liat® system. J. Med. Virol. 2017;89:1382–1386. doi: 10.1002/jmv.24796.
    1. Gómez S., Prieto C., Vera C., Otero J.R., Folgueira L. Evaluation of a new rapid diagnostic test for the detection of influenza and RSV. Enferm. Infecc. Microbiol. Clin. 2016;34:298–302. doi: 10.1016/j.eimc.2015.05.007.
    1. Moesker F.M., van Kampen J.J.A., Aron G., Schutten M., van de Vijver D.A.M.C., Koopmans M.P.G., Osterhaus A.D.M.E., Fraaij P.L.A. Diagnostic performance of influenza viruses and RSV rapid antigen detection tests in children in tertiary care. J. Clin. Virol. 2016;79:12–17. doi: 10.1016/j.jcv.2016.03.022.
    1. Nguyen Van J.C., Caméléna F., Dahoun M., Pilmis B., Mizrahi A., Lourtet J., Behillil S., Enouf V., Le Monnier A. Prospective evaluation of the Alere i Influenza A&B nucleic acid amplification versus Xpert Flu/RSV. Diagn. Microbiol. Infect. Dis. 2016;85:19–22. doi: 10.1016/j.diagmicrobio.2015.11.012.
    1. Sanbonmatsu-Gámez S., Pérez-Ruiz M., Lara-Oya A., Pedrosa-Corral I., Riazzo-Damas C., Navarro-Marí J.M. Analytical performance of the automated multianalyte point-of-care mariPOC® for the detection of respiratory viruses. Diagn. Microbiol. Infect. Dis. 2015;83:252–256. doi: 10.1016/j.diagmicrobio.2015.07.010.
    1. Eggers M., Enders M., Terletskaia-Ladwig E. Evaluation of the Becton Dickinson Rapid Influenza Diagnostic Tests in Outpatients in Germany during Seven Influenza Seasons. PLoS ONE. 2015;10 doi: 10.1371/journal.pone.0127070.
    1. Ruest A., Michaud S., Deslandes S., Frost E.H. Comparison of the Directigen Flu A + B Test, the QuickVue Influenza Test, and Clinical Case Definition to Viral Culture and Reverse Transcription-PCR for Rapid Diagnosis of Influenza Virus Infection. J. Clin. Microbiol. 2003;41:3487–3493. doi: 10.1128/JCM.41.8.3487-3493.2003.
    1. Mese S., Akan H., Badur S., Uyanik A. Istanbul Rapid Test Study Group Analytical performance of the BD veritorTM system for rapid detection of influenza virus A and B in a primary healthcare setting. BMC Infect. Dis. 2016;16:481. doi: 10.1186/s12879-016-1811-9.
    1. Nolte F.S., Gauld L., Barrett S.B. Direct Comparison of Alere i and cobas Liat Influenza A and B Tests for Rapid Detection of Influenza Virus Infection. J. Clin. Microbiol. 2016;54:2763–2766. doi: 10.1128/JCM.01586-16.
    1. Taylor J., McPhie K., Druce J., Birch C., Dwyer D.E. Evaluation of twenty rapid antigen tests for the detection of human influenza A H5N1, H3N2, H1N1, and B viruses. J. Med. Virol. 2009;81:1918–1922. doi: 10.1002/jmv.21604.
    1. Piché-Renaud P.-P., Turcot J., Chartrand C., Gravel J., Labrecque M., Vallières É., Renaud C. Evaluation of a fluorescent immunoassay rapid test (SofiaTM) for detection of influenza A+B and RSV in a tertiary pediatric setting. Diagn. Microbiol. Infect. Dis. 2016;84:304–308. doi: 10.1016/j.diagmicrobio.2015.10.025.
    1. Binnicker M.J., Espy M.J., Irish C.L., Vetter E.A. Direct Detection of Influenza A and B Viruses in Less Than 20 Minutes Using a Commercially Available Rapid PCR Assay. J. Clin. Microbiol. 2015;53:2353–2354. doi: 10.1128/JCM.00791-15.
    1. Beckmann C., Hirsch H.H. Diagnostic performance of near-patient testing for influenza. J. Clin. Virol. 2015;67:43–46. doi: 10.1016/j.jcv.2015.03.024.
    1. Hurtado J.C., Mosquera M.M., de Lazzari E., Martínez E., Torner N., Isanta R., de Molina P., Pumarola T., Marcos M.A., Vila J., et al. Evaluation of a new, rapid, simple test for the detection of influenza virus. BMC Infect. Dis. 2015;15:44. doi: 10.1186/s12879-015-0775-5.
    1. Yoon J., Yun S.G., Nam J., Choi S.-H., Lim C.S. The use of saliva specimens for detection of influenza A and B viruses by rapid influenza diagnostic tests. J. Virol. Methods. 2017;243:15–19. doi: 10.1016/j.jviromet.2017.01.013.
    1. Rapid Diagnostic Testing for Influenza: Information for Clinical Laboratory Directors | Seasonal Influenza (Flu) | CDC. [(accessed on 6 September 2018)]; Available online: .
    1. Vemula S.V., Zhao J., Liu J., Wang X., Biswas S., Hewlett I. Current Approaches for Diagnosis of Influenza Virus Infections in Humans. Viruses. 2016;8 doi: 10.3390/v8040096.
    1. Li Z.-N., Weber K.M., Limmer R.A., Horne B.J., Stevens J., Schwerzmann J., Wrammert J., McCausland M., Phipps A.J., Hancock K., et al. Evaluation of multiplex assay platforms for detection of influenza hemagglutinin subtype specific antibody responses. J. Virol. Methods. 2017;243:61–67. doi: 10.1016/j.jviromet.2017.01.008.
    1. Wang B., Russell M.L., Brewer A., Newton J., Singh P., Ward B.J., Loeb M. Single radial haemolysis compared to haemagglutinin inhibition and microneutralization as a correlate of protection against influenza A H3N2 in children and adolescents. Influenza Other Respir. Viruses. 2017;11:283–288. doi: 10.1111/irv.12450.
    1. Leirs K., Tewari Kumar P., Decrop D., Pérez-Ruiz E., Leblebici P., Van Kelst B., Compernolle G., Meeuws H., Van Wesenbeeck L., Lagatie O., et al. Bioassay Development for Ultrasensitive Detection of Influenza A Nucleoprotein Using Digital ELISA. Anal. Chem. 2016;88:8450–8458. doi: 10.1021/acs.analchem.6b00502.
    1. Lin C., Guo Y., Zhao M., Sun M., Luo F., Guo L., Qiu B., Lin Z., Chen G. Highly sensitive colorimetric immunosensor for influenza virus H5N1 based on enzyme-encapsulated liposome. Anal. Chim. Acta. 2017;963:112–118. doi: 10.1016/j.aca.2017.01.031.
    1. Zhang P., Vemula S.V., Zhao J., Du B., Mohan H., Liu J., El Mubarak H.S., Landry M.L., Hewlett I. A highly sensitive europium nanoparticle-based immunoassay for detection of influenza A/B virus antigen in clinical specimens. J. Clin. Microbiol. 2014;52:4385–4387. doi: 10.1128/JCM.02635-14.
    1. Table 1. FDA-cleared RT-PCR Assays and Other Molecular Assays for Influenza Viruses. [(accessed on 6 September 2018)]; Available online: .
    1. Lee M.S., Chang P.C., Shien J.H., Cheng M.C., Shieh H.K. Identification and subtyping of avian influenza viruses by reverse transcription-PCR. J. Virol. Methods. 2001;97:13–22. doi: 10.1016/S0166-0934(01)00301-9.
    1. Sueki A., Matsuda K., Yamaguchi A., Uehara M., Sugano M., Uehara T., Honda T. Evaluation of saliva as diagnostic materials for influenza virus infection by PCR-based assays. Clin. Chim. Acta. 2016;453:71–74. doi: 10.1016/j.cca.2015.12.006.
    1. Wu L.-T., Curran M.D., Ellis J.S., Parmar S., Ritchie A.V., Sharma P.I., Allain J.-P., Jalal H., Zambon M., Lee H.H. Nucleic acid dipstick test for molecular diagnosis of pandemic H1N1. J. Clin. Microbiol. 2010;48:3608–3613. doi: 10.1128/JCM.00981-10.
    1. Moore C., Hibbitts S., Owen N., Corden S.A., Harrison G., Fox J., Gelder C., Westmoreland D. Development and evaluation of a real-time nucleic acid sequence based amplification assay for rapid detection of influenza A. J. Med. Virol. 2004;74:619–628. doi: 10.1002/jmv.20221.
    1. Poon L.L.M., Leung C.S.W., Chan K.H., Lee J.H.C., Yuen K.Y., Guan Y., Peiris J.S.M. Detection of human influenza A viruses by loop-mediated isothermal amplification. J. Clin. Microbiol. 2005;43:427–430. doi: 10.1128/JCM.43.1.427-430.2005.
    1. Parida M., Shukla J., Sharma S., Ranghia Santhosh S., Ravi V., Mani R., Thomas M., Khare S., Rai A., Kant Ratho R., et al. Development and evaluation of reverse transcription loop-mediated isothermal amplification assay for rapid and real-time detection of the swine-origin influenza A H1N1 virus. J. Mol. Diagn. 2011;13:100–107. doi: 10.1016/j.jmoldx.2010.11.003.
    1. Liu L., Li Y., Li S., Hu N., He Y., Pong R., Lin D., Lu L., Law M. Comparison of Next-Generation Sequencing Systems. [(accessed on 6 September 2018)]; Available online:
    1. Quail M.A., Smith M., Coupland P., Otto T.D., Harris S.R., Connor T.R., Bertoni A., Swerdlow H.P., Gu Y. A tale of three next generation sequencing platforms: Comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genom. 2012;13:341. doi: 10.1186/1471-2164-13-341.
    1. Whitehead T.A., Chevalier A., Song Y., Dreyfus C., Fleishman S.J., De Mattos C., Myers C.A., Kamisetty H., Blair P., Wilson I.A., et al. Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing. Nat. Biotechnol. 2012;30:543–548. doi: 10.1038/nbt.2214.
    1. Radecka H., Radecki J. Steps Forwards in Diagnosing and Controlling Influenza. InTech; London, UK: 2016. Electrochemical Sensors for Detections of Influenza Viruses: Fundamentals and Applications.
    1. Novel Nano Biosensor Developed for Rapid Detection of Flu Virus. [(accessed on 6 September 2018)]; Available online: .
    1. Derkus B. Applying the miniaturization technologies for biosensor design. Biosens. Bioelectron. 2016;79:901–913. doi: 10.1016/j.bios.2016.01.033.
    1. Yamanaka K., Saito M., Kondoh K., Hossain M.M., Koketsu R., Sasaki T., Nagatani N., Ikuta K., Tamiya E. Rapid detection for primary screening of influenza A virus: Microfluidic RT-PCR chip and electrochemical DNA sensor. Analyst. 2011;136:2064–2068. doi: 10.1039/c1an15066a.
    1. Lodes M.J., Suciu D., Elliott M., Stover A.G., Ross M., Caraballo M., Dix K., Crye J., Webby R.J., Lyon W.J., et al. Use of semiconductor-based oligonucleotide microarrays for influenza a virus subtype identification and sequencing. J. Clin. Microbiol. 2006;44:1209–1218. doi: 10.1128/JCM.44.4.1209-1218.2006.
    1. Birnbaumer G.M., Lieberzeit P.A., Richter L., Schirhagl R., Milnera M., Dickert F.L., Bailey A., Ertl P. Detection of viruses with molecularly imprinted polymers integrated on a microfluidic biochip using contact-less dielectric microsensors. Lab Chip. 2009;9:3549–3556. doi: 10.1039/b914738a.
    1. Yeo S.-J., Cuc B.T., Sung H.W., Park H. Evaluation of a smartphone-based rapid fluorescent diagnostic system for H9N2 virus in specific-pathogen-free chickens. Arch. Virol. 2016;161:2249–2256. doi: 10.1007/s00705-016-2922-8.
    1. Wu D., Zhang J., Xu F., Wen X., Li P., Zhang X., Qiao S., Ge S., Xia N., Qian S., et al. A paper-based microfluidic Dot-ELISA system with smartphone for the detection of influenza A. Microfluid. Nanofluid. 2017;21:43. doi: 10.1007/s10404-017-1879-6.
    1. Zhang X., Dhawane A.N., Sweeney J., He Y., Vasireddi M., Iyer S.S. Electrochemical assay to detect influenza viruses and measure drug susceptibility. Angew. Chem. Int. Ed. Engl. 2015;54:5929–5932. doi: 10.1002/anie.201412164.
    1. Kłos-Witkowska A. The phenomenon of fluorescence in immunosensors. Acta Biochim. Pol. 2016;63:215–221. doi: 10.18388/abp.2015_1231.
    1. Krejcova L., Hynek D., Michalek P., Milosavljevic V., Kopel P., Zitka O., Konecna M., Kynicky J., Adam V., Hubalek J., et al. Electrochemical Sensors and Biosensors for Influenza Detection—Literature Survey 2012–2013. Int. J. Electrochem. Sci. 2014;9:3440–3448.
    1. Horiguchi Y., Goda T., Matsumoto A., Takeuchi H., Yamaoka S., Miyahara Y. Direct and label-free influenza virus detection based on multisite binding to sialic acid receptors. Biosens. Bioelectron. 2017;92:234–240. doi: 10.1016/j.bios.2017.02.023.
    1. Nidzworski D., Siuzdak K., Niedziałkowski P., Bogdanowicz R., Sobaszek M., Ryl J., Weiher P., Sawczak M., Wnuk E., Goddard W.A., et al. A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond. Sci. Rep. 2017;7:15707. doi: 10.1038/s41598-017-15806-7.
    1. Cheng C., Cui H., Wu J., Eda S. A PCR-free point-of-care capacitive immunoassay for influenza A virus. Microchim. Acta. 2017;184:1649–1657. doi: 10.1007/s00604-017-2140-4.
    1. Jarocka U., Sawicka R., Góra-Sochacka A., Sirko A., Zagórski-Ostoja W., Radecki J., Radecka H. Electrochemical immunosensor for detection of antibodies against influenza A virus H5N1 in hen serum. Biosens. Bioelectron. 2014;55:301–306. doi: 10.1016/j.bios.2013.12.030.
    1. Yang Z.-H., Zhuo Y., Yuan R., Chai Y.-Q. An amplified electrochemical immunosensor based on in situ-produced 1-naphthol as electroactive substance and graphene oxide and Pt nanoparticles functionalized CeO2 nanocomposites as signal enhancer. Biosens. Bioelectron. 2015;69:321–327. doi: 10.1016/j.bios.2015.01.035.
    1. Veerapandian M., Hunter R., Neethirajan S. Dual immunosensor based on methylene blue-electroadsorbed graphene oxide for rapid detection of the influenza A virus antigen. Talanta. 2016;155:250–257. doi: 10.1016/j.talanta.2016.04.047.
    1. Singh R., Hong S., Jang J. Label-free Detection of Influenza Viruses using a Reduced Graphene Oxide-based Electrochemical Immunosensor Integrated with a Microfluidic Platform. Sci. Rep. 2017;7:42771. doi: 10.1038/srep42771.
    1. Matsubara T., Ujie M., Yamamoto T., Akahori M., Einaga Y., Sato T. Highly sensitive detection of influenza virus by boron-doped diamond electrode terminated with sialic acid-mimic peptide. Proc. Natl. Acad. Sci. USA. 2016;113:8981–8984. doi: 10.1073/pnas.1603609113.
    1. Nidzworski D., Pranszke P., Grudniewska M., Król E., Gromadzka B. Universal biosensor for detection of influenza virus. Biosens. Bioelectron. 2014;59:239–242. doi: 10.1016/j.bios.2014.03.050.
    1. Campuzano S., Yáñez-Sedeño P., Pingarrón J.M. Electrochemical Biosensing for the Diagnosis of Viral Infections and Tropical Diseases. ChemElectroChem. 2017;4:753–777. doi: 10.1002/celc.201600805.
    1. Mohammadi J., Moattari A., Sattarahmady N., Pirbonyeh N., Yadegari H., Heli H. Electrochemical biosensing of influenza A subtype genome based on meso/macroporous cobalt (II) oxide nanoflakes-applied to human samples. Anal. Chim. Acta. 2017;979:51–57. doi: 10.1016/j.aca.2017.05.010.
    1. Yadavalli T., Shukla D. Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections. Nanomed. Nanotechnol. Biol. Med. 2017;13:219–230. doi: 10.1016/j.nano.2016.08.016.
    1. Diba F.S., Kim S., Lee H.J. Amperometric bioaffinity sensing platform for avian influenza virus proteins with aptamer modified gold nanoparticles on carbon chips. Biosens. Bioelectron. 2015;72:355–361. doi: 10.1016/j.bios.2015.05.020.
    1. Wiriyachaiporn N., Sirikett H., Maneeprakorn W., Dharakul T. Carbon nanotag based visual detection of influenza A virus by a lateral flow immunoassay. Microchim. Acta. 2017;184:1827–1835. doi: 10.1007/s00604-017-2191-6.
    1. Ahmed S.R., Kim J., Tran V.T., Suzuki T., Neethirajan S., Lee J., Park E.Y. In situ self-assembly of gold nanoparticles on hydrophilic and hydrophobic substrates for influenza virus-sensing platform. Sci. Rep. 2017;7:44495. doi: 10.1038/srep44495.
    1. Xu S., Ouyang W., Xie P., Lin Y., Qiu B., Lin Z., Chen G., Guo L. Highly Uniform Gold Nanobipyramids for Ultrasensitive Colorimetric Detection of Influenza Virus. Anal. Chem. 2017;89:1617–1623. doi: 10.1021/acs.analchem.6b03711.
    1. Liu J., Zhao J., Petrochenko P., Zheng J., Hewlett I. Sensitive detection of influenza viruses with Europium nanoparticles on an epoxy silica sol-gel functionalized polycarbonate-polydimethylsiloxane hybrid microchip. Biosens. Bioelectron. 2016;86:150–155. doi: 10.1016/j.bios.2016.06.044.
    1. Li Y., Wang R. Aptasensors for Detection of Avian Influenza Virus H5N1. Methods Mol. Biol. (Clifton NJ) 2017;1572:379–402. doi: 10.1007/978-1-4939-6911-1_25.
    1. Karash S., Wang R., Kelso L., Lu H., Huang T.J., Li Y. Rapid detection of avian influenza virus H5N1 in chicken tracheal samples using an impedance aptasensor with gold nanoparticles for signal amplification. J. Virol. Methods. 2016;236:147–156. doi: 10.1016/j.jviromet.2016.07.018.
    1. Gopinath S.C.B., Lakshmipriya T., Chen Y., Phang W.-M., Hashim U. Aptamer-based ‘point-of-care testing’. Biotechnol. Adv. 2016;34:198–208. doi: 10.1016/j.biotechadv.2016.02.003.
    1. Hai W., Goda T., Takeuchi H., Yamaoka S., Horiguchi Y., Matsumoto A., Miyahara Y. Specific Recognition of Human Influenza Virus with PEDOT Bearing Sialic Acid-Terminated Trisaccharides. ACS Appl. Mater. Interfaces. 2017;9:14162–14170. doi: 10.1021/acsami.7b02523.
    1. Huang J., Xie Z., Xie Z., Luo S., Xie L., Huang L., Fan Q., Zhang Y., Wang S., Zeng T. Silver nanoparticles coated graphene electrochemical sensor for the ultrasensitive analysis of avian influenza virus H7. Anal. Chim. Acta. 2016;913:121–127. doi: 10.1016/j.aca.2016.01.050.
    1. Yang Z.-H., Zhuo Y., Yuan R., Chai Y.-Q. A nanohybrid of platinum nanoparticles-porous ZnO-hemin with electrocatalytic activity to construct an amplified immunosensor for detection of influenza. Biosens. Bioelectron. 2016;78:321–327. doi: 10.1016/j.bios.2015.10.073.
    1. Benhua Z., Wang R., Wang Y., Li Y. LabVIEW-based impedance biosensing system for detection of avian influenza virus. Int. J. Agric. Biol. Eng. 2016;9:116–122. doi: 10.25165/ijabe.v9i4.1704.
    1. Han J.-H., Lee D., Chew C.H.C., Kim T., Pak J.J. A multi-virus detectable microfluidic electrochemical immunosensor for simultaneous detection of H1N1, H5N1, and H7N9 virus using ZnO nanorods for sensitivity enhancement. Sens. Actuators B Chem. 2016;228:36–42. doi: 10.1016/j.snb.2015.07.068.
    1. Mubarok A.Z., Mani V., Huang C.-H., Chang P.-C., Huang S.-T. Label-free electrochemical detection of neuraminidase activity: A facile whole blood diagnostic probe for infectious diseases. Sens. Actuators B Chem. 2017;252:641–648. doi: 10.1016/j.snb.2017.06.061.
    1. Hushegyi A., Pihíková D., Bertok T., Adam V., Kizek R., Tkac J. Ultrasensitive detection of influenza viruses with a glycan-based impedimetric biosensor. Biosens. Bioelectron. 2016;79:644–649. doi: 10.1016/j.bios.2015.12.102.
    1. Zhao M., Wang L., Li S. Influenza A Virus–Host Protein Interactions Control Viral Pathogenesis. Int. J. Mol. Sci. 2017;18 doi: 10.3390/ijms18081673.
    1. Klemm C., Boergeling Y., Ludwig S., Ehrhardt C. Immunomodulatory Nonstructural Proteins of Influenza A Viruses. Trends Microbiol. 2018;26:624–636. doi: 10.1016/j.tim.2017.12.006.
    1. Muramoto Y., Noda T., Kawakami E., Akkina R., Kawaoka Y. Identification of Novel Influenza A Virus Proteins Translated from PA mRNA. J. Virol. 2013;87:2455–2462. doi: 10.1128/JVI.02656-12.
    1. Gao H., Xu G., Sun Y., Qi L., Wang J., Kong W., Sun H., Pu J., Chang K.-C., Liu J. PA-X is a virulence factor in avian H9N2 influenza virus. J. Gen. Virol. 2015;96:2587–2594. doi: 10.1099/jgv.0.000232.
    1. Miodek A., Sauriat-Dorizon H., Chevalier C., Delmas B., Vidic J., Korri-Youssoufi H. Direct electrochemical detection of PB1-F2 protein of influenza A virus in infected cells. Biosens. Bioelectron. 2014;59:6–13. doi: 10.1016/j.bios.2014.02.037.
    1. Karn-orachai K., Sakamoto K., Laocharoensuk R., Bamrungsap S., Songsivilai S., Dharakul T., Miki K. Extrinsic surface-enhanced Raman scattering detection of influenza A virus enhanced by two-dimensional gold@silver core–shell nanoparticle arrays. RSC Adv. 2016;6:97791–97799. doi: 10.1039/C6RA17143E.
    1. Maneeprakorn W., Bamrungsap S., Apiwat C., Wiriyachaiporn N. Surface-enhanced Raman scattering based lateral flow immunochromatographic assay for sensitive influenza detection. RSC Adv. 2016;6:112079–112085. doi: 10.1039/C6RA24418A.
    1. Liu W., Gómez-Durán C.F.A., Smith B.D. Fluorescent Neuraminidase Assay Based on Supramolecular Dye Capture After Enzymatic Cleavage. J. Am. Chem. Soc. 2017;139:6390–6395. doi: 10.1021/jacs.7b01628.
    1. Sun Y., Xu L., Zhang F., Song Z., Hu Y., Ji Y., Shen J., Li B., Lu H., Yang H. A promising magnetic SERS immunosensor for sensitive detection of avian influenza virus. Biosens. Bioelectron. 2017;89:906–912. doi: 10.1016/j.bios.2016.09.100.
    1. Park H.J., Yang S.C., Choo J. Early Diagnosis of Influenza Virus A Using Surface-enhanced Raman Scattering-based Lateral Flow Assay. Bull. Korean Chem. Soc. 2016;37:2019–2024. doi: 10.1002/bkcs.11021.
    1. Yeo S.-J., Cuc B.T., Kim S.-A., Kim D.T.H., Bao D.T., Tien T.T.T., Anh N.T.V., Choi D.-Y., Chong C.-K., Kim H.S., et al. Rapid detection of avian influenza A virus by immunochromatographic test using a novel fluorescent dye. Biosens. Bioelectron. 2017;94:677–685. doi: 10.1016/j.bios.2017.03.068.
    1. Ahmed S.R., Kim J., Suzuki T., Lee J., Park E.Y. Enhanced catalytic activity of gold nanoparticle-carbon nanotube hybrids for influenza virus detection. Biosens. Bioelectron. 2016;85:503–508. doi: 10.1016/j.bios.2016.05.050.
    1. Ahmed S.R., Kim J., Suzuki T., Lee J., Park E.Y. Detection of influenza virus using peroxidase-mimic of gold nanoparticles. Biotechnol. Bioeng. 2016;113:2298–2303. doi: 10.1002/bit.25982.
    1. Ye W.W., Tsang M.-K., Liu X., Yang M., Hao J. Upconversion luminescence resonance energy transfer (LRET)-based biosensor for rapid and ultrasensitive detection of avian influenza virus H7 subtype. Small (Weinh. Bergstr. Ger.) 2014;10:2390–2397. doi: 10.1002/smll.201303766.
    1. Zheng L., Wei J., Lv X., Bi Y., Wu P., Zhang Z., Wang P., Liu R., Jiang J., Cong H., et al. Detection and differentiation of influenza viruses with glycan-functionalized gold nanoparticles. Biosens. Bioelectron. 2017;91:46–52. doi: 10.1016/j.bios.2016.12.037.
    1. He Y., Yang Y., Iyer S.S. Neuraminidase Resistant Sialosides for the Detection of Influenza Viruses. Bioconjug. Chem. 2016;27:1509–1517. doi: 10.1021/acs.bioconjchem.6b00150.
    1. Adegoke O., Kato T., Park E.Y. An ultrasensitive alloyed near-infrared quinternary quantum dot-molecular beacon nanodiagnostic bioprobe for influenza virus RNA. Biosens. Bioelectron. 2016;80:483–490. doi: 10.1016/j.bios.2016.02.020.
    1. Hmila I., Wongphatcharachai M., Laamiri N., Aouini R., Marnissi B., Arbi M., Sreevatsan S., Ghram A. A novel method for detection of H9N2 influenza viruses by an aptamer-real time-PCR. J. Virol. Methods. 2017;243:83–91. doi: 10.1016/j.jviromet.2017.01.024.
    1. Lin Y., Fu Y., Xu M., Su L., Cao L., Xu J., Cheng X. Evaluation of a PCR/ESI-MS platform to identify respiratory viruses from nasopharyngeal aspirates. J. Med. Virol. 2015;87:1867–1871. doi: 10.1002/jmv.24262.
    1. Eboigbodin K., Filén S., Ojalehto T., Brummer M., Elf S., Pousi K., Hoser M. Reverse transcription strand invasion based amplification (RT-SIBA): A method for rapid detection of influenza A and B. Appl. Microbiol. Biotechnol. 2016;100:5559–5567. doi: 10.1007/s00253-016-7491-y.
    1. Ge Y., Zhou Q., Zhao K., Chi Y., Liu B., Min X., Shi Z., Zou B., Cui L. Detection of influenza viruses by coupling multiplex reverse-transcription loop-mediated isothermal amplification with cascade invasive reaction using nanoparticles as a sensor. Int. J. Nanomed. 2017;12:2645–2656. doi: 10.2147/IJN.S132670.
    1. Sepunaru L., Plowman B.J., Sokolov S.V., Young N.P., Compton R.G. Rapid electrochemical detection of single influenza viruses tagged with silver nanoparticles. Chem. Sci. 2016;7:3892–3899. doi: 10.1039/C6SC00412A.
    1. Sakurai A., Takayama K., Nomura N., Kajiwara N., Okamatsu M., Yamamoto N., Tamura T., Yamada J., Hashimoto M., Sakoda Y., et al. Fluorescent Immunochromatography for Rapid and Sensitive Typing of Seasonal Influenza Viruses. PLoS ONE. 2015;10:e0116715. doi: 10.1371/journal.pone.0116715.
    1. Gouma P.-I., Wang L., Simon S.R., Stanacevic M. Novel Isoprene Sensor for a Flu Virus Breath Monitor. Sensors. 2017;17 doi: 10.3390/s17010199.
    1. Jiang Y., Tan C.Y., Tan S.Y., Wong M.S.F., Chen Y.F., Zhang L., Yao K., Gan S.K.E., Verma C., Tan Y.J. SAW sensor for Influenza A virus detection enabled with efficient surface functionalization. Sens. Actuators B Chem. 2015;209:78–84. doi: 10.1016/j.snb.2014.11.103.
    1. Oyama Y., Osaki T., Kamiya K., Sawai M., Sakai M., Takeuchi S. A sensitive point-of-care testing chip utilizing superabsorbent polymer for the early diagnosis of infectious disease. Sens. Actuators B Chem. 2017;240:881–886. doi: 10.1016/j.snb.2016.09.046.
    1. Krishna V.D., Wu K., Perez A.M., Wang J.-P. Giant Magnetoresistance-based Biosensor for Detection of Influenza A Virus. Front. Microbiol. 2016;7 doi: 10.3389/fmicb.2016.00400.
    1. Kirkegaard J., Rozlosnik N. Screen-Printed All-Polymer Aptasensor for Impedance Based Detection of Influenza A Virus. Methods Mol. Biol. (Clifton NJ) 2017;1572:55–70. doi: 10.1007/978-1-4939-6911-1_5.
    1. Ozcelik D., Parks J.W., Wall T.A., Stott M.A., Cai H., Parks J.W., Hawkins A.R., Schmidt H. Optofluidic wavelength division multiplexing for single-virus detection. Proc. Natl. Acad. Sci. USA. 2015;112:12933–12937. doi: 10.1073/pnas.1511921112.
    1. Lee S., Chakkarapani S.K., Yeung E.S., Kang S.H. Direct quantitative screening of influenza A virus without DNA amplification by single-particle dual-mode total internal reflection scattering. Biosens. Bioelectron. 2017;87:842–849. doi: 10.1016/j.bios.2016.09.019.
    1. Chan C., Shi J., Fan Y., Yang M. A microfluidic flow-through chip integrated with reduced graphene oxide transistor for influenza virus gene detection. Sens. Actuators B Chem. 2017;251:927–933. doi: 10.1016/j.snb.2017.05.147.
    1. Zhang H., Dunand C.H., Wilson P., Miller B.L. A label-free optical biosensor for serotyping “unknown” influenza viruses. Proc. SPIE. 2016;9824:982405.
    1. Katayama Y., Ohgi T., Mitoma Y., Hifumi E., Egashira N. Detection of influenza virus by a biosensor based on the method combining electrochemiluminescence on binary SAMs modified Au electrode with an immunoliposome encapsulating Ru (II) complex. Anal. Bioanal. Chem. 2016;408:5963–5971. doi: 10.1007/s00216-016-9587-8.
    1. Li M., Shi Z., Li C., Yu L. Combining complement fixation and luminol chemiluminescence for ultrasensitive detection of avian influenza A rH7N9. Analyst. 2016;141:2061–2066. doi: 10.1039/C5AN02519B.
    1. Tran T.L., Nguyen T.T., Tran T.T.H., Chu V.T., Tran Q.T., Mai A.T. Detection of influenza A virus using carbon nanotubes field effect transistor based DNA sensor. Phys. E Low-Dimens. Syst. Nanostruct. 2017;93:83–86. doi: 10.1016/j.physe.2017.05.019.

Source: PubMed

3
구독하다