Nicotinamide Mononucleotide: A Promising Molecule for Therapy of Diverse Diseases by Targeting NAD+ Metabolism

Weiqi Hong, Fei Mo, Ziqi Zhang, Mengyuan Huang, Xiawei Wei, Weiqi Hong, Fei Mo, Ziqi Zhang, Mengyuan Huang, Xiawei Wei

Abstract

NAD+, a co-enzyme involved in a great deal of biochemical reactions, has been found to be a network node of diverse biological processes. In mammalian cells, NAD+ is synthetized, predominantly through NMN, to replenish the consumption by NADase participating in physiologic processes including DNA repair, metabolism, and cell death. Correspondingly, aberrant NAD+ metabolism is observed in many diseases. In this review, we discuss how the homeostasis of NAD+ is maintained in healthy condition and provide several age-related pathological examples related with NAD+ unbalance. The sirtuins family, whose functions are NAD-dependent, is also reviewed. Administration of NMN surprisingly demonstrated amelioration of the pathological conditions in some age-related disease mouse models. Further clinical trials have been launched to investigate the safety and benefits of NMN. The NAD+ production and consumption pathways including NMN are essential for more precise understanding and therapy of age-related pathological processes such as diabetes, ischemia-reperfusion injury, heart failure, Alzheimer's disease, and retinal degeneration.

Keywords: Alzheimer’s disease; aging; diabetes; nicotinamide adenine dinucleotide (NAD); nicotinamide mononucleotide (NMN); obesity.

Copyright © 2020 Hong, Mo, Zhang, Huang and Wei.

Figures

FIGURE 1
FIGURE 1
Biosynthetic pathways of NAD+ in mammalian cells includes de novo, Preiss–Handler, and salvage pathways, and the salvage pathway is the main source of NAD+. NAD, nicotinamide adenine dinucleotide; NA, nicotinic acid; NAPRT, nicotinic acid phosphoribosyltransferase; NAMN, nicotinic acid mononucleotide; NAAD, nicotinic acid adenine dinucleotide; NADS, NAD+ synthetase; NMNAT, nicotinamide/nicotinic acid mononucleotide adenylyltransferase; ACMS, 2-amino-3-carboxymuconate semialdehyde; QA, quinolinic acid; QPRT, quinolinate phosphoribosyltransferase; NAM, nicotinamide; NAMPT, nicotinamide phophoribosyltransferase; NMN, nicotinamide mononucleotide; NR, nicotinamide riboside; NRK, nicotinamide riboside kinase.
FIGURE 2
FIGURE 2
Hypothetic molecule mechanisms of NAD+ decreased with aging. Oxidative stress, DNA damage, and chronic inflammation are increased with aging, which results in accelerated NAD degradation via activation of CD38 and PARPs, or dysregulation of NAMPT. Finally, decreased levels of NAD+ lead to various metabolic and age-associated diseases.
FIGURE 3
FIGURE 3
Nicotinamide mononucleotide exerts pharmacological effects by increasing intracellular NAD+ levels. Extracellular NMN is cleavage by CD73, which yields NR that is incorporated into cells using equilibrative nucleoside transporters (ENTs). NMN is converted to NAD+, which produces beneficial effects on cell, including mitochondrial function, DNA repair, gene expression, anti-inflammation and cell survival.
FIGURE 4
FIGURE 4
Nicotinamide mononucleotide ameliorates various diseases by increasing NAD+ levels in human. NMN is a promising molecule for therapy of diverse diseases, including diabetes, obesity, ischemia–reperfusion injury, heart failure, Alzheimer’s disease, retinal degeneration, acute kidney injury, and so on.

References

    1. Allen J., Romay-Tallon R., Brymer K. J., Caruncho H. J., Kalynchuk L. E. (2018). Mitochondria and mood: mitochondrial dysfunction as a key player in the manifestation of depression. Front. Neurosci. 12:386. 10.3389/fnins.2018.00386
    1. Allen-Jennings A. E., Hartman M. G., Kociba G. J., Hai T. (2002). The roles of ATF3 in liver dysfunction and the regulation of phosphoenolpyruvate carboxykinase gene expression. J. Biol. Chem. 277 20020–20025. 10.1074/jbc.M200727200
    1. Aredo B., Zhang K., Chen X., Wang C. X., Li T., Ufret-Vincenty R. L. (2015). Differences in the distribution, phenotype and gene expression of subretinal microglia/macrophages in C57BL/6N (Crb1 rd8/rd8) versus C57BL6/J (Crb1 wt/wt) mice. J. Neuroinflammation 12:6. 10.1186/s12974-014-0221-4
    1. Artegiani B., Calegari F. (2012). Age-related cognitive decline: can neural stem cells help us? Aging 4 176–186. 10.18632/aging.100446
    1. Assiri M. A., Ali H. R., Marentette J. O., Yun Y., Liu J., Hirschey M. D., et al. (2019). Investigating RNA expression profiles altered by nicotinamide mononucleotide therapy in a chronic model of alcoholic liver disease. Hum. Genomics 13:65. 10.1186/s40246-019-0251-1
    1. Bachschmid M. M., Schildknecht S., Matsui R., Zee R., Haeussler D., Cohen R. A., et al. (2013). Vascular aging: chronic oxidative stress and impairment of redox signaling-consequences for vascular homeostasis and disease. Ann. Med. 45 17–36. 10.3109/07853890.2011.645498
    1. Bai P., Canto C., Oudart H., Brunyanszki A., Cen Y., Thomas C., et al. (2011). PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13 461–468. 10.1016/j.cmet.2011.03.004
    1. Balbi M., Ghosh M., Longden T. A., Jativa Vega M., Gesierich B., Hellal F., et al. (2015). Dysfunction of mouse cerebral arteries during early aging. J. Cereb. Blood Flow Metab. 35 1445–1453. 10.1038/jcbfm.2015.107
    1. Basu R., Breda E., Oberg A. L., Powell C. C., Dalla Man C., Basu A., et al. (2003). Mechanisms of the age-associated deterioration in glucose tolerance: contribution of alterations in insulin secretion, action, and clearance. Diabetes Metab. Res. Rev. 52 1738–1748. 10.2337/diabetes.52.7.1738
    1. Bertoldo M. J., Listijono D. R., Ho W. J., Riepsamen A. H., Goss D. M., Richani D., et al. (2020). NAD(+) repletion rescues female fertility during reproductive aging. Cell Rep. 30 1670–1681.e7. 10.1016/j.celrep.2020.01.058
    1. Bertoldo M. J., Uddin G. M., Youngson N. A., Agapiou D., Walters K. A., Sinclair D. A., et al. (2018). Multigenerational obesity-induced perturbations in oocyte-secreted factor signalling can be ameliorated by exercise and nicotinamide mononucleotide. Hum. Reprod. Open 2018:hoy010. 10.1093/hropen/hoy010
    1. Bitterman K. J., Anderson R. M., Cohen H. Y., Latorre-Esteves M., Sinclair D. A. (2002). Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J. Biol. Chem. 277 45099–45107. 10.1074/jbc.M205670200
    1. Blanco R., Gerhardt H. (2013). VEGF and Notch in tip and stalk cell selection. Cold Spring Harb. Perspect. Med. 3:a006569. 10.1101/cshperspect.a006569
    1. Bonini S., Rama P., Olzi D., Lambiase A. (2003). Neurotrophic keratitis. Eye 17 989–995. 10.1038/sj.eye.6700616
    1. Bordone L., Motta M. C., Picard F., Robinson A., Jhala U. S., Apfeld J., et al. (2006). Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol. 4:e31. 10.1371/journal.pbio.0040031
    1. Boslett J., Hemann C., Zhao Y. J., Lee H. C., Zweier J. L. (2017). Luteolinidin protects the postischemic heart through CD38 inhibition with preservation of NAD(P)(H). J. Pharmacol. Exp. Ther. 361 99–108. 10.1124/jpet.116.239459
    1. Broder G., Weil M. H. (1964). Excess lactate: an index of reversibility of shock in human patients. Science 143 1457–1459. 10.1126/science.143.3613.1457
    1. Brunetti L., Recinella L., Di Nisio C., Chiavaroli A., Leone S., Ferrante C., et al. (2012). Effects of visfatin/PBEF/NAMPT on feeding behaviour and hypothalamic neuromodulators in the rat. J. Biol. Regul. Homeost. Agents 26 295–302.
    1. Camacho-Pereira J., Tarrago M. G., Chini C. C. S., Nin V., Escande C., Warner G. M., et al. (2016). CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab. 23 1127–1139. 10.1016/j.cmet.2016.05.006
    1. Castillo-Laura H., Santos I. S., Quadros L. C., Matijasevich A. (2015). Maternal obesity and offspring body composition by indirect methods: a systematic review and meta-analysis. Cad. Saude. Publica 31 2073–2092. 10.1590/0102-311x00159914
    1. Catalán V., Gómez-Ambrosi J., Rodríguez A., Ramírez B., Silva C., Rotellar F., et al. (2011). Association of increased visfatin/PBEF/NAMPT circulating concentrations and gene expression levels in peripheral blood cells with lipid metabolism and fatty liver in human morbid obesity. Nutr. Metab. Cardiovasc. Dis. 21 245–253. 10.1016/j.numecd.2009.09.008
    1. Caton P. W., Kieswich J., Yaqoob M. M., Holness M. J., Sugden M. C. (2011). Nicotinamide mononucleotide protects against pro-inflammatory cytokine-mediated impairment of mouse islet function. Diabetologia 54 3083–3092. 10.1007/s00125-011-2288-0
    1. Cavadini G., Petrzilka S., Kohler P., Jud C., Tobler I., Birchler T., et al. (2007). TNF-alpha suppresses the expression of clock genes by interfering with E-box-mediated transcription. Proc. Natl. Acad. Sci. U.S.A. 104 12843–12848. 10.1073/pnas.0701466104
    1. Chalkiadaki A., Guarente L. (2012). High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction. Cell Metab. 16 180–188. 10.1016/j.cmet.2012.07.003
    1. Chalkiadaki A., Guarente L. (2015). The multifaceted functions of sirtuins in cancer. Nat. Rev. Cancer 15 608–624. 10.1038/nrc3985
    1. Chambon P., Weill J. D., Mandel P. (1963). Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem. Biophys. Res. Commun. 11 39–43. 10.1016/0006-291x(63)90024-x
    1. Chen Y., Liang Y., Hu T., Wei R., Cai C., Wang P., et al. (2017). Endogenous Nampt upregulation is associated with diabetic nephropathy inflammatory-fibrosis through the NF-κB p65 and Sirt1 pathway; NMN alleviates diabetic nephropathy inflammatory-fibrosis by inhibiting endogenous Nampt. Exp. Ther. Med. 14 4181–4193. 10.3892/etm.2017.5098
    1. Chen Y., Zhang J., Lin Y., Lei Q., Guan K. L., Zhao S., et al. (2011). Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep. 12 534–541. 10.1038/embor.2011.65
    1. Chini C. C. S., Tarrago M. G., Chini E. N. (2017). NAD and the aging process: role in life, death and everything in between. Mol. Cell. Endocrinol. 455 62–74. 10.1016/j.mce.2016.11.003
    1. Choi S. E., Fu T., Seok S., Kim D. H., Yu E., Lee K. W., et al. (2013). Elevated microRNA-34a in obesity reduces NAD+ levels and SIRT1 activity by directly targeting NAMPT. Aging Cell 12 1062–1072. 10.1111/acel.12135
    1. Cohen M. V., Yang X. M., Downey J. M. (2007). The pH hypothesis of postconditioning: staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation 115 1895–1903. 10.1161/circulationaha.106.675710
    1. Colombo A., Bastone A., Ploia C., Sclip A., Salmona M., Forloni G., et al. (2009). JNK regulates APP cleavage and degradation in a model of Alzheimer’s disease. Neurobiol. Dis. 33 518–525. 10.1016/j.nbd.2008.12.014
    1. Costford S. R., Bajpeyi S., Pasarica M., Albarado D. C., Thomas S. C., Xie H., et al. (2010). Skeletal muscle NAMPT is induced by exercise in humans. Am. J. Physiol. Endocrinol. Metab. 298 E117–E126. 10.1152/ajpendo.00318.2009
    1. Das A., Huang G. X., Bonkowski M. S., Longchamp A., Li C., Schultz M. B., et al. (2018). Impairment of an endothelial NAD(+)-H2S signaling network is a reversible cause of vascular aging. Cell 173 74–89.e20. 10.1016/j.cell.2018.02.008
    1. De Flora A., Zocchi E., Guida L., Franco L., Bruzzone S. (2004). Autocrine and paracrine calcium signaling by the CD38/NAD+/cyclic ADP-ribose system. Ann. N. Y. Acad. Sci. 1028 176–191. 10.1196/annals.1322.021
    1. de Picciotto N. E., Gano L. B., Johnson L. C., Martens C. R., Sindler A. L., Mills K. F., et al. (2016). Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell 15 522–530. 10.1111/acel.12461
    1. Di Stefano M., Loreto A., Orsomando G., Mori V., Zamporlini F., Hulse R. P., et al. (2017). NMN deamidase delays wallerian degeneration and rescues axonal defects caused by NMNAT2 deficiency in vivo. Curr. Biol. 27 784–794. 10.1016/j.cub.2017.01.070
    1. Di Stefano M., Nascimento-Ferreira I., Orsomando G., Mori V., Gilley J., Brown R., et al. (2015). A rise in NAD precursor nicotinamide mononucleotide (NMN) after injury promotes axon degeneration. Cell Death. Differ. 22 731–742. 10.1038/cdd.2014.164
    1. Diez J. (2007). Arterial stiffness and extracellular matrix. Adv. Cardiol. 44 76–95. 10.1159/000096722
    1. Donato A. J., Magerko K. A., Lawson B. R., Durrant J. R., Lesniewski L. A., Seals D. R. (2011). SIRT-1 and vascular endothelial dysfunction with ageing in mice and humans. J. Physiol. 589(Pt 18), 4545–4554. 10.1113/jphysiol.2011.211219
    1. Dujardin K. S., Tei C., Yeo T. C., Hodge D. O., Rossi A., Seward J. B. (1998). Prognostic value of a Doppler index combining systolic and diastolic performance in idiopathic-dilated cardiomyopathy. Am. J. Cardiol. 82 1071–1076. 10.1016/s0002-9149(98)00559-1
    1. Elrod J. W., Wong R., Mishra S., Vagnozzi R. J., Sakthievel B., Goonasekera S. A., et al. (2010). Cyclophilin D controls mitochondrial pore-dependent Ca(2+) exchange, metabolic flexibility, and propensity for heart failure in mice. J. Clin. Invest. 120 3680–3687. 10.1172/jci43171
    1. Escande C., Nin V., Price N. L., Capellini V., Gomes A. P., Barbosa M. T., et al. (2013). Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes Metab. Res. Rev. 62 1084–1093. 10.2337/db12-1139
    1. Escobar-Henriques M., Anton F. (2013). Mechanistic perspective of mitochondrial fusion: tubulation vs. fragmentation. Biochim. Biophys. Acta 1833 162–175. 10.1016/j.bbamcr.2012.07.016
    1. Essuman K., Summers D. W., Sasaki Y., Mao X., DiAntonio A., Milbrandt J. (2017). The SARM1 Toll/Interleukin-1 receptor domain possesses intrinsic NAD(+) cleavage activity that promotes pathological axonal degeneration. Neuron 93 1334–1343.e5. 10.1016/j.neuron.2017.02.022
    1. Fan H., Yang H. C., You L., Wang Y. Y., He W. J., Hao C. M. (2013). The histone deacetylase, SIRT1, contributes to the resistance of young mice to ischemia/reperfusion-induced acute kidney injury. Kidney Int. 83 404–413. 10.1038/ki.2012.394
    1. Fang E. F., Kassahun H., Croteau D. L., Scheibye-Knudsen M., Marosi K., Lu H., et al. (2016). NAD(+) replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metab. 24 566–581. 10.1016/j.cmet.2016.09.004
    1. Frederick D. W., Loro E., Liu L., Davila A., Jr., Chellappa K., Silverman I. M., et al. (2016). Loss of NAD homeostasis leads to progressive and reversible degeneration of skeletal muscle. Cell Metab. 24 269–282. 10.1016/j.cmet.2016.07.005
    1. Frye R. A. (1999). Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun. 260 273–279. 10.1006/bbrc.1999.0897
    1. Fu J., Jin J., Cichewicz R. H., Hageman S. A., Ellis T. K., Xiang L., et al. (2012). trans-(-)-epsilon-Viniferin increases mitochondrial sirtuin 3 (SIRT3), activates AMP-activated protein kinase (AMPK), and protects cells in models of Huntington Disease. J. Biol. Chem. 287 24460–24472. 10.1074/jbc.M112.382226
    1. Gano L. B., Donato A. J., Pasha H. M., Hearon C. M., Jr., Sindler A. L., Seals D. R. (2014). The SIRT1 activator SRT1720 reverses vascular endothelial dysfunction, excessive superoxide production, and inflammation with aging in mice. Am. J. Physiol. Heart Circ. Physiol. 307 H1754–H1763. 10.1152/ajpheart.00377.2014
    1. Garten A., Petzold S., Barnikol-Oettler A., Korner A., Thasler W. E., Kratzsch J., et al. (2010). Nicotinamide phosphoribosyltransferase (NAMPT/PBEF/visfatin) is constitutively released from human hepatocytes. Biochem. Biophys. Res. Commun. 391 376–381. 10.1016/j.bbrc.2009.11.066
    1. Gerdts J., Brace E. J., Sasaki Y., DiAntonio A., Milbrandt J. (2015). SARM1 activation triggers axon degeneration locally via NAD(+) destruction. Science 348 453–457. 10.1126/science.1258366
    1. Gitiaux C., Blin-Rochemaure N., Hully M., Echaniz-Laguna A., Calmels N., Bahi-Buisson N., et al. (2015). Progressive demyelinating neuropathy correlates with clinical severity in Cockayne syndrome. Clin. Neurophysiol. 126 1435–1439. 10.1016/j.clinph.2014.10.014
    1. Gohil V. M., Sheth S. A., Nilsson R., Wojtovich A. P., Lee J. H., Perocchi F., et al. (2010). Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis. Nat. Biotechnol. 28 249–255. 10.1038/nbt.1606
    1. Gomes A. P., Price N. L., Ling A. J., Moslehi J. J., Montgomery M. K., Rajman L., et al. (2013). Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155 1624–1638. 10.1016/j.cell.2013.11.037
    1. Gong Y., Chang L., Viola K. L., Lacor P. N., Lambert M. P., Finch C. E., et al. (2003). Alzheimer’s disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc. Natl. Acad. Sci. U.S.A. 100 10417–10422. 10.1073/pnas.1834302100
    1. Griffiths E. J., Halestrap A. P. (1995). Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem. J. 307(Pt 1), 93–98. 10.1042/bj3070093
    1. Grozio A., Mills K. F., Yoshino J., Bruzzone S., Sociali G., Tokizane K., et al. (2019). Slc12a8 is a nicotinamide mononucleotide transporter. Nat. Metab. 1 47–57. 10.1038/s42255-018-0009-4
    1. Grozio A., Sociali G., Sturla L., Caffa I., Soncini D., Salis A., et al. (2013). CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells. J. Biol. Chem. 288 25938–25949. 10.1074/jbc.M113.470435
    1. Guan Y., Wang S. R., Huang X. Z., Xie Q. H., Xu Y. Y., Shang D., et al. (2017). Nicotinamide mononucleotide, an NAD(+) precursor, rescues age-associated susceptibility to AKI in a sirtuin 1-Dependent manner. J. Am. Soc. Nephrol. 28 2337–2352. 10.1681/ASN.2016040385
    1. Guarani V., Deflorian G., Franco C. A., Kruger M., Phng L. K., Bentley K., et al. (2011). Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 473 234–238. 10.1038/nature09917
    1. Guidi I., Galimberti D., Lonati S., Novembrino C., Bamonti F., Tiriticco M., et al. (2006). Oxidative imbalance in patients with mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging 27 262–269. 10.1016/j.neurobiolaging.2005.01.001
    1. Gujar A. D., Le S., Mao D. D., Dadey D. Y. A., Turski A., Sasaki Y., et al. (2016). An NAD+-dependent transcriptional program governs self-renewal and radiation resistance in glioblastoma. Proc. Natl. Acad. Sci. U.S.A. 113 E8247–E8256. 10.1073/pnas.1610921114
    1. Haider D. G., Schaller G., Kapiotis S., Maier C., Luger A., Wolzt M. (2006). The release of the adipocytokine visfatin is regulated by glucose and insulin. Diabetologia 49 1909–1914. 10.1007/s00125-006-0303-7
    1. Harden A., Young W. (1906). The alcoholic ferment of yeast-juice. Part II. The conferment of yeast-juice. Proc. R. Soc. Lond. Ser. B 78 369–375. 10.1098/rspb.1906.0070
    1. Hirschey M. D., Shimazu T., Goetzman E., Jing E., Schwer B., Lombard D. B., et al. (2010). SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464 121–125. 10.1038/nature08778
    1. Hosseini L., Farokhi-Sisakht F., Badalzadeh R., Khabbaz A., Mahmoudi J., Sadigh-Eteghad S. (2019a). Nicotinamide mononucleotide and melatonin alleviate aging-induced cognitive impairment via modulation of mitochondrial function and apoptosis in the prefrontal cortex and hippocampus. Neuroscience 423 29–37. 10.1016/j.neuroscience.2019.09.037
    1. Hosseini L., Vafaee M. S., Badalzadeh R. (2019b). Melatonin and nicotinamide mononucleotide attenuate myocardial ischemia/reperfusion injury via modulation of mitochondrial function and hemodynamic parameters in aged rats. J. Cardiovasc. Pharmacol. Ther. 25 240–250. 10.1177/1074248419882002
    1. Hroudova J., Singh N., Fisar Z. (2014). Mitochondrial dysfunctions in neurodegenerative diseases: relevance to Alzheimer’s disease. Biomed. Res. Int. 2014:175062. 10.1155/2014/175062
    1. Hsu C. P., Oka S., Shao D., Hariharan N., Sadoshima J. (2009). Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+ synthesis in cardiac myocytes. Circ. Res. 105 481–491. 10.1161/CIRCRESAHA.109.203703
    1. Hsu C. P., Zhai P., Yamamoto T., Maejima Y., Matsushima S., Hariharan N., et al. (2010). Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 122 2170–2182. 10.1161/CIRCULATIONAHA.110.958033
    1. Hsueh Y. P. (2006). The role of the MAGUK protein CASK in neural development and synaptic function. Curr. Med. Chem. 13 1915–1927. 10.2174/092986706777585040
    1. Imai S., Armstrong C. M., Kaeberlein M., Guarente L. (2000). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403 795–800. 10.1038/35001622
    1. Imai S., Guarente L. (2014). NAD+ and sirtuins in aging and disease. Trends Cell Biol. 24 464–471. 10.1016/j.tcb.2014.04.002
    1. Imai S., Yoshino J. (2013). The importance of NAMPT/NAD/SIRT1 in the systemic regulation of metabolism and ageing. Diabetes Obes. Metab. 15(Suppl. 3), 26–33. 10.1111/dom.12171
    1. Irie J., Inagaki E., Fujita M., Nakaya H., Mitsuishi M., Yamaguchi S., et al. (2019). Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men. Endocr. J. 67 153–160. 10.1507/endocrj.EJ19-0313
    1. Jadasz J. J., Aigner L., Rivera F. J., Kury P. (2012). The remyelination Philosopher’s Stone: stem and progenitor cell therapies for multiple sclerosis. Cell Tissue Res. 349 331–347. 10.1007/s00441-012-1331-x
    1. Jeyifous O., Waites C. L., Specht C. G., Fujisawa S., Schubert M., Lin E. I., et al. (2009). SAP97 and CASK mediate sorting of NMDA receptors through a previously unknown secretory pathway. Nat. Neurosci. 12 1011–1019. 10.1038/nn.2362
    1. Jing Z., Xing J., Chen X., Stetler R. A., Weng Z., Gan Y., et al. (2014). Neuronal NAMPT is released after cerebral ischemia and protects against white matter injury. J. Cereb. Blood Flow Metab. 34 1613–1621. 10.1038/jcbfm.2014.119
    1. Johnson S., Wozniak D. F., Imai S. (2018). CA1 Nampt knockdown recapitulates hippocampal cognitive phenotypes in old mice which nicotinamide mononucleotide improves. NPJ Aging Mech. Dis. 4:10. 10.1038/s41514-018-0029-z
    1. Jukarainen S., Heinonen S., Ramo J. T., Rinnankoski-Tuikka R., Rappou E., Tummers M., et al. (2016). Obesity is associated with low NAD(+)/SIRT pathway expression in adipose tissue of BMI-discordant monozygotic twins. J. Clin. Endocrinol. Metab. 101 275–283. 10.1210/jc.2015-3095
    1. Kadowaki T., Yamauchi T., Kubota N., Hara K., Ueki K., Tobe K. (2006). Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest. 116 1784–1792. 10.1172/jci29126
    1. Kane-Gill S. L., Sileanu F. E., Murugan R., Trietley G. S., Handler S. M., Kellum J. A. (2015). Risk factors for acute kidney injury in older adults with critical illness: a retrospective cohort study. Am. J. Kidney Dis. 65 860–869. 10.1053/j.ajkd.2014.10.018
    1. Karamanlidis G., Lee C. F., Garcia-Menendez L., Kolwicz S. C., Jr., Suthammarak W., Gong G., et al. (2013). Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab. 18 239–250. 10.1016/j.cmet.2013.07.002
    1. Kastrup A., Groschel K., Ringer T. M., Redecker C., Cordesmeyer R., Witte O. W., et al. (2008). Early disruption of the blood-brain barrier after thrombolytic therapy predicts hemorrhage in patients with acute stroke. Stroke 39 2385–2387. 10.1161/strokeaha.107.505420
    1. Kawamura T., Mori N., Shibata K. (2016). β-Nicotinamide mononucleotide, an anti-aging candidate compound, is retained in the body for longer than nicotinamide in rats. J. Nutr. Sci. Vitaminol. 62 272–276. 10.3177/jnsv.62.272
    1. Kiss T., Balasubramanian P., Valcarcel-Ares M. N., Tarantini S., Yabluchanskiy A., Csipo T., et al. (2019a). Nicotinamide mononucleotide (NMN) treatment attenuates oxidative stress and rescues angiogenic capacity in aged cerebromicrovascular endothelial cells: a potential mechanism for the prevention of vascular cognitive impairment. Geroscience 41 619–630. 10.1007/s11357-019-00074-2
    1. Kiss T., Giles C. B., Tarantini S., Yabluchanskiy A., Balasubramanian P., Gautam T., et al. (2019b). Nicotinamide mononucleotide (NMN) supplementation promotes anti-aging miRNA expression profile in the aorta of aged mice, predicting epigenetic rejuvenation and anti-atherogenic effects. Geroscience 41 419–439. 10.1007/s11357-019-00095-x
    1. Kiss T., Nyul-Toth A., Balasubramanian P., Tarantini S., Ahire C., Yabluchanskiy A., et al. (2020). Nicotinamide mononucleotide (NMN) supplementation promotes neurovascular rejuvenation in aged mice: transcriptional footprint of SIRT1 activation, mitochondrial protection, anti-inflammatory, and anti-apoptotic effects. Geroscience 10.1007/s11357-020-00165-5 [Epub ahead of print].
    1. Klimova N., Fearnow A., Long A., Kristian T. (2020). NAD(+) precursor modulates post-ischemic mitochondrial fragmentation and reactive oxygen species generation via SIRT3 dependent mechanisms. Exp. Neurol. 325:113144. 10.1016/j.expneurol.2019.113144
    1. Klimova N., Long A., Kristian T. (2019). Nicotinamide mononucleotide alters mitochondrial dynamics by SIRT3-dependent mechanism in male mice. J. Neurosci. Res. 97 975–990. 10.1002/jnr.24397
    1. Koenekoop R. K., Wang H., Majewski J., Wang X., Lopez I., Ren H., et al. (2012). Mutations in NMNAT1 cause leber congenital amaurosis and identify a new disease pathway for retinal degeneration. Nat. Genet. 44 1035–1039. 10.1038/ng.2356
    1. Kooragayala K., Gotoh N., Cogliati T., Nellissery J., Kaden T. R., French S., et al. (2015). Quantification of oxygen consumption in retina ex vivo demonstrates limited reserve capacity of photoreceptor mitochondria. Invest. Ophthalmol. Vis. Sci. 56 8428–8436. 10.1167/iovs.15-17901
    1. Kristian T., Bernardi P., Siesjö B. K. (2001). Acidosis promotes the permeability transition in energized mitochondria: implications for reperfusion injury. J. Neurotrauma 18 1059–1074. 10.1089/08977150152693755
    1. LaNoue K. F., Williamson J. R. (1971). Interrelationships between malate-aspartate shuttle and citric acid cycle in rat heart mitochondria. Metabolism 20 119–140. 10.1016/0026-0495(71)90087-4
    1. Le Couteur D. G., Lakatta E. G. (2010). A vascular theory of aging. J. Gerontol. A Biol. Sci. Med. Sci. 65 1025–1027. 10.1093/gerona/glq135
    1. Lee C. F., Chavez J. D., Garcia-Menendez L., Choi Y., Roe N. D., Chiao Y. A., et al. (2016). Normalization of NAD+ redox balance as a therapy for heart failure. Circulation 134 883–894. 10.1161/CIRCULATIONAHA.116.022495
    1. Lee J., Kemper J. K. (2010). Controlling SIRT1 expression by microRNAs in health and metabolic disease. Aging 2 527–534. 10.18632/aging.100184
    1. Lewington A. J., Cerda J., Mehta R. L. (2013). Raising awareness of acute kidney injury: a global perspective of a silent killer. Kidney Int. 84 457–467. 10.1038/ki.2013.153
    1. Li J., Bonkowski M. S., Moniot S., Zhang D., Hubbard B. P., Ling A. J., et al. (2017). A conserved NAD(+) binding pocket that regulates protein-protein interactions during aging. Science 355 1312–1317. 10.1126/science.aad8242
    1. Li Y., Ma X., Li J., Yang L., Zhao X., Qi X., et al. (2019). Corneal denervation causes epithelial apoptosis through inhibiting NAD+ biosynthesis. Invest. Ophthalmol. Vis. Sci. 60 3538–3546. 10.1167/iovs.19-26909
    1. Li Y., Zhang Y., Dorweiler B., Cui D., Wang T., Woo C. W., et al. (2008). Extracellular Nampt promotes macrophage survival via a nonenzymatic interleukin-6/STAT3 signaling mechanism. J. Biol. Chem. 283 34833–34843. 10.1074/jbc.M805866200
    1. Liang H., Gao J., Zhang C., Li C., Wang Q., Fan J., et al. (2019). Nicotinamide mononucleotide alleviates Aluminum induced bone loss by inhibiting the TXNIP-NLRP3 inflammasome. Toxicol. Appl. Pharmacol. 362 20–27. 10.1016/j.taap.2018.10.006
    1. Liao X., Zhang R., Lu Y., Prosdocimo D. A., Sangwung P., Zhang L., et al. (2015). Kruppel-like factor 4 is critical for transcriptional control of cardiac mitochondrial homeostasis. J. Clin. Invest. 125 3461–3476. 10.1172/jci79964
    1. Liao Y. F., Wang B. J., Cheng H. T., Kuo L. H., Wolfe M. S. (2004). Tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma stimulate gamma-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway. J. Biol. Chem. 279 49523–49532. 10.1074/jbc.M402034200
    1. Lin J. B., Kubota S., Ban N., Yoshida M., Santeford A., Sene A., et al. (2016). NAMPT-Mediated NAD(+) biosynthesis is essential for vision in mice. Cell Rep. 17 69–85. 10.1016/j.celrep.2016.08.073
    1. Liu D., Pitta M., Mattson M. P. (2008). Preventing NAD(+) depletion protects neurons against excitotoxicity: bioenergetic effects of mild mitochondrial uncoupling and caloric restriction. Ann. N. Y. Acad. Sci. 1147 275–282. 10.1196/annals.1427.028
    1. Liu H.-W., Smith C. B., Schmidt M. S., Cambronne X. A., Cohen M. S., Migaud M. E., et al. (2018). Pharmacological bypass of NAD(+) salvage pathway protects neurons from chemotherapy-induced degeneration. Proc. Natl. Acad. Sci. U.S.A. 115 10654–10659. 10.1073/pnas.1809392115
    1. Long A. N., Owens K., Schlappal A. E., Kristian T., Fishman P. S., Schuh R. A. (2015). Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model. BMC Neurol. 15:19. 10.1186/s12883-015-0272-x
    1. Lu L., Tang L., Wei W., Hong Y., Chen H., Ying W., et al. (2014). Nicotinamide mononucleotide improves energy activity and survival rate in an in vitro model of Parkinson’s disease. Exp. Ther. Med. 8 943–950. 10.3892/etm.2014.1842
    1. Lundt S., Zhang N., Wang X., Polo-Parada L., Ding S. (2020). The effect of NAMPT deletion in projection neurons on the function and structure of neuromuscular junction (NMJ) in mice. Sci. Rep. 10:99. 10.1038/s41598-019-57085-4
    1. Luo G., Huang B., Qiu X., Xiao L., Wang N., Gao Q., et al. (2017). Resveratrol attenuates excessive ethanol exposure induced insulin resistance in rats via improving NAD(+)/NADH ratio. Mol. Nutr. Food Res. 61:1700087. 10.1002/mnfr.201700087
    1. Malik V. S., Popkin B. M., Bray G. A., Despres J. P., Willett W. C., Hu F. B. (2010). Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care 33 2477–2483. 10.2337/dc10-1079
    1. Martin A. S., Abraham D. M., Hershberger K. A., Bhatt D. P., Mao L., Cui H., et al. (2017). Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich’s ataxia cardiomyopathy model. JCI Insight 2:93885. 10.1172/jci.insight.93885
    1. Mehan S., Meena H., Sharma D., Sankhla R. (2011). JNK: a stress-activated protein kinase therapeutic strategies and involvement in Alzheimer’s and various neurodegenerative abnormalities. J. Mol. Neurosci. 43 376–390. 10.1007/s12031-010-9454-6
    1. Mills K. F., Yoshida S., Stein L. R., Grozio A., Kubota S., Sasaki Y., et al. (2016). Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 24 795–806. 10.1016/j.cmet.2016.09.013
    1. Mitchell G. F. (2014). Arterial stiffness and hypertension. Hypertension 64 13–18. 10.1161/hypertensionaha.114.00921
    1. Mohammadnia A., Yaqubi M., Fallahi H. (2015). Predicting transcription factors in human alcoholic hepatitis from gene regulatory network. Eur. Rev. Med. Pharmacol. Sci. 19 2246–2253.
    1. Moller N., Gormsen L., Fuglsang J., Gjedsted J. (2003). Effects of ageing on insulin secretion and action. Horm. Res. 60(Suppl. 1), 102–104. 10.1159/000071233
    1. Morales I., Guzman-Martinez L., Cerda-Troncoso C., Farias G. A., Maccioni R. B. (2014). Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Front. Cell. Neurosci. 8:112. 10.3389/fncel.2014.00112
    1. Morigi M., Perico L., Rota C., Longaretti L., Conti S., Rottoli D., et al. (2015). Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury. J. Clin. Invest. 125 715–726. 10.1172/JCI77632
    1. Mouchiroud L., Houtkooper R. H., Moullan N., Katsyuba E., Ryu D., Canto C., et al. (2013). The NAD(+)/Sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154 430–441. 10.1016/j.cell.2013.06.016
    1. Moynihan K. A., Grimm A. A., Plueger M. M., Bernal-Mizrachi E., Ford E., Cras-Meneur C., et al. (2005). Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2 105–117. 10.1016/j.cmet.2005.07.001
    1. Mylroie H., Dumont O., Bauer A., Thornton C. C., Mackey J., Calay D., et al. (2015). PKCepsilon-CREB-Nrf2 signalling induces HO-1 in the vascular endothelium and enhances resistance to inflammation and apoptosis. Cardiovasc. Res. 106 509–519. 10.1093/cvr/cvv131
    1. Nadtochiy S. M., Wang Y. T., Nehrke K., Munger J., Brookes P. S. (2018). Cardioprotection by nicotinamide mononucleotide (NMN): involvement of glycolysis and acidic pH. J. Mol. Cell Cardiol. 121 155–162. 10.1016/j.yjmcc.2018.06.007
    1. Nielsen K. N., Peics J., Ma T., Karavaeva I., Dall M., Chubanava S., et al. (2018). NAMPT-mediated NAD(+) biosynthesis is indispensable for adipose tissue plasticity and development of obesity. Mol. Metab. 11 178–188. 10.1016/j.molmet.2018.02.014
    1. Nikiforov A., Dolle C., Niere M., Ziegler M. (2011). Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD generation. J. Biol. Chem. 286 21767–21778. 10.1074/jbc.M110.213298
    1. Okabe K., Yaku K., Tobe K., Nakagawa T. (2019). Implications of altered NAD metabolism in metabolic disorders. J. Biomed. Sci. 26:34. 10.1186/s12929-019-0527-8
    1. Park J. H., Long A., Owens K., Kristian T. (2016). Nicotinamide mononucleotide inhibits post-ischemic NAD(+) degradation and dramatically ameliorates brain damage following global cerebral ischemia. Neurobiol. Dis. 95 102–110. 10.1016/j.nbd.2016.07.018
    1. Peek C. B., Affinati A. H., Ramsey K. M., Kuo H. Y., Yu W., Sena L. A., et al. (2013). Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 342:1243417. 10.1126/science.1243417
    1. Pillai J. B., Isbatan A., Imai S., Gupta M. P. (2005). Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity. J. Biol. Chem. 280 43121–43130. 10.1074/jbc.M506162200
    1. Pillai V. B., Sundaresan N. R., Kim G., Samant S., Moreno-Vinasco L., Garcia J. G. N., et al. (2013). Nampt secreted from cardiomyocytes promotes development of cardiac hypertrophy and adverse ventricular remodeling. Am. J. Physiol. Heart Circ. Physiol. 304 H415–H426. 10.1152/ajpheart.00468.2012
    1. Poddar S. K., Sifat A. E., Haque S., Nahid N. A., Chowdhury S., Mehedi I. (2019). Nicotinamide mononucleotide: exploration of diverse therapeutic applications of a potential molecule. Biomolecules 9:34. 10.3390/biom9010034
    1. Preiss J., Handler P. (1958). Biosynthesis of diphosphopyridine nucleotide. I. Identification of intermediates. J. Biol. Chem. 233 488–492.
    1. Preugschat F., Carter L. H., Boros E. E., Porter D. J., Stewart E. L., Shewchuk L. M. (2014). A pre-steady state and steady state kinetic analysis of the N-ribosyl hydrolase activity of hCD157. Arch. Biochem. Biophys. 564 156–163. 10.1016/j.abb.2014.09.008
    1. Prior S. J., Ryan A. S., Blumenthal J. B., Watson J. M., Katzel L. I., Goldberg A. P. (2016). Sarcopenia is associated with lower skeletal muscle capillarization and exercise capacity in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 71 1096–1101. 10.1093/gerona/glw017
    1. Qin W., Yang T., Ho L., Zhao Z., Wang J., Chen L., et al. (2006). Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J. Biol. Chem. 281 21745–21754. 10.1074/jbc.M602909200
    1. Rajman L., Chwalek K., Sinclair D. A. (2018). Therapeutic potential of NAD-Boosting molecules: the in vivo evidence. Cell Metab. 27 529–547. 10.1016/j.cmet.2018.02.011
    1. Ramsey K. M., Mills K. F., Satoh A., Imai S. (2008). Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell 7 78–88. 10.1111/j.1474-9726.2007.00355.x
    1. Ratajczak J., Joffraud M., Trammell S. A., Ras R., Canela N., Boutant M., et al. (2016). NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells. Nat. Commun. 7:13103. 10.1038/ncomms13103
    1. Reaven G. M. (1988). Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37 1595–1607. 10.2337/diab.37.12.1595
    1. Regier D. A., Boyd J. H., Burke J. D., Jr., Rae D. S., Myers J. K., Kramer M., et al. (1988). One-month prevalence of mental disorders in the United States. Based on five epidemiologic catchment area sites. Arch. Gen. Psychiatry 45 977–986. 10.1001/archpsyc.1988.01800350011002
    1. Rempe R. G., Hartz A. M. S., Bauer B. (2016). Matrix metalloproteinases in the brain and blood-brain barrier: versatile breakers and makers. J. Cereb. Blood Flow Metab. 36 1481–1507. 10.1177/0271678x16655551
    1. Revollo J. R., Korner A., Mills K. F., Satoh A., Wang T., Garten A., et al. (2007). Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab. 6 363–375. 10.1016/j.cmet.2007.09.003
    1. Rixen D., Siegel J. H. (2005). Bench-to-bedside review: oxygen debt and its metabolic correlates as quantifiers of the severity of hemorrhagic and post-traumatic shock. Crit. Care 9 441–453. 10.1186/cc3526
    1. Roncal-Jimenez C. A., Lanaspa M. A., Rivard C. J., Nakagawa T., Sanchez-Lozada L. G., Jalal D., et al. (2011). Sucrose induces fatty liver and pancreatic inflammation in male breeder rats independent of excess energy intake. Metabolism 60 1259–1270. 10.1016/j.metabol.2011.01.008
    1. Ross R., Hudson R., Stotz P. J., Lam M. (2015). Effects of exercise amount and intensity on abdominal obesity and glucose tolerance in obese adults: a randomized trial. Ann. Intern. Med. 162 325–334. 10.7326/m14-1189
    1. Salter M., Beams R. M., Critchley M. A., Hodson H. F., Iyer R., Knowles R. G., et al. (1991). Effects of tryptophan 2,3-dioxygenase inhibitors in the rat. Adv. Exp. Med. Biol. 294 281–288. 10.1007/978-1-4684-5952-4_25
    1. Sanada S., Komuro I., Kitakaze M. (2011). Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am. J. Physiol. Heart Circ. Physiol. 301 H1723–H1741. 10.1152/ajpheart.00553.2011
    1. Sayers S. R., Beavil R. L., Fine N. H. F., Huang G. C., Choudhary P., Pacholarz K. J., et al. (2020). Structure-functional changes in eNAMPT at high concentrations mediate mouse and human beta cell dysfunction in type 2 diabetes. Diabetologia 63 313–323. 10.1007/s00125-019-05029-y
    1. Scheibye-Knudsen M., Mitchell S. J., Fang E. F., Iyama T., Ward T., Wang J., et al. (2014). A high-fat diet and NAD(+) activate Sirt1 to rescue premature aging in cockayne syndrome. Cell Metab. 20 840–855. 10.1016/j.cmet.2014.10.005
    1. Seals D. R., Kaplon R. E., Gioscia-Ryan R. A., LaRocca T. J. (2014). You’re only as old as your arteries: translational strategies for preserving vascular endothelial function with aging. Physiology 29 250–264. 10.1152/physiol.00059.2013
    1. Seitz H. K., Bataller R., Cortez-Pinto H., Gao B., Gual A., Lackner C., et al. (2018). Alcoholic liver disease. Nat. Rev. Dis. Primers 4:16. 10.1038/s41572-018-0014-7
    1. Sims C. A., Guan Y., Mukherjee S., Singh K., Botolin P., Davila A., et al. (2018). Nicotinamide mononucleotide preserves mitochondrial function and increases survival in hemorrhagic shock. JCI Insight 3:e120182. 10.1172/jci.insight.120182
    1. Song J., Li J., Yang F., Ning G., Zhen L., Wu L., et al. (2019). Nicotinamide mononucleotide promotes osteogenesis and reduces adipogenesis by regulating mesenchymal stromal cells via the SIRT1 pathway in aged bone marrow. Cell Death Dis. 10:336. 10.1038/s41419-019-1569-2
    1. Sozzani S., Del Prete A., Bonecchi R., Locati M. (2015). Chemokines as effector and target molecules in vascular biology. Cardiovasc. Res. 107 364–372. 10.1093/cvr/cvv150
    1. Springo Z., Tarantini S., Toth P., Tucsek Z., Koller A., Sonntag W. E., et al. (2015). Aging exacerbates pressure-induced mitochondrial oxidative stress in mouse cerebral arteries. J. Gerontol. A Biol. Sci. Med. Sci. 70 1355–1359. 10.1093/gerona/glu244
    1. Stanley W. C., Recchia F. A., Lopaschuk G. D. (2005). Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 85 1093–1129. 10.1152/physrev.00006.2004
    1. Stein L. R., Imai S. (2014). Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging. EMBO J. 33 1321–1340. 10.1002/embj.201386917
    1. Stensballe J., Christiansen M., Tonnesen E., Espersen K., Lippert F. K., Rasmussen L. S. (2009). The early IL-6 and IL-10 response in trauma is correlated with injury severity and mortality. Acta Anaesthesiol. Scand. 53 515–521. 10.1111/j.1399-6576.2008.01801.x
    1. Stram A. R., Pride P. M., Payne R. M. (2017). NAD+ replacement therapy with nicotinamide riboside does not improve cardiac function in a model of mitochondrial heart disease. FASEB J 31 602–602.615. 10.1096/fasebj.31.1_supplement.602.15
    1. Stringer J., Groenewegen E., Liew S. H., Hutt K. J. (2019). Nicotinamide mononucleotide does not protect the ovarian reserve from cancer treatments. Reproduction 10.1530/rep-19-0337 [Epub ahead of print].
    1. Stromsdorfer K. L., Yamaguchi S., Yoon M. J., Moseley A. C., Franczyk M. P., Kelly S. C., et al. (2016). NAMPT-Mediated NAD(+) biosynthesis in adipocytes regulates adipose tissue function and multi-organ insulin sensitivity in mice. Cell Rep. 16 1851–1860. 10.1016/j.celrep.2016.07.027
    1. Strosznajder R. P., Gadamski R., Czapski G. A., Jesko H., Strosznajder J. B. (2003). Poly(ADP-ribose) polymerase during reperfusion after transient forebrain ischemia: its role in brain edema and cell death. J. Mol. Neurosci. 20 61–72. 10.1385/jmn:20:1:61
    1. Suga H. (1990). Ventricular energetics. Physiol. Rev. 70 247–277. 10.1152/physrev.1990.70.2.247
    1. Tanaka M., Nozaki M., Fukuhara A., Segawa K., Aoki N., Matsuda M., et al. (2007). Visfatin is released from 3T3-L1 adipocytes via a non-classical pathway. Biochem. Biophys. Res. Commun. 359 194–201. 10.1016/j.bbrc.2007.05.096
    1. Tarantini S., Tran C. H. T., Gordon G. R., Ungvari Z., Csiszar A. (2017). Impaired neurovascular coupling in aging and Alzheimer’s disease: contribution of astrocyte dysfunction and endothelial impairment to cognitive decline. Exp. Gerontol. 94 52–58. 10.1016/j.exger.2016.11.004
    1. Tarantini S., Valcarcel-Ares M. N., Toth P., Yabluchanskiy A., Tucsek Z., Kiss T., et al. (2019). Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice. Redox Biol. 24:101192. 10.1016/j.redox.2019.101192
    1. Tesla R., Wolf H. P., Xu P., Drawbridge J., Estill S. J., Huntington P., et al. (2012). Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. U.S.A. 109 17016–17021. 10.1073/pnas.1213960109
    1. Toth P., Tarantini S., Tucsek Z., Ashpole N. M., Sosnowska D., Gautam T., et al. (2014). Resveratrol treatment rescues neurovascular coupling in aged mice: role of improved cerebromicrovascular endothelial function and downregulation of NADPH oxidase. Am. J. Physiol. Heart Circ. Physiol. 306 H299–H308. 10.1152/ajpheart.00744.2013
    1. Tsubota K. (2016). The first human clinical study for NMN has started in Japan. NPJ Aging Mech. Dis. 2:16021. 10.1038/npjamd.2016.21
    1. Uddin G. M., Youngson N. A., Doyle B. M., Sinclair D. A., Morris M. J. (2017). Nicotinamide mononucleotide (NMN) supplementation ameliorates the impact of maternal obesity in mice: comparison with exercise. Sci. Rep. 7:15063. 10.1038/s41598-017-14866-z
    1. Uddin G. M., Youngson N. A., Sinclair D. A., Morris M. J. (2016). Head to head comparison of short-term treatment with the NAD(+) precursor nicotinamide mononucleotide (NMN) and 6 weeks of exercise in obese female mice. Front. Pharmacol. 7:258. 10.3389/fphar.2016.00258
    1. Vieira V. J., Valentine R. J., Wilund K. R., Antao N., Baynard T., Woods J. A. (2009). Effects of exercise and low-fat diet on adipose tissue inflammation and metabolic complications in obese mice. Am. J. Physiol. Endocrinol. Metab. 296 E1164–E1171. 10.1152/ajpendo.00054.2009
    1. von Euler H., Myrback K. (1930). Co-zynase, XVII. Hoppe Seylers Zeitschrift Fur Physiologische Chemie 190 93–100. 10.1515/bchm2.1930.190.3-6.93
    1. Walley K. R. (2016). Left ventricular function: time-varying elastance and left ventricular aortic coupling. Crit. Care 20:270. 10.1186/s13054-016-1439-6
    1. Wang B., Hasan M. K., Alvarado E., Yuan H., Wu H., Chen W. Y. (2011). NAMPT overexpression in prostate cancer and its contribution to tumor cell survival and stress response. Oncogene 30 907–921. 10.1038/onc.2010.468
    1. Wang P., Xu T.-Y., Guan Y.-F., Tian W.-W., Viollet B., Rui Y.-C., et al. (2011). Nicotinamide phosphoribosyltransferase protects against ischemic stroke through SIRT1-dependent adenosine monophosphate-activated kinase pathway. Ann. Neurol. 69 360–374. 10.1002/ana.22236
    1. Wang H., Listrat A., Meunier B., Gueugneau M., Coudy-Gandilhon C., Combaret L., et al. (2014). Apoptosis in capillary endothelial cells in ageing skeletal muscle. Aging Cell 13 254–262. 10.1111/acel.12169
    1. Wang X., Hu X., Yang Y., Takata T., Sakurai T. (2016). Nicotinamide mononucleotide protects against beta-amyloid oligomer-induced cognitive impairment and neuronal death. Brain Res. 1643 1–9. 10.1016/j.brainres.2016.04.060
    1. Wang X., Zhang Q., Bao R., Zhang N., Wang Y., Polo-Parada L., et al. (2017). Deletion of nampt in projection neurons of adult mice leads to motor dysfunction, neurodegeneration, and death. Cell Rep. 20 2184–2200. 10.1016/j.celrep.2017.08.022
    1. Warburg O., Christian W. (1936). Pyridine, the hydrogen transferring element of fermentation enzymes. (Pyridine-nucleotide.). Biochemische Zeitschrift 287 291–328.
    1. Watanabe S., Ageta-Ishihara N., Nagatsu S., Takao K., Komine O., Endo F., et al. (2014). SIRT1 overexpression ameliorates a mouse model of SOD1-linked amyotrophic lateral sclerosis via HSF1/HSP70i chaperone system. Mol. Brain 7:62. 10.1186/s13041-014-0062-1
    1. Wei C. C., Kong Y. Y., Hua X., Li G. Q., Zheng S. L., Cheng M. H., et al. (2017a). NAD replenishment with nicotinamide mononucleotide protects blood-brain barrier integrity and attenuates delayed tissue plasminogen activator-induced haemorrhagic transformation after cerebral ischaemia. Br. J. Pharmacol. 174 3823–3836. 10.1111/bph.13979
    1. Wei C. C., Kong Y. Y., Li G. Q., Guan Y. F., Wang P., Miao C. Y. (2017b). Nicotinamide mononucleotide attenuates brain injury after intracerebral hemorrhage by activating Nrf2/HO-1 signaling pathway. Sci. Rep. 7:717. 10.1038/s41598-017-00851-z
    1. Wheaton W. W., Chandel N. S. (2011). Hypoxia. 2. Hypoxia regulates cellular metabolism. Am. J. Physiol. Cell Physiol. 300 C385–C393. 10.1152/ajpcell.00485.2010
    1. Willems P. H., Rossignol R., Dieteren C. E., Murphy M. P., Koopman W. J. (2015). Redox homeostasis and mitochondrial dynamics. Cell Metab. 22 207–218. 10.1016/j.cmet.2015.06.006
    1. Wright A. F., Chakarova C. F., Abd El-Aziz M. M., Bhattacharya S. S. (2010). Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat. Rev. Genet. 11 273–284. 10.1038/nrg2717
    1. Wurth M. A., Sayeed M. M., Baue A. E. (1973). Nicotinamide adenine dinucleotide (n.d.) content of liver with hemorrhagic shock. Proc. Soc. Exp. Biol. Med. 144 654–658. 10.3181/00379727-144-37656
    1. Xie X., Yu C., Zhou J., Xiao Q., Shen Q., Xiong Z., et al. (2020). Nicotinamide mononucleotide ameliorates the depression-like behaviors and is associated with attenuating the disruption of mitochondrial bioenergetics in depressed mice. J. Affect. Disord. 263 166–174. 10.1016/j.jad.2019.11.147
    1. Yamaguchi S., Franczyk M. P., Chondronikola M., Qi N., Gunawardana S. C., Stromsdorfer K. L., et al. (2019). Adipose tissue NAD(+) biosynthesis is required for regulating adaptive thermogenesis and whole-body energy homeostasis in mice. Proc. Natl. Acad. Sci. U.S.A. 116 23822–23828. 10.1073/pnas.1909917116
    1. Yamamoto T., Byun J., Zhai P., Ikeda Y., Oka S., Sadoshima J. (2014). Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS One 9:e98972. 10.1371/journal.pone.0098972
    1. Yang Y., Sauve A. A. (2016). NAD(+) metabolism: bioenergetics, signaling and manipulation for therapy. Biochim. Biophys. Acta 1864 1787–1800. 10.1016/j.bbapap.2016.06.014
    1. Yao Z., Yang W., Gao Z., Jia P. (2017). Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease. Neurosci. Lett. 647 133–140. 10.1016/j.neulet.2017.03.027
    1. Yoon M. J., Yoshida M., Johnson S., Takikawa A., Usui I., Tobe K., et al. (2015). SIRT1-Mediated eNAMPT secretion from adipose tissue regulates hypothalamic NAD+ and function in mice. Cell Metab. 21 706–717. 10.1016/j.cmet.2015.04.002
    1. Yoshino J., Baur J. A., Imai S. I. (2018). NAD(+) intermediates: the biology and therapeutic potential of NMN and NR. Cell Metab. 27 513–528. 10.1016/j.cmet.2017.11.002
    1. Yoshino J., Mills K. F., Yoon M. J., Imai S. (2011). Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14 528–536. 10.1016/j.cmet.2011.08.014
    1. Young G. S., Choleris E., Lund F. E., Kirkland J. B. (2006). Decreased cADPR and increased NAD+ in the Cd38-/- mouse. Biochem. Biophys. Res. Commun. 346 188–192. 10.1016/j.bbrc.2006.05.100
    1. Youngson N. A., Uddin G. M., Das A., Martinez C., Connaughton H. S., Whiting S., et al. (2019). Impacts of obesity, maternal obesity and nicotinamide mononucleotide supplementation on sperm quality in mice. Reproduction 158 169–179. 10.1530/REP-18-0574
    1. Zhang L., Chopp M., Jia L., Cui Y., Lu M., Zhang Z. G. (2009). Atorvastatin extends the therapeutic window for tPA to 6 h after the onset of embolic stroke in rats. J. Cereb. Blood Flow Metab. 29 1816–1824. 10.1038/jcbfm.2009.105
    1. Zhang R., Shen Y., Zhou L., Sangwung P., Fujioka H., Zhang L., et al. (2017). Short-term administration of nicotinamide mononucleotide preserves cardiac mitochondrial homeostasis and prevents heart failure. J. Mol. Cell Cardiol. 112 64–73. 10.1016/j.yjmcc.2017.09.001
    1. Zhang X. Q., Lu J. T., Jiang W. X., Lu Y. B., Wu M., Wei E. Q., et al. (2015). NAMPT inhibitor and metabolite protect mouse brain from cryoinjury through distinct mechanisms. Neuroscience 291 230–240. 10.1016/j.neuroscience.2015.02.007
    1. Zhao B., Zhang M., Han X., Zhang X.-Y., Xing Q., Dong X., et al. (2013). Cerebral ischemia is exacerbated by extracellular nicotinamide phosphoribosyltransferase via a non-enzymatic mechanism. PLoS One 8:e85403. 10.1371/journal.pone.0085403
    1. Zhao C., Li W., Duan H., Li Z., Jia Y., Zhang S., et al. (2020). NAD(+) precursors protect corneal endothelial cells from UVB-induced apoptosis. Am. J. Physiol. Cell Physiol. 318 C796–C805. 10.1152/ajpcell.00445.2019
    1. Zhao Y., Guan Y. F., Zhou X. M., Li G. Q., Li Z. Y., Zhou C. C., et al. (2015). Regenerative neurogenesis after ischemic stroke promoted by nicotinamide phosphoribosyltransferase-nicotinamide adenine dinucleotide cascade. Stroke 46 1966–1974. 10.1161/STROKEAHA.115.009216
    1. Zhao Y., Liu X. Z., Tian W. W., Guan Y. F., Wang P., Miao C. Y. (2014). Extracellular visfatin has nicotinamide phosphoribosyltransferase enzymatic activity and is neuroprotective against ischemic injury. CNS Neurosci. Ther. 20 539–547. 10.1111/cns.12273
    1. Zhou Y., Wang Y., Wang J., Anne Stetler R., Yang Q. W. (2014). Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog. Neurobiol. 115 25–44. 10.1016/j.pneurobio.2013.11.003
    1. Zoukhri D. (2006). Effect of inflammation on lacrimal gland function. Exp. Eye Res. 82 885–898. 10.1016/j.exer.2005.10.018

Source: PubMed

3
구독하다