Visual Function and Macular Carotenoid Changes in Eyes with Retinal Drusen-An Open Label Randomized Controlled Trial to Compare a Micronized Lipid-Based Carotenoid Liquid Supplementation and AREDS-2 Formula

Pinakin Gunvant Davey, Thomas Henderson, Drake W Lem, Rebecca Weis, Stephanie Amonoo-Monney, David W Evans, Pinakin Gunvant Davey, Thomas Henderson, Drake W Lem, Rebecca Weis, Stephanie Amonoo-Monney, David W Evans

Abstract

Purpose: To compare the changes in visual and ocular parameters in individuals with retinal drusen who were treated with two commercially available nutritional supplements.

Methods: An open-label, single-center, randomized, parallel-treatment with an observational control group design was utilized. The treatment groups included individuals with fine retinal drusen sub-clinical age-related macular degeneration (AMD), while the control group consisted of ocular normal individuals. The treatment groups were randomly assigned to the micronized lipid-based carotenoid supplement, Lumega-Z (LM), or the PreserVision Age-Related Eye Disease Study 2 (AREDS-2) soft gel (PV). Visual performance was evaluated using the techniques of visual acuity, dark adaptation recovery and contrast sensitivity, at baseline, three months, and six months. Additionally, the macular pigment optical density (MPOD) was measured. The control group was not assigned any carotenoid supplement. The right eye and left eye results were analyzed separately.

Results: Seventy-nine participants were recruited for this study, of which 68 qualified and 56 participants had useable reliable data. Of the individuals who completed this study, 25 participants belonged to the LM group, 16 belonged to the PV group, and 15 to the control group. The LM group demonstrated statistically significant improvements in contrast sensitivity function (CSF) in both eyes at six months (p < 0.001). The LM group displayed a positive linear trend with treatment time in CSF (p < 0.001), with benefits visible after just three months of supplementation. Although there was a trend showing improvement in CSF in the PV group, the change was not significant after a Bonferroni-corrected p-value of p < 0.00625. Visual acuity, dark adaptation recovery and MPOD did not significantly improve in either treatment groups.

Conclusion: The LM group demonstrated greater and faster benefits in visual performance as measured by CSF when compared to the PV group. This trial has been registered at clinicaltrials.gov (NCT03946085).

Keywords: AREDS-2; Lumega-Z; MPOD; PreserVision; age-related macular degeneration; carotenoids; contrast sensitivity; lutein; macular degeneration; macular pigment; medical food; meso-zeaxanthin; zeaxanthin.

Conflict of interest statement

The authors of this manuscript have the following competing interests: Pinakin Davey serves as a consultant for Guardion Health Sciences. He has performed research on the CSV-1000E contrast sensitivity system which is owned by VectorVision. VectorVision is now a wholly owned subsidiary of Guardion Health Sciences. Other associations unrelated to this study: Pinakin Davey serves as a consultant to Zeavision LLC, which manufactures various nutritional supplements—none of which were used in this study. Davey is on the speaker’s bureau of Bausch Health for a Glaucoma medication Vyzulta and has received honorarium. Bausch Health are the manufacturers of the PreserVision AREDS-2 supplement. David Evans is an employee of Guardion Health Sciences and owns shares in the company. Evans is the inventor of the CSV-1000 contrast sensitivity system and founder of VectorVision. Guardion Health Sciences acquired VectorVision in September 2017. D.W.L, T.H., R.W. and S.A.-M. have no conflicts of interest.

Figures

Figure 1
Figure 1
Flow chart showing study outline: subject enrollment, randomization, follow up and sample size analyzed. Lumega-Z (LM), PreserVision (PV).

References

    1. Bernstein P.S., Delori F.C., Richer S., van Kuijk F.J., Wenzel A.J. The value of measurement of macular carotenoid pigment optical densities and distributions in age-related macular degeneration and other retinal disorders. Vis. Res. 2010;50:716–728. doi: 10.1016/j.visres.2009.10.014.
    1. Gruszecki W.I., Sielewiesiuk J. Orientation of xanthophylls in phosphatidylcholine multibilayers. Biochim. Biophys. Acta. 1990;1023:405–412. doi: 10.1016/0005-2736(90)90133-9.
    1. Leung I.Y. Macular pigment: New clinical methods of detection and the role of carotenoids in age-related macular degeneration. Optometry. 2008;79:266–272. doi: 10.1016/j.optm.2007.03.017.
    1. de Kinkelder R., van der Veen R.L., Verbaak F.D., Faber D.J., van Leeuwen T.G., Berendschot T.T. Macular pigment optical density measurements: Evaluation of a device using heterochromatic flicker photometry. Eye. 2011;25:105–112. doi: 10.1038/eye.2010.164.
    1. Li B., George E.W., Rognon G.T., Gorusupudi A., Ranganathan A., Chang F.Y., Shi L., Frederick J.M., Bernstein P.S. Imaging lutein and zeaxanthin in the human retina with confocal resonance Raman microscopy. Proc. Natl. Acad. Sci. USA. 2020;117:12352–12358. doi: 10.1073/pnas.1922793117.
    1. Bone R.A., Landrum J.T., Hime G.W., Cains A., Zamor J. Stereochemistry of the human macular carotenoids. [(accessed on 7 April 2020)];Investig. Ophthalmol. Vis. Sci. 1993 34:2033–2040. Available online: .
    1. Scripsema N.K., Dan-Ning H., Rosen R.B. Lutein, zeaxanthin, and meso-zeaxanthin in the clinical management of eye diseases. J. Ophthalmol. 2015;2015:865179. doi: 10.1155/2015/865179.
    1. Howells O., Eperjesi F., Bartlett H. Measuring macular pigment optical density in vivo: A review of techniques. Graefes Arch. Clin. Exp. Ophthalmol. 2011;249:315–347. doi: 10.1007/s00417-010-1577-5.
    1. Nolan J.M., Beatty S., Meagher K.A., Howard A.N., Kelly D., Thurnham D.I. Verification of Meso-Zeaxanthin in Fish. J. Food Process. Technol. 2014;5:335. doi: 10.4172/2157-7110.1000335.
    1. Bone R.A., Davey P.G., Roman B.O., Evans D.W. Efficacy of Commercially Available Nutritional Supplements: Analysis of Serum Uptake, Macular Pigment Optical Density and Visual Functional Response. Nutrients. 2020;12:1321. doi: 10.3390/nu12051321.
    1. Bone R.A., Landrum J.T., Cao Y., Howard A.N., Alvarez-Calderon F. Macular pigment response to a supplement containing meso-zeaxanthin, lutein and zeaxanthin. Nutr. Metab. 2007;4:12. doi: 10.1186/1743-7075-4-12.
    1. Bone R.A., Landrum J.T., Mayne S.T., Gomez C.M., Tibor S.E., Twaroska E.E. Macular pigment in donor eyes with and without AMD: A case-control study. Investig. Ophthalmol. Vis. Sci. 2001;42:235–240.
    1. Gorusupudi A., Shyam R., Li B., Vachali P., Subhani Y.K., Nelson K., Bernstein P.S. Developmentally Regulated Production of meso-Zeaxanthin in Chicken Retinal Pigment Epithelium/Choroid and Retina. Invest. Ophthalmol. Vis. Sci. 2016;57:1853–1861. doi: 10.1167/iovs.16-19111.
    1. Shyam R., Gorusupudi A., Nelson K., Horvath M.P., Bernstein P.S. RPE65 has an additional function as the lutein to meso-zeaxanthin isomerase in the vertebrate eye. Proc. Natl. Acad. Sci. USA. 2017;114:10882–10887. doi: 10.1073/pnas.1706332114.
    1. Raman R., Rajan R., Biswas S., Vaitheeswaran K., Sharma T. Macular pigment optical density in a South Indian population. Investig. Ophthalmol. Vis. Sci. 2011;52:7910–7916. doi: 10.1167/iovs.11-7636.
    1. Howells O., Eperjesi F., Barlett H. Improving the repeatability of heterochromatic flicker photometry for measurement of macular pigment optical density. Graefes Arch. Clin. Exp. Ophthalmol. 2013;251:871–880. doi: 10.1007/s00417-012-2127-0.
    1. Wang G., Brun T.A., Geissler C.A., Parpia B., Root M., Li M., Campbell T.C., Chen J. Vitamin A and carotenoid status in rural China. Br. J. Nutr. 1996;76:809–820. doi: 10.1079/BJN19960088.
    1. Zhou H., Zhao X., Johnson E.J., Lim A., Sun E., Yu J., Zhang Y., Liu X., Snellingen T., Shang F., et al. Serum carotenoids and risk of age-related macular degeneration in a chinese population sample. Investig. Ophthalmol. Vis. Sci. 2011;52:4338–4344. doi: 10.1167/iovs.10-6519.
    1. Nolan J.M., Stack J., O’Donovan O., Loane E., Beatty S. Risk factors for age-related maculopathy are associated with a relative lack of macular pigment. Exp. Eye Res. 2007;84:61–74. doi: 10.1016/j.exer.2006.08.016.
    1. Landrum J.T., Bone R.A., Joa H., Kilburn M.D., Moore L.L., Sprague K.E. A one year study of the macular pigment: The effect of 140 days of a lutein supplement. Exp. Eye Res. 1997;65:57–62. doi: 10.1006/exer.1997.0309.
    1. Berendschott T.T., Goldbohm R.A., Klöpping W.A., van de Kraats J., van Norel J., van Norren D. Influence of lutein supplementation on macular pigment, assessed with two objective techniques. Investig. Ophthalmol. Vis. Sci. 2000;41:3322–3326.
    1. Khachik F., de Moura F.F., Chew E.Y., Douglass L.W., Ferris F.L., Kim J., Thompson D.J.S. The effect of lutein and zeaxanthin supplementation on metabolites of these carotenoids in the serum of persons aged 60 or older. Investig. Ophthalmol. Vis. Sci. 2006;47:5234–5242. doi: 10.1167/iovs.06-0504.
    1. Koh H.H., Murray I.J., Nolan D., Carden D., Feather J., Beatty S. Plasma and macular responses to lutein supplement in subjects with and without age-related maculopathy: A pilot study. Exp. Eye Res. 2004;79:21–27. doi: 10.1016/j.exer.2004.03.001.
    1. Trieschmann M., Beatty S., Nolan J.M., Hense H.W., Heimes B., Austermann U., Fobker M., Pauleikhoff D. Changes in macular pigment optical density and serum concentrations of its constituent carotenoids following supplemental lutein and zeaxanthin: The LUNA study. Exp. Eye Res. 2007;84:718–728. doi: 10.1016/j.exer.2006.12.010.
    1. Richer S., Devenport J., Lang J.C. LAST II: Differential temporal responses of macular pigment optical density in patients with atrophic age-related macular degeneration to dietary supplementation with xanthophylls. Optometry. 2007;78:213–219. doi: 10.1016/j.optm.2006.10.019.
    1. Loughman J., Nolan J.M., Howard A.N., Connolly E., Meagher K., Beatty S. The impact of macular pigment augmentation on visual performance using different carotenoid formulations. Invest. Ophthalmol. Vis. Sci. 2012;53:7871–7880. doi: 10.1167/iovs.12-10690.
    1. Age-Related Eye Disease Study 2 Research Group Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: The Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. JAMA. 2013;309:2005–2015. doi: 10.1001/jama.2013.4997.
    1. Johnson E.J., Vishwanathan R., Rasmussen H.M., Lang J.C. Bioavailability of AREDS1 micronutrients from softgel capsules and tablets: A pilot study. Mol Vis. 2014;20:1228–1242.
    1. Jaiswal M., Dudhe R., Sharma P.K. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech. 2015;5:123–127. doi: 10.1007/s13205-014-0214-0.
    1. Lim C., Kim D., Sim T., Hoang N.H., Lee J.W., Lee E.S., Youn Y.S., Oh K.T. Preparation and characterization of lutein loading nanoemulsion system for ophthalmic eye drops. J. Drug Delivery Sci. Tech. 2016;36:168–174. doi: 10.1016/j.jddst.2016.10.009.
    1. Hendler S., inventor. Guardion Health Sciences LLC, assignee. Emulsion of Carotenoids and Ocular Antioxidants. 0189446A1. U.S. Patent. 2017 Jul 6;
    1. Early Treatment Diabetic Retinopathy Study Research Group Early Treatment Diabetic Retinopathy Study design and baseline patient characteristics. ETDRS report number 7. Ophthalmology. 1991;98:741–756. doi: 10.1016/S0161-6420(13)38009-9.
    1. VectorVision, Inc. Instructions for using the CSV-1000 [Internet] [(accessed on 21 July 2020)];2018 Available online:
    1. Thurman S.M., Davey P.G., McCray K.L., Paronian V., Seitz A.R. Predicting individual contrast sensitivity function from acuity and letter contrast sensitivity measurement. J. Vis. 2016;16:15. doi: 10.1167/16.15.15.
    1. Maniglia M., Thurman S.M., Seitz A.R., Davey P.G. Effect of varying levels of glare on contrast sensitivity measurements of young healthy individuals under photopic and mesopic vision. Front. Psychol. 2018;9:899. doi: 10.3389/fpsyg.2018.00899.
    1. Owsley C., McGwin G., Clark M.E., Jackson G.R., Callahan M.A., Kline L.B., Witherspoon C.D., Curcio C.A. Delayed rod-mediated dark adaptation is a functional biomarker for incident early age-related macular degeneration. Ophthalmology. 2016;123:344–351. doi: 10.1016/j.ophtha.2015.09.041.
    1. Flamendorf J., Agrón E., Wong W.T., Thompson D., Wiley H.E., Doss E.L., Al-Holou S., Ferris F.L., 3rd, Chew E.Y., Cukras C. Impairments in Dark Adaptation are associated with age-related macular degeneration severity and reticular pseudodrusen. Ophthalmology. 2015;122:2053–2062. doi: 10.1016/j.ophtha.2015.06.023.
    1. Jackson G.R., Edwards J.G. A short-duration dark adaptation protocol for assessment of age-related maculopathy. J. Ocul. Biol. Dis. Inform. 2008;1:7–11. doi: 10.1007/s12177-008-9002-6.
    1. Clark M.E., McGwin G., Jr., Neely D., Feist R., Mason J.O., 3rd, Thomley M., White M.F., Jr., Ozaydin B., Girkin C.A., Owsley C. Association between retinal thickness measured by spectral-domain OCT and rod-mediated dark adaptation in non-exudative age-related maculopathy. Br. J. Ophthalmol. 2011;95:1427–1432. doi: 10.1136/bjo.2010.190355.
    1. Binns A.M., Taylor D.J., Edwards L.A., Crabb D.P. Determining optimal test parameters for assessing dark adaptation in people with intermediate age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2018;59:114–121. doi: 10.1167/iovs.18-24211.
    1. Bone R.A., Mukherjee A. Innovative Troxler-free measurement of macular pigment and lens density with correction of the former for the aging lens. J. Biomed. Opt. 2013;18:107003–1–107003–8. doi: 10.1117/1.JBO.18.10.107003.
    1. Liu R., Wang T., Zhang B., Qin L., Wu C., Li Q., Ma L. Lutein and zeaxanthin supplementation and association with visual function in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2014;56:252–258. doi: 10.1167/iovs.14-15553.
    1. Kijlstra A., Tian Y., Kelly E.R., Berendschot T.T. Lutein: More than just a filter for blue light. Prog. Retin. Eye Res. 2012;31:303–315. doi: 10.1016/j.preteyeres.2012.03.002.
    1. Weigert G., Kaya S., Pemp B., Sacu S., Lasta M., Werkmeister R.M., Dragostinoff N., Simader C., Garhöfer G., Schmidt-Erfurth U., et al. Effects of lutein supplementation on macular pigment optical density and visual acuity in patients with age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2011;52:8174–8178. doi: 10.1167/iovs.11-7522.
    1. Ma L., Yan S.F., Huang Y.M., Lu X.R., Qian F., Pang H.L., Xu X.R., Zou Z.Y., Dong P.C., Xiao X., et al. Effect of lutein and zeaxanthin on macular pigment and visual function in patients with early age-related macular degeneration. Ophthalmology. 2012;119:2290–2297. doi: 10.1016/j.ophtha.2012.06.014.
    1. Johnson E.J., Chung H.-Y., Caldarella S.M., Snodderly D.M. The influence of supplemental lutein and docosahexaenoic acid on serum, lipoproteins, and macular pigmentation. Am. J. Clin Nutr. 2008;87:1521–1529. doi: 10.1093/ajcn/87.5.1521.
    1. Nolan J.M., Mulcahy R., Power R., Moran R., Howard A.N. Nutritional Intervention to Prevent Alzheimer’s Disease: Potential Benefits of Xanthophyll Carotenoids and Omega-3 Fatty Acids Combined. J. Alzheimers Dis. 2018;64:367–378. doi: 10.3233/JAD-180160.
    1. Richer S.P., Stiles W., Graham-Hoffman K., Levin M., Ruskin D., Wrobel J., Park D.W., Thomas C. Randomized, double-blind, placebo-controlled study of zeaxanthin and visual function in patients with atrophic age-related macular degeneration: The Zeaxanthin and Visual Function Study (ZVF) FDA IND #78, 973. Optometry. 2011;82:667–680.e6. doi: 10.1016/j.optm.2011.08.008.
    1. Kvansakul J., Rodriguez-Carmona M., Edgar D.F., Barker F.M., Köpcke W., Schalch W., Barbur J.L. Supplementation with the carotenoids lutein or zeaxanthin improves human visual performance. Ophthalmic. Physiol. Opt. 2006;26:362–371. doi: 10.1111/j.1475-1313.2006.00387.x.
    1. Stringham J.M., O’Brien K.J., Stringham N.T. Contrast Sensitivity and Lateral Inhibition Are Enhanced With Macular Carotenoid Supplementation. Investig. Ophthalmol. Vis. Sci. 2017;58:2291–2295. doi: 10.1167/iovs.16-21087.
    1. Hammond B.R., Fletcher L.M., Roos F., Wittwer J., Schalch W. A double-blind, placebo-controlled study on the effects of lutein and zeaxanthin on photostress recovery, glare disability, and chromatic contrast. Investig. Ophthalmol. Vis. Sci. 2014;55:8583–8589. doi: 10.1167/iovs.14-15573.
    1. Ma L., Dou H.L., Huang Y.M., Lu X.R., Xu X.R., Qian F., Zou Z.Y., Pang H.L., Dong P.C., Xiao X., et al. Improvement of retinal function in early age-related macular degeneration after lutein and zeaxanthin supplementation: A randomized, double-masked, placebo-controlled trial. Am. J. Ophthalmol. 2012;154:625–634.e1. doi: 10.1016/j.ajo.2012.04.014.
    1. Nolan J.M., Loughman J., Akkali M.C., Stack J., Scanlon G., Davison P., Beatty S. The impact of macular pigment augmentation on visual performance in normal subjects: COMPASS. Vision Res. 2011;51:459–469. doi: 10.1016/j.visres.2010.12.016.
    1. Loughman J., Akkali M.C., Beatty S., Scanlon G., Davison P.A., O’Dwyer V., Cantwell T., Major P., Stack J., Nolan J.M. The relationship between macular pigment and visual performance. Vision Res. 2010;50:1249–1256. doi: 10.1016/j.visres.2010.04.009.
    1. Nolan J.M., Power R., Stringham J., Dennison J., Stack J., Kelly D., Moran R., Akuffo K.O., Corcoran L., Beatty S. Enrichment of Macular Pigment Enhances Contrast Sensitivity in Subjects Free of Retinal Disease: Central Retinal Enrichment Supplementation Trials—Report 1. Investig. Ophthalmol. Vis. Sci. 2016;57:3429–3439. doi: 10.1167/iovs.16-19520.
    1. Renzi L.M., Hammond B.R. The effect of macular pigment on heterochromatic luminance contrast. Exp. Eye Res. 2010;91:896–900. doi: 10.1016/j.exer.2010.09.015.
    1. Huang Y.M., Dou H.L., Huang F.F., Xu X.R., Zou Z.Y., Lin X.M. Effect of supplemental lutein and zeaxanthin on serum, macular pigmentation, and visual performance in patients with early age-related macular degeneration. Biomed. Res. Int. 2015;2015:564738. doi: 10.1155/2015/564738.
    1. Beirne R.O., McConnell E. Investigation of the relationship between macular pigment levels and rod-mediated dark adaptation in intermediate age-related macular degeneration. Clin. Exp. Optom. 2019;102:611–616. doi: 10.1111/cxo.12882.
    1. Akuffo K.O., Nolan J.M., Howard A.N., Moran R., Stack J., Klein R., Klein B.E., Meuer S.M., Sabour-Pickett S., Thurnham D.I., et al. Sustained supplementation and monitored response with differing carotenoid formulations in early age-related macular degeneration. Eye. 2015;29:902–912. doi: 10.1038/eye.2015.64.
    1. Sabour-Pickett S., Beatty S., Connolly E., Loughman J., Stack J., Howard A., Klein R., Klein B.E., Meuer S.M., Myers C.E., et al. Supplementation with three different macular carotenoid formulations in patients with early age-related macular degeneration. Retina. 2014;34:1757–1766. doi: 10.1097/IAE.0000000000000174.
    1. Hammond B.R., Jr., Miller L.S., Bello M.O., Lindbergh C.A., Mewborn C., Renzi-Hammond L.M. Effects of Lutein/Zeaxanthin Supplementation on the Cognitive Function of Community Dwelling Older Adults: A Randomized, Double-Masked, Placebo-Controlled Trial. Front. Aging Neurosci. 2017;9:254. doi: 10.3389/fnagi.2017.00254.
    1. Renzi-Hammond L.M., Bovier E.R., Fletcher L.M., Miller L.S., Mewborn C.M., Lindbergh C.A., Baxter J.H., Hammond B.R. Effects of a Lutein and Zeaxanthin Intervention on Cognitive Function: A Randomized, Double-Masked, Placebo-Controlled Trial of Younger Healthy Adults. Nutrients. 2017;9:1246. doi: 10.3390/nu9111246.
    1. Stringham N.T., Holmes P.V., Stringham J.M. Effects of macular xanthophyll supplementation on brain-derived neurotrophic factor, pro-inflammatory cytokines, and cognitive performance. Physiol. Behav. 2019;211:112650. doi: 10.1016/j.physbeh.2019.112650.
    1. Mewborn C.M., Lindbergh C.A., Robinson T.L., Gogniat M.A., Terry D.P., Jean K.R., Hammond B.R., Renzi-Hammond L.M., Miller L.S. Lutein and Zeaxanthin Are Positively Associated with Visual-Spatial Functioning in Older Adults: An fMRI Study. Nutrients. 2018;10:458. doi: 10.3390/nu10040458.
    1. Walk A.M., Khan N.A., Barnett S.M., Raine L.B., Kramer A.F., Cohen N.J., Moulton C.J., Renzi-Hammond L.M., Hammond B.R., Hillman C.H. From neuro-pigments to neural efficiency: The relationship between retinal carotenoids and behavioral and neuroelectric indices of cognitive control in childhood. Int. J. Psychophysiol. 2017;118:1–8. doi: 10.1016/j.ijpsycho.2017.05.005.
    1. Barnett S.M., Khan N.A., Walk A.M., Raine L.B., Moulton C., Cohen N.J., Kramer A.F., Hammond B.R., Jr., Renzi-Hammond L., Hillman C.H. Macular pigment optical density is positively associated with academic performance among preadolescent children. Nutr. Neurosci. 2018;21:632–640. doi: 10.1080/1028415X.2017.1329976.
    1. Saint S.E., Renzi-Hammond L.M., Khan N.A., Hillman C.H., Frick J.E., Hammond B.R. The Macular Carotenoids are Associated with Cognitive Function in Preadolescent Children. Nutrients. 2018;10:193. doi: 10.3390/nu10020193.
    1. Khan N.A., Walk A.M., Edwards C.G., Jones A.R., Cannavale C.N., Thompson S.V., Reeser G.E., Holscher H.D. Macular Xanthophylls Are Related to Intellectual Ability among Adults with Overweight and Obesity. Nutrients. 2018;10:396. doi: 10.3390/nu10040396.
    1. Johnson E.J., Vishwanathan R., Johnson M.A., Hausman D.B., Davey A., Scott T.M., Green R.C., Miller L.S., Gearing M., Woodard J., et al. Relationship between Serum and Brain Carotenoids, α-Tocopherol, and Retinol Concentrations and Cognitive Performance in the Oldest Old from the Georgia Centenarian Study. J. Aging Res. 2013;2013:951786. doi: 10.1155/2013/951786.
    1. Vishwanathan R., Schalch W., Johnson E.J. Macular pigment carotenoids in the retina and occipital cortex are related in humans. Nutr. Neurosci. 2016;19:95–101. doi: 10.1179/1476830514Y.0000000141.
    1. Dröge W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002;82:47–95. doi: 10.1152/physrev.00018.2001.
    1. Davey P.G., Alvarez S.D., Lee J.Y. Macular pigment optical density: Repeatability, intereye correlation, and effect of ocular dominance. Clin. Ophthalmol. 2016;10:1671–1678. doi: 10.2147/OPTH.S111708.
    1. Davey P.G., Lievens C., Ammono-Monney S. Differences in macular pigment optical density across four ethnicities: A comparative study. Ther. Adv. Ophthalmol. 2020;12:2515841420924167. doi: 10.1177/2515841420924167.
    1. Green-Gomez M., Bernstein P.S., Curcio C.A., Moran R., Roche W., Nolan J.M. Standardizing the Assessment of Macular Pigment Using a Dual-Wavelength Autofluorescence Technique. Transl Vis. Sci Technol. 2019;8:41. doi: 10.1167/tvst.8.6.41.
    1. Davey P.G., Ngo A., Cross J., Gierhart D.L. Macular Pigment Reflectometry: Development and Evaluation of a Novel Clinical Device for Rapid Objective Assessment of the Macular Carotenoids; Proceedings of the SPIE 10858, Ophthalmic Technologies XXIX; San Francisco, CA, USA. 28 February 2019;
    1. Sanabria J.C., Bass J., Spors F., Gierhart D.L., Davey P.G. Measurement of Carotenoids in Perifovea using the Macular Pigment Reflectometer. J. Vis. Exp. 2020 doi: 10.3791/60429.

Source: PubMed

3
구독하다