Prediction Equations Overestimate the Energy Requirements More for Obesity-Susceptible Individuals

Rebecca T McLay-Cooke, Andrew R Gray, Lynnette M Jones, Rachael W Taylor, Paula M L Skidmore, Rachel C Brown, Rebecca T McLay-Cooke, Andrew R Gray, Lynnette M Jones, Rachael W Taylor, Paula M L Skidmore, Rachel C Brown

Abstract

Predictive equations to estimate resting metabolic rate (RMR) are often used in dietary counseling and by online apps to set energy intake goals for weight loss. It is critical to know whether such equations are appropriate for those susceptible to obesity. We measured RMR by indirect calorimetry after an overnight fast in 26 obesity susceptible (OSI) and 30 obesity resistant (ORI) individuals, identified using a simple 6-item screening tool. Predicted RMR was calculated using the FAO/WHO/UNU (Food and Agricultural Organisation/World Health Organisation/United Nations University), Oxford and Miflin-St Jeor equations. Absolute measured RMR did not differ significantly between OSI versus ORI (6339 vs. 5893 kJ·d-1, p = 0.313). All three prediction equations over-estimated RMR for both OSI and ORI when measured RMR was ≤5000 kJ·d-1. For measured RMR ≤7000 kJ·d-1 there was statistically significant evidence that the equations overestimate RMR to a greater extent for those classified as obesity susceptible with biases ranging between around 10% to nearly 30% depending on the equation. The use of prediction equations may overestimate RMR and energy requirements particularly in those who self-identify as being susceptible to obesity, which has implications for effective weight management.

Keywords: RMR prediction equations; indirect calorimetry; obesity resistance; obesity susceptibility; resting metabolic rate.

Conflict of interest statement

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Figures

Figure 1
Figure 1
Scatter plot of predicted against measured RMR for each equation for obesity resistant individuals (ORI) and obesity susceptible individuals (OSI). Each individual is represented by three points and the line shows equality between the prediction equation and measured RMR values.
Figure 2
Figure 2
Biases for obesity resistant individuals (ORI) and obesity susceptible individuals (OSI) by resting metabolic rate (RMR) prediction equation for selected measured RMR values (n = 56).
Figure 3
Figure 3
Biases for obesity resistant individuals (ORI) and obesity susceptible individuals (OSI) by resting metabolic rate (RMR) prediction equation for selected measured RMR values after adjustment for sex, age, height and weight (n = 56).

References

    1. Harris J., Benedict F. A Biometric Study of Basal Metabolism in Man. Carnegie Institute of Washington; Washington, DC, USA: 1919.
    1. Felig P., Cunningham J., Levitt M., Hendler R., Nadel E. Energy expenditure in obesity in fasting and postprandial state. Am. J. Physiol. 1983;244:45–51.
    1. Hoffmans M., Pfeifer W.A., Gundlach B.L., Nijkrake H.G., Oude Ophuis A.J., Hautvast J.G. Resting metabolic rate in obese and normal weight women. Int. J. Obes. 1979;3:111–118.
    1. James W.P., Davies H.L., Bailes J., Dauncey M.J. Elevated metabolic rates in obesity. Lancet. 1978;1:1122–1125. doi: 10.1016/S0140-6736(78)90300-8.
    1. Prentice A., Black A., Murgatroyd P., Goldberg G., Coward W. Metabolism or appetite: Questions of energy balance with particular reference to obesity. J. Hum. Nutr. Diet. 1989;2:95–104. doi: 10.1111/j.1365-277X.1989.tb00014.x.
    1. Prentice A.M., Black A.E., Coward W.A., Cole T.J. Energy expenditure in overweight and obese adults in affluent societies: An analysis of 319 doubly-labelled water measurements. Eur. J. Clin. Nutr. 1996;50:93–97.
    1. Ravussin E., Burnand B., Schutz Y., Jéquier E. Twenty-four-hour energy expenditure and resting metabolic rate in obese, moderately obese, and control subjects. Am. J. Clin. Nutr. 1982;35:566–573.
    1. Karhunen L., Franssila-Kallunki A., Rissanen A., Kervinen K., Kesäniemi Y.A., Uusitupa M. Determinants of resting energy expenditure in obese non-diabetic caucasian women. Int. J. Obes. Relat. Metab. Disord. 1997;21:197–202. doi: 10.1038/sj.ijo.0800387.
    1. Owen O.E., Kavle E., Owen R.S., Polansky M., Caprio S., Mozzoli M.A., Kendrick Z.V., Bushman M.C., Boden G. A reappraisal of caloric requirements in healthy women. Am. J. Clin. Nutr. 1986;44:1–19.
    1. Lam Y.Y., Ravussin E. Indirect calorimetry: An indispensable tool to understand and predict obesity. Eur. J. Clin. Nutr. 2017;71:318–322. doi: 10.1038/ejcn.2016.220.
    1. Verga S., Buscemi S., Caimi G. Resting energy expenditure and body composition in morbidly obese, obese and control subjects. Acta Diabetol. 1994;31:47–51. doi: 10.1007/BF00580761.
    1. Astrup A., Gøtzsche P.C., Van de Werken K., Ranneries C., Toubro S., Raben A., Buemann B. Meta-analysis of resting metabolic rate in formerly obese subjects. Am. J. Clin. Nutr. 1999;69:1117–1122.
    1. Fothergill E., Guo J., Howard L., Kerns J.C., Knuth N.D., Brychta R., Chen K.Y., Skarulis M.C., Walter M., Walter P.J., et al. Persistent metabolic adaptation 6 years after “the biggest loser” competition. Obesity. 2016;24:1612–1619. doi: 10.1002/oby.21538.
    1. Johannsen D.L., Knuth N.D., Huizenga R., Rood J.C., Ravussin E., Hall K.D. Metabolic slowing with massive weight loss despite preservation of fat-free mass. J. Clin. Endocrinol. Metab. 2012;97:2489–2496. doi: 10.1210/jc.2012-1444.
    1. Rosenbaum M., Leibel R.L. Adaptive thermogenesis in humans. Int. J. Obes. 2010;34(Suppl. S1):47–55. doi: 10.1038/ijo.2010.184.
    1. Müller M.J., Bosy-Westphal A. Adaptive thermogenesis with weight loss in humans. Obesity. 2013;21:218–228. doi: 10.1002/oby.20027.
    1. Ravussin E., Swinburn B. Metabolic predictors of obesity: Cross sectional versus longitudinal data. Int. J. Obes. Relat. Metab. Disord. 1993;17(Suppl. S3):28–31.
    1. Frankenfield D., Roth-Yousey L., Compher C. Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: A systematic review. J. Am. Diet. Assoc. 2005;105:775–789. doi: 10.1016/j.jada.2005.02.005.
    1. Hasson R.E., Howe C.A., Jones B.L., Freedson P.S. Accuracy of four resting metabolic rate prediction equations: Effects of sex, body mass index, age, and race/ethnicity. J. Sci. Med. Sport. 2011;14:344–351. doi: 10.1016/j.jsams.2011.02.010.
    1. Weijs P.J.M., Vansant G.A.A.M. Validity of predictive equations for resting energy expenditure in belgian normal weight to morbid obese women. Clin. Nutr. 2010;29:347–351. doi: 10.1016/j.clnu.2009.09.009.
    1. Bonganha V., Libardi C.A., Santos C.F., De Souza G.V., Conceição M.S., Chacon-Mikahil M.P.T., Madruga V.A. Predictive equations overestimate the resting metabolic rate in postmenopausal women. J. Nutr. Health Aging. 2013;17:211–214. doi: 10.1007/s12603-012-0395-3.
    1. Dietitians New Zealand Inc. In: 2016 Clinical Handbook. Gillanders L., editor. Manor House Press; Wellington, New Zealand: 2016.
    1. Seagle H.M., Strain G.W., Makris A., Reeves R.S. Position of the American Dietetic Association: Weight management. J. Am. Diet. Assoc. 2009;109:330–346.
    1. Sabounchi N.S., Rahmandad H., Ammerman A. Best-fitting prediction equations for basal metabolic rate: Informing obesity interventions in diverse populations. Int. J. Obes. 2013;37:1364–1370. doi: 10.1038/ijo.2012.218.
    1. Flack K.D., Siders W.A., Johnson L., Roemmich J.N. Cross-validation of resting metabolic rate prediction equations. J. Acad. Nutr. Diet. 2016;116:1413–1422. doi: 10.1016/j.jand.2016.03.018.
    1. Kee A.L., Isenring E., Hickman I., Vivanti A. Resting energy expenditure of morbidity obese patients using indirect calorimetry: A systematic review. Obes. Rev. 2012;13:753–765. doi: 10.1111/j.1467-789X.2012.01000.x.
    1. Psota T., Chen K.Y. Measuring energy expenditure in clinical populations: Rewards and challenges. Eur. J. Clin. Nutr. 2013;67:436–442. doi: 10.1038/ejcn.2013.38.
    1. Henry C.J.K. Basal metabolic rate studies in humans: Measurement and development of new equations. Public Health Nutr. 2005;8:1133–1152. doi: 10.1079/PHN2005801.
    1. Daly J.M., Heymsfield S.B., Head C.A., Harvey L.P., Nixon D.W., Katzeff H., Grossman G.D. Human energy requirements: overestimation by widely used prediction equation. Am. J. Clin. Nutr. 1985;42:1170–1174.
    1. Frankenfield D.C. Bias and accuracy of resting metabolic rate equations in non-obese and obese adults. Clin. Nutr. 2013;32:976–982. doi: 10.1016/j.clnu.2013.03.022.
    1. Marrades M.P., Martínez J.A., Moreno-Aliaga M.J. Differences in short-term metabolic responses to a lipid load in lean (resistant) vs. obese (susceptible) young male subjects with habitual high-fat consumption. Eur. J. Clin. Nutr. 2007;61:166–174. doi: 10.1038/sj.ejcn.1602500.
    1. Brown R.C., McLay-Cooke R.T., Richardson S.L., Williams S.M., Grattan D.R., Chisholm A.W.A. Appetite response among those susceptible or resistant to obesity. Int. J. Endocrinol. 2014 doi: 10.1155/2014/512013.
    1. Brown R.C., McLay-Cooke R., Gray A.R., Tey S.L. Oral fatty acid sensitivity among obesity resistant and obesity susceptible individuals. Clin. Nutr. Diet. 2015;1:1–5.
    1. Stewart A., Marfell-Jones M., Olds T., De Ridder H. International Standards for Anthropometric Assessment. The International Society for the Advancement of Kinanthropometry; Wellington, New Zealand: 2011.
    1. Compher C., Frankenfield D., Keim N., Roth-Yousey L., Group E.A.W. Best practice methods to apply to measurement of resting metabolic rate in adults: A systematic review. J. Am. Diet. Assoc. 2006;106:881–903. doi: 10.1016/j.jada.2006.02.009.
    1. Barr S.I., Janelle K.C., Prior J.C. Energy intakes are higher during the luteal phase of ovulatory menstrual cycles. Am. J. Clin. Nutr. 1995;61:39–43.
    1. Bisdee J.T., James W.P., Shaw M.A. Changes in energy expenditure during the menstrual cycle. Br. J. Nutr. 1989;61:187–199. doi: 10.1079/BJN19890108.
    1. Tai M.M., Castillo T.P., Pi-Sunyer F.X. Thermic effect of food during each phase of the menstrual cycle. Am. J. Clin. Nutr. 1997;66:1110–1115.
    1. Weir J.B.D.B. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949;109:1–9. doi: 10.1113/jphysiol.1949.sp004363.
    1. Reeves M.M., Davies P.S.W., Bauer J., Battistutta D. Reducing the time period of steady state does not affect the accuracy of energy expenditure measurements by indirect calorimetry. J. Appl. Physiol. 2004;97:130–134. doi: 10.1152/japplphysiol.01212.2003.
    1. FAO/WHO/UNU (Food and Agricultural Organisation/World Health Organisation/United Nations University) Energy and Protein Requirements. World Health Organisation; Geneva, Switzerland: 1985. (WHO Technical Report Series No. 724).
    1. Mifflin M.D., St Jeor S.T., Hill L.A., Scott B.J., Daugherty S.A., Koh Y.O. A new predictive equation for resting energy expenditure in healthy individuals. Am. J. Clin. Nutr. 1990;51:241–247.
    1. MeterPlus–Software Support for Actical. [(accessed on 5 September 2017)]; Available online: .
    1. Troiano R.P., Berrigan D., Dodd K.W., Mâsse L.C., Tilert T., Mcdowell M. Physical activity in the United States measured by accelerometer. Med. Sci. Sports Exerc. 2008;40:181–188. doi: 10.1249/mss.0b013e31815a51b3.
    1. Colley R.C., Garriguet D., Janssen I., Craig C.L., Clarke J., Tremblay M.S. Physical activity of Canadian adults: Accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep. 2011;22:7–14.
    1. Wong S.L., Colley R., Connor Gorber S., Tremblay M. Actical accelerometer sedentary activity thresholds for adults. J. Phys. Act. Health. 2011;8:587–591. doi: 10.1123/jpah.8.4.587.
    1. Colley R.C., Tremblay M.S. Moderate and vigorous physical activity intensity cut-points for the Actical accelerometer. J. Sport Sci. 2011;29:783–789. doi: 10.1080/02640414.2011.557744.
    1. Department of Human Nutrition, University of Otago . Kai-Culator [v1.08] Including Foodfiles 2010v2. University of Otago; Dunedin, New Zealand: 2013.
    1. Gibson R. Principles of Nutritional Assessment. Oxford University Press; Oxford, UK: 2005. Validity in dietary assessment methods; pp. 149–196.
    1. Heymsfield S.B., Thomas D., Bosy-Westphal A., Shen W., Peterson C.M., Müller M.J. Evolving concepts on adjusting human resting energy expenditure measurements for body size. Obes. Rev. 2012;13:1001–1014. doi: 10.1111/j.1467-789X.2012.01019.x.
    1. Pennington Biomedical Research . Weight Loss Predictor. Louisianna State University; Baton Rouge, LA, USA: [(accessed on 26 October 2016)]. Available online:
    1. Thomas D.M., Martin C.K., Heymsfield S., Redman L.M., Schoeller D.A., Levine J.A. A simple model predicting individual weight change in humans. J. Biol. Dyn. 2011;5:579–599. doi: 10.1080/17513758.2010.508541.
    1. Zurlo F., Lillioja S., Esposito-Del Puente A., Nyomba B.L., Raz I., Saad M.F., Swinburn B.A., Knowler W.C., Borgardus C., Ravussin E. Low ratio of fat to carbohydrate oxidation as predictor of weight gain: Study of 24-h RQ. Am. J. Physiol. 1990;259:650–657.
    1. Livingstone M.B.E., Black A.E. Markers of the validity of reported energy intake. J. Nutr. 2003;133(Suppl. S3):895–920.
    1. Poslusna K., Ruprich J., De Vries J.H.M., Jakubikova M., Van’t Veer P. Misreporting of energy and micronutrient intake estimated by food records and 24 hour recalls, control and adjustment methods in practice. Br. J. Nutr. 2009;101(Suppl. S2):73–85. doi: 10.1017/S0007114509990602.
    1. Myfitnesspal BMR Calculator. [(accessed on 1 May 2017)]; Available online: .
    1. Nutrino Nutrino Explains: How We Really Calculate Your Breakdown. [(accessed on 1 May 2017)]; Available online: .
    1. Fitday Free Diet and Weight Loss Journal. [(accessed on 1 May 2017)]; Available online: .
    1. Perez S. Under Armour Snatches Up Health and Fitness Trackers Endomondo and myfitnesspal. [(accessed on 1 May 2017)]; Available online: .
    1. FITDAY. [(accessed on 5 September 2017)]; Available online: .
    1. Manini T.M. Energy expenditure and aging. Ageing Res. Rev. 2010;9:1–11. doi: 10.1016/j.arr.2009.08.002.
    1. Speakman J.R., Selman C. Physical activity and resting metabolic rate. Proc. Nutr. Soc. 2003;62:621–634. doi: 10.1079/PNS2003282.
    1. Stiegler P., Cunliffe A. The role of diet and exercise for the maintenance of fat-free mass and resting metabolic rate during weight loss. Sports Med. 2006;36:239–262. doi: 10.2165/00007256-200636030-00005.

Source: PubMed

3
구독하다