Acute kidney injury 2016: diagnosis and diagnostic workup

Marlies Ostermann, Michael Joannidis, Marlies Ostermann, Michael Joannidis

Abstract

Acute kidney injury (AKI) is common and is associated with serious short- and long-term complications. Early diagnosis and identification of the underlying aetiology are essential to guide management. In this review, we outline the current definition of AKI and the potential pitfalls, and summarise the existing and future tools to investigate AKI in critically ill patients.

Figures

Fig. 1
Fig. 1
Generation and clearance of creatinine. Arg arginine, Glyc glycine
Fig. 2
Fig. 2
Biomarkers of AKI. α-GST α glutathione S-transferase, AAP alanine aminopeptidase, ALP alkaline phosphatase, γ-GT γ-glutamyl transpeptidase, п GST п glutathione S-transferase, HGF hepatocyte growth fator, IGFBP-7 insulin like growth factor binding protein 7, IL-18 interleukin 18, KIM-1 kidney injury molecule-1, L-FAB liver fatty acid-binding protein, NAG N-acetyl-β-d-glucosaminidase, NGAL neutrophil gelatinase-associated lipocalin, RBP retinol binding protein, TIMP2 tissue inhibitor metalloproteinase 2
Fig. 3
Fig. 3
Diagnosis of AKI based on functional and damage markers. The combination of functional and damage biomarkers allows the clinician to diagnose AKI earlier and to differentiate the disease process better. It is recognised that the process is dynamic and that patients may move from one phase to another. Reproduced with permission from http://www.adqi.org/
Fig. 4
Fig. 4
Diagnostic work up. AKI acute kidney injury, ANCA anti-neutrophil cytoplasmic antibody, ANA anti-nuclear antibody, Anti-ds-DNA anti-double stranded DNA, anti-GBM anti-glomerular basement membrane, C3 complement component 3, C4 complement component 4, CK creatine kinase, CK-MB creatine kinase MB fraction, ENA extractable nuclear antigen, HIV human immunodeficiency virus, HUS haemolytic uraemic syndrome, LDH lactate dehydrogenase, NT-proBNP N-terminal pro-brain natriuretic peptide, TTP thrombotic thrombocytopenic purpura

References

    1. Singbartl K, Joannidis M. Short-term effects of acute kidney injury. Crit Care Clin. 2015;31(4):751–62. doi: 10.1016/j.ccc.2015.06.010.
    1. Lewington AJ, Cerda J, Mehta RL. Raising awareness of acute kidney injury: a global perspective of a silent killer. Kidney Int. 2013;84(3):457–67. doi: 10.1038/ki.2013.153.
    1. Mehta RL, Cerda J, Burdmann EA, et al. International Society of Nephrology’s 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. Lancet. 2015;385:2616–43. doi: 10.1016/S0140-6736(15)60126-X.
    1. Bellomo R, Ronco C, Kellum JA, et al. Acute renal failure: definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the acute dialysis quality initiative (ADQI) group. Crit Care. 2004;8:R204–12. doi: 10.1186/cc2872.
    1. Mehta RL, Kellum JA, Shah SV, et al. Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31. doi: 10.1186/cc5713.
    1. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. 2012;2:1–138
    1. Kellum JA, Sileanu FE, Murugan R, Lucko N, Shaw AD, Clermont G. Classifying AKI by urine output versus serum creatinine level. J Am Soc Nephrol. 2015;26(9):2231–8. doi: 10.1681/ASN.2014070724.
    1. Bastin AJ, Ostermann M, Slack AJ, Diller GP, Finney SJ, Evans TW. Acute kidney injury after cardiac surgery according to Risk/Injury/Failure/Loss/End-stage, Acute Kidney Injury Network, and Kidney Disease: Improving Global Outcomes Classifications. J Crit Care. 2013;28(4):389–96. doi: 10.1016/j.jcrc.2012.12.008.
    1. Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, Edipidis K, Forni LG, Gomersall CD, Govil D, Honoré PM, Joannes-Boyau O, Joannidis M, Korhonen AM, Lavrentieva A, Mehta RL, Palevsky P, Roessler E, Ronco C, Uchino S, Vazquez JA, Vidal Andrade E, Webb S, Kellum JA. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41(8):1411–23. doi: 10.1007/s00134-015-3934-7.
    1. Joannidis M, Metnitz B, Bauer P, Schusterschitz N, Moreno R, Druml W, Metnitz PG. Acute kidney injury in critically ill patients classified by AKIN versus RIFLE using the SAPS 3 database. Intensive Care Med. 2009;35(10):1692–702. doi: 10.1007/s00134-009-1530-4.
    1. Joannidis M, Metnitz PG. Epidemiology and natural history of acute renal failure in the ICU. Crit Care Clin. 2005;21(2):239–49. doi: 10.1016/j.ccc.2004.12.005.
    1. Ostermann M, Chang R, Riyadh ICU. Program Users Group. Correlation between the AKI classification and outcome. Crit Care. 2008;12(6):R144. doi: 10.1186/cc7123.
    1. Ostermann M, Chang RW. Acute kidney injury in the intensive care unit according to RIFLE. Crit Care Med. 2007;35(8):1837–43. doi: 10.1097/01.CCM.0000277041.13090.0A.
    1. Ostermann M. Diagnosis of acute kidney injury: Kidney Disease Improving Global Outcomes criteria and beyond. Curr Opin Crit Care. 2014;20(6):581–7. doi: 10.1097/MCC.0000000000000157.
    1. Thomas M, Blaine C, Dawnay A, Devonald MA, Ftouh S, Laing C, Latchem S, Lewington A, Milford DV, Ostermann M. The definition of acute kidney injury and its use in practice. Kidney Int. 2015;87:62–73. doi: 10.1038/ki.2014.328.
    1. Clark WR, Mueller BT, Kraus MA, Macias WL. Quantification of creatinine kinetic parameters in patients with acute renal failure. Kidney Int. 1998;54(2):554–60. doi: 10.1046/j.1523-1755.1998.00016.x.
    1. Schetz M, Gunst J, Van den Berghe G. The impact of using estimated GFR versus creatinine clearance on the evaluation of recovery from acute kidney injury in the ICU. Intensive Care Med. 2014;40(11):1709–17. doi: 10.1007/s00134-014-3487-1.
    1. Doi K, Yuen PS, Eisner C, Hu X, Leelahavanichkul A, Schnermann J, Star RA. Reduced production of creatinine limits its use as marker of kidney injury in sepsis. J Am Soc Nephrol. 2009;20(6):1217–21. doi: 10.1681/ASN.2008060617.
    1. Liu KD, Thompson BT, Ancukiewicz M, et al. Acute kidney injury in patients with acute lung injury: impact of fluid accumulation on classification of acute kidney injury and associated outcomes. Crit Care Med. 2011;39:2665–71. doi: 10.1097/CCM.0b013e318228234b.
    1. Macedo E, Bouchard J, Soroko SH, et al. Fluid accumulation, recognition and staging of acute kidney injury in critically-ill patients. Crit Care. 2010;14:R82. doi: 10.1186/cc9004.
    1. Siew ED, Matheny ME. Choice of reference serum creatinine in defining acute kidney injury. Nephron. 2015;131:107–12. doi: 10.1159/000439144.
    1. Bagshaw SM, Uchino S, Cruz D, et al. A comparison of observed versus estimated baseline creatinine for determination of RIFLE class in patients with acute kidney injury. Nephrol Dial Transplant. 2009;24:2739–44. doi: 10.1093/ndt/gfp159.
    1. Zavada J, Hoste E, Cartin-Ceba R, Calzavacca P, Gajic O, Clermont G, Bellomo R, Kellum JA, for the AKI6 Investigators A comparison of three methods to estimate baseline creatinine for RIFLE classification. Nephrol Dial Transplant. 2010;25:3911–8. doi: 10.1093/ndt/gfp766.
    1. Palevsky P, Liu KD, Brophy PD, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline on acute kidney injury. Am J Kidney Dis. 2013;61:649–72. doi: 10.1053/j.ajkd.2013.02.349.
    1. Prowle JR, Liu YL, Licari E, Bagshaw SM, Egi M, Haase M, Haase-Fielitz A, Kellum JA, Cruz D, Ronco C, Tsutsui K, Uchino S, Bellomo R. Oliguria as predictive biomarker of acute kidney injury in critically ill patients. Crit Care. 2011;15(4):R172. doi: 10.1186/cc10318.
    1. Zaloga GP, Hughes SS. Oliguria in patients with normal renal function. Anesthesiology. 1990;72(4):598–602. doi: 10.1097/00000542-199004000-00003.
    1. Guay J, Lortie L. Activation of the renin-angiotensin system contributes significantly to the pathophysiology of oliguria in patients undergoing posterior spinal fusion. Eu J Anaesthesiol. 2004;21(10):812–8.
    1. Lehner GF, Forni LG, Joannidis M. Oliguria and biomarkers of acute kidney injury: star struck lovers or strangers in the night? Nephron. 2016;133(4). [Epub ahead of print].
    1. Md Ralib A, Pickering JW, Shaw GM, Endre ZH. The urine output definition of acute kidney injury is too liberal. Crit Care. 2013;17:112. doi: 10.1186/cc12784.
    1. Fliser D, Laville M, Covic A, et al. A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice guidelines on acute kidney injury: part 1: definitions, conservative management and contrast-induced nephropathy. Nephrol Dial Transplant. 2012;27(12):4263–72. doi: 10.1093/ndt/gfs375.
    1. Ostermann M, Joannidis M. Biomarkers for AKI improve clinical practice: no. Intensive Care Med. 2015;41(4):618–22. doi: 10.1007/s00134-014-3540-0.
    1. Ostermann M, Philips BJ, Forni LG. Clinical review: biomarkers of acute kidney injury: where are we now? Crit Care. 2012;16:233. doi: 10.1186/cc11380.
    1. Charlton JR, Portilla D, Okusa MD. A basic science view of acute kidney injury biomarkers. Nephrol Dial Transplant. 2014;29:1301–11. doi: 10.1093/ndt/gft510.
    1. Delanaye P, Cavalier E, Morel J, Mehdi M, Maillard N, Claisse G, Lambermont B, Dubois BE, Damas P, Krzesinski JM, Lautrette A, Mariat C. Detection of decreased glomerular filtration rate in intensive care units: serum cystatin C versus serum creatinine. BMC Nephrol. 2014;15:9. doi: 10.1186/1471-2369-15-9.
    1. Murray PT, Mehta RL, Shaw A, et al. Current use of biomarkers in acute kidney injury: report and summary of recommendations from the 10th Acute Dialysis Quality Initiative consensus conference. Kidney Int. 2014;85:513–21. doi: 10.1038/ki.2013.374.
    1. Van Veldhuisen DJ, Ruilope LM, Maisel AS, Damman K. Biomarkers of renal injury and function: diagnostic, prognostic and therapeutic implications in heart failure. Eur Heart J. 2015 [Epub ahead of print].
    1. Kashani K, Al-Khafaji A, Ardiles T, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care. 2013;17:R25. doi: 10.1186/cc12503.
    1. Haase M, Devarajan P, Haase-Fielitz A, Bellomo R, Cruz DN, Wagener G, Krawczeski CD, Koyner JL, Murray P, Zappitelli M, Goldstein SL, Makris K, Ronco C, Martensson J, Martling CR, Venge P, Siew E, Ware LB, Ikizler TA, Mertens PR. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol. 2011;57:1752–61. doi: 10.1016/j.jacc.2010.11.051.
    1. Haase M, Kellum JA, Ronco C. Subclinical AKI—an emerging syndrome with important consequences. Nat Rev Nephrol. 2012;8:735–9. doi: 10.1038/nrneph.2012.197.
    1. McCullough PA, Shaw AD, Haase M, et al. Diagnosis of acute kidney injury using functional and injury biomarkers: workgroup statements from the tenth acute dialysis quality initiative consensus conference. Contrib Nephrol. 2013;182:13–29. doi: 10.1159/000349963.
    1. Vanmassenhove J, Glorieux G, Lameire N, Hoste E, Dhondt A, Vanholder R, Van Biesen W. Influence of severity of illness on neutrophil gelatinase-associated lipocalin performance as a marker of acute kidney injury: a prospective cohort study of patients with sepsis. BMC Nephrol. 2015;16:18. doi: 10.1186/s12882-015-0003-y.
    1. Leelahavanichkul A, Souza AC, Street JM, Hsu V, Tsuji T, Doi K, Li L, Hu X, Zhou H, Kumar P, Schnermann J, Star RA, Yuen PS. Comparison of serum creatinine and serum cystatin C as biomarkers to detect sepsis-induced acute kidney injury and to predict mortality in CD-1 mice. Am J Physiol Renal Physiol. 2014;307(8):F939–48. doi: 10.1152/ajprenal.00025.2013.
    1. Kos J, Stabuc B, Cimerman N, Brünner N. Serum cystatin C, a new marker of glomerular filtration rate, is increased during malignant progression. Clin Chem. 1998;44(12):2556–7.
    1. Fricker M, Wiesli P, Brändle M, Schwegler B, Schmid C. Impact of thyroid dysfunction on serum cystatin C. Kidney Int. 2003;63(5):1944–7. doi: 10.1046/j.1523-1755.2003.00925.x.
    1. Bökenkamp A, van Wijk JA, Lentze MJ, Stoffel-Wagner B. Effect of corticosteroid therapy on serum cystatin C and beta2-microglobulin concentrations. Clin Chem. 2002;48(7):1123–6.
    1. Knight EL, Verhave JC, Spiegelman D, Hillege HL, de Zeeuw D, Curhan GC, de Jong PE. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int. 2004;65(4):1416–21. doi: 10.1111/j.1523-1755.2004.00517.x.
    1. Chu R, Li C, Wang S, et al. Assessment of KDIGO definitions in patients with histopathologic evidence of acute renal disease. Clin J Am Soc Nephrol. 2014;9:1175–82. doi: 10.2215/CJN.06150613.
    1. Ostermann M, Chang RW. Challenges of defining acute kidney injury. QJM. 2011;104:237–43. doi: 10.1093/qjmed/hcq185.
    1. Endre ZH, Kellum JA, Di Somma S, Doi K, Goldstein SK, Koyner JL, Macedo E, Mehta RL, Murray PT. Differential diagnosis of AKI in clinical practice by functional and damage biomarkers: workgroup statements from the tenth Acute Dialysis Quality Initiative Consensus Conference. Contrib Nephrol. 2013;182:30–44. doi: 10.1159/000349964.
    1. Legrand M, Mik EG, Balestra GM, Lutter R, Pirracchio R, Payen D, Ince C. Fluid resuscitation does not improve renal oxygenation during haemorrhagic shock in rats. Anesthesiology. 2010;112:119. doi: 10.1097/ALN.0b013e3181c4a5e2.
    1. Nejat M, Pickering JW, Devarajan P, Bonventre JV, Edelstein CL, Walker RJ, Endre ZH. Some biomarkers of acute kidney injury are increased in pre-renal acute injury. Kidney Int. 2012;81:1254–62. doi: 10.1038/ki.2012.23.
    1. Uchino S, Bellomo R, Bagshaw SM, Goldsmith D. Transient azotaemia is associated with a high risk of death in hospitalized patients. Nephrol Dial Transplant. 2010;25:1833–9. doi: 10.1093/ndt/gfp624.
    1. National Clinical Guideline Centre. Acute kidney injury: prevention, detection and management of acute kidney injury up to the point of renal replacement therapy. Clinical guidelines, CG169. Available from: . Accessed 18 Sept 2016.
    1. Bagshaw SM, Gibney RT. Acute kidney injury: clinical value of urine microscopy in acute kidney injury. Nat Rev Nephrol. 2009;5:185–6. doi: 10.1038/nrneph.2009.23.
    1. Bagshaw SM, Haase M, Haase-Fielitz A, Bennett M, Devarajan P, Bellomo R. A prospective evaluation of urine microscopy in septic and non-septic acute kidney injury. Nephrol Dial Transplant. 2012;27(2):582–8. doi: 10.1093/ndt/gfr331.
    1. Luciano RL, Castano E, Fogazzi GB, Perazella MA. Light chain crystalline kidney disease: diagnostic urine microscopy as the “liquid kidney biopsy”. Clin Nephrol. 2014;82(6):387–91. doi: 10.5414/CN108424.
    1. Perazella MA. The urine sediment as a biomarker of kidney disease. Am J Kidney Dis. 2015;66(5):748–55. doi: 10.1053/j.ajkd.2015.02.342.
    1. Sharda N, Bakhtar O, Thajudeen B, Meister E, Szerlip H. Manual urine microscopy versus automated urine analyzer microscopy in patients with acute kidney injury. Lab Med. 2014;45(4):e152–5. doi: 10.1309/LMVJK6W4KQL1ZHKS.
    1. Bagshaw SM, Langenberg C, Wan L, May CN, Bellomo R. A systematic review of urinary findings in experimental septic acute renal failure. Crit Care Med. 2007;35:1592–8. doi: 10.1097/01.CCM.0000266684.17500.2F.
    1. Bagshaw SM, Langenberg C, Bellomo R. Urinary biochemistry and microscopy in septic acute renal failure: a systematic review. Am J Kidney Dis. 2006;48:695–705. doi: 10.1053/j.ajkd.2006.07.017.
    1. Carvounis CP, Nisar S, Guro-Razuman S. Significance of the fractional excretion of urea in the differential diagnosis of acute renal failure. Kidney Int. 2002;62:2223–9. doi: 10.1046/j.1523-1755.2002.00683.x.
    1. Pe’pin MN, Bouchard J, Legault L, Ethier J. Diagnostic performance of fractional excretion of urea and fractional excretion of sodium in the evaluations of patients with acute kidney injury with or without diuretic treatment. Am J Kidney Dis. 2007;50:566–73. doi: 10.1053/j.ajkd.2007.07.001.
    1. Diskin CJ, Stokes TJ, Dansby LM, Radcliff L, Carter TB. Toward the optimal clinical use of the fraction excretion of solutes in oliguric azotemia. Ren Fail. 2010;32:1245–54. doi: 10.3109/0886022X.2010.517353.
    1. Prowle J, Bagshaw SM, Bellomo R. Renal blood flow, fractional excretion of sodium and acute kidney injury: time for a new paradigm? Curr Opin Crit Care. 2012;18(6):585–92. doi: 10.1097/MCC.0b013e328358d480.
    1. Fenske W, Störk S, Koschker AC, Blechschmidt A, Lorenz D, Wortmann S, Allolio B. Value of fractional uric acid excretion in differential diagnosis of hyponatremic patients on diuretics. J Clin Endocrinol Metab. 2008;93(8):2991–7. doi: 10.1210/jc.2008-0330.
    1. Hall IE, Coca SG, Perazella MA, et al. Risk of poor outcomes with novel and traditional biomarkers at clinical AKI diagnosis. Clin J Am Soc Nephrol. 2011;6:2740–9. doi: 10.2215/CJN.04960511.
    1. Langenberg C, Wan L, Egi M, May CN, Bellomo R. Renal blood flow in experimental septic acute renal failure. Kidney Int. 2006;69(11):1996–2002. doi: 10.1038/sj.ki.5000440.
    1. Langenberg C, Wan L, Bagshaw SM, Egi M, May CN, Bellomo R. Urinary biochemistry in experimental septic acute renal failure. Nephrol Dial Transplant. 2006;21(12):3389–97. doi: 10.1093/ndt/gfl541.
    1. Vanmassenhove J, Glorieux G, Hoste E, Dhondt A, Vanholder R, Van Biesen W. Urinary output and fractional excretion of sodium and urea as indicators of transient versus intrinsic acute kidney injury during early sepsis. Crit Care. 2013;17(5):R234. doi: 10.1186/cc13057.
    1. Maciel AT, Vitorio D. Urine biochemistry assessment in critically ill patients: controversies and future perspectives. J Clin Monit Comput. 2016. [Epub ahead of print].
    1. Maciel AT, Vitorio D. Urine biochemistry in the early postoperative period after cardiac surgery: role in acute kidney injury monitoring. Case Rep Crit Care. 2013;2013:103450.
    1. Maciel AT, Park M, Macedo E. Physicochemical analysis of blood and urine in the course of acute kidney injury in critically ill patients: a prospective, observational study. BMC Anesthesiol. 2013;13(1):31. doi: 10.1186/1471-2253-13-31.
    1. Schnell D, Darmon M. Bedside Doppler ultrasound for the assessment of renal perfusion in the ICU: advantages and limitations of the available techniques. Crit Ultrasound J. 2015;7(1):24. doi: 10.1186/s13089-015-0024-6.
    1. Göcze I, Renner P, Graf BM, Schlitt HJ, Bein T, Pfister K. Simplified approach for the assessment of kidney perfusion and acute kidney injury at the bedside using contrast-enhanced ultrasound. Intensive Care Med. 2015;41(2):362–3. doi: 10.1007/s00134-014-3554-7.
    1. Schneider AG, Goodwin MD, Schelleman A, Bailey M, Johnson L, Bellomo R. Contrast-enhanced ultrasonography to evaluate changes in renal cortical microcirculation induced by noradrenaline: a pilot study. Crit Care. 2014;18(6):653. doi: 10.1186/s13054-014-0653-3.
    1. Kirkpatrick AW, Roberts DJ, De Waele J, et al. Intra-abdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines form the World Society of the Abdominal Compartment Syndrome. Intensive Care Med. 2013;39(7):1190–206. doi: 10.1007/s00134-013-2906-z.
    1. Augusto JF, Lassalle V, Fillatre P, Perrotin D, Meziani F, Schenck-Dhif M, Bollaert PE, du Cheyron D, Beduneau G, Vinsonneau C, Guitton C, Lerolle N. Safety and diagnostic yield of renal biopsy in the intensive care unit. Intensive Care Med. 2012;38(11):1826–33. doi: 10.1007/s00134-012-2634-9.
    1. Javaid MM, Johnston M, Kalsi N, Venn RM, Forni LG. Acute kidney injury on the intensive care unit: the use of transjugular renal biopsy in aiding diagnosis. Netherlands J Crit Care. 2011;2:61–5.
    1. Chirinos JA, Corrales-Medina VF, Garcia S, Lichtstein DM, Bisno AL, Chakko S. Endocarditis associated with antineutrophil cytoplasmic antibodies: a case report and review of the literature. Clin Rheumatol. 2007;26(4):590–5. doi: 10.1007/s10067-005-0176-z.
    1. Schmitt WH, van der Woude FJ. Clinical applications of antineutrophil cytoplasmic antibody testing. Curr Opin Rheumatol. 2004;16(1):9–17. doi: 10.1097/00002281-200401000-00004.
    1. Molitoris BA. Measuring glomerular filtration rate in the intensive care unit: no substitute please. Crit Care. 2013;17:181. doi: 10.1186/cc12876.
    1. Molitoris BA, Reilly ES. Quantifying glomerular filtration rates in acute kidney injury: a requirement for translational success. Semin Nephrol. 2016;36(1):31–41. doi: 10.1016/j.semnephrol.2016.01.008.
    1. Prowle JR, Molan MP, Hornsey E, Bellomo R. Cine phase-contrast magnetic resonance imaging for the measurement of renal blood flow. Contrib Nephrol. 2010;165:329–36. doi: 10.1159/000313774.
    1. Molitoris BA, Sandoval RM. Techniques to study nephron function: microscopy and imaging. Pflugers Arch. 2009;458:203–9. doi: 10.1007/s00424-008-0629-8.

Source: PubMed

3
구독하다