The influences of age on olfaction: a review

Richard L Doty, Vidyulata Kamath, Richard L Doty, Vidyulata Kamath

Abstract

Decreased olfactory function is very common in the older population, being present in over half of those between the ages of 65 and 80 years and in over three quarters of those over the age of 80 years. Such dysfunction significantly influences physical well-being and quality of life, nutrition, the enjoyment of food, as well as everyday safety. Indeed a disproportionate number of the elderly die in accident gas poisonings each year. As described in this review, multiple factors contribute to such age-related loss, including altered nasal engorgement, increased propensity for nasal disease, cumulative damage to the olfactory epithelium from viral and other environmental insults, decrements in mucosal metabolizing enzymes, ossification of cribriform plate foramina, loss of selectivity of receptor cells to odorants, changes in neurotransmitter and neuromodulator systems, and neuronal expression of aberrant proteins associated with neurodegenerative disease. It is now well established that decreased smell loss can be an early sign of such neurodegenerative diseases as Alzheimer's disease and sporadic Parkinson's disease. In this review we provide an overview of the anatomy and physiology of the aging olfactory system, how this system is clinically evaluated, and the multiple pathophysiological factors that are associated with its dysfunction.

Keywords: Alzheimer's disease; Parkinson's disease; age; anatomy; neurodegeneration; olfaction; physiology; psychophysics.

Figures

Figure 1
Figure 1
(A) Cross-section of the human olfactory epithelium. Four main types of cells can be discerned: bipolar receptor cells (arrows point to largely denuded cilia at dendritic knobs); c, cell body, microvillar cells (m), sustentacular cells (s), and basal cells (b); bg, Bowman's gland; lp, lamina propria; n, collection of axons within an ensheathing cell; d, degenerating cell; bs, basal cell undergoing mitosis. Photo courtesy of Dr. David Moran, Longmont, Colorado. (B) A transition zone between the human olfactory epithelium (bottom) and the respiratory epithelium (top). Arrows signify two examples of olfactory receptor cell dendrites with cilia that have been cut off. Bar = 5 μm. From Menco and Morrison (2003), with permission. Copyright©2003, Marcel Dekker, Inc.
Figure 2
Figure 2
Schematic drawing of the major layers of the olfactory bulb and the interactions between the different types of bulbar cells. Abbreviations: G, granule cells; M, mitral cells; T, tufted cells. Note that the largely GABAergic granule cells send projections into the mitral cell and external plexiform layers, and that some small cells extend projections into more than one glomerulus. Reprinted with permission from Duda (2010), with permission. Copyright©2010, Elsevier B.V.
Figure 3
Figure 3
The 40-item University of Pennsylvania Smell Identification Test (UPSIT). This test is comprised of four booklets, each containing 10 microencapsulated (“scratch and sniff”) odors which are released by a pencil tip. The examinee is required to provide an answer on each test item (see columns on last page of each booklet) even if no odor is perceived or the perceived odor does not smell like one of the response alternatives (i.e., the test is forced-choice). This test has been administered to hundreds of thousands of subjects and is available in 15 different language versions. Photograph courtesy of Sensonics International, Haddon Heights, New Jersey USA. Copyright©2013, Sensonics International.
Figure 4
Figure 4
Scores on the University of Pennsylvania Smell Identification Test (UPSIT) as a function of age and gender in a large heterogeneous group of subjects. Numbers by data points indicate sample sizes. From Doty et al. (1984a), with permission. Copyright©1984, American Association for the Advancement of Science.
Figure 5
Figure 5
The Self-administered Computerized Olfactory Testing System (SCOTS). This modern olfactometer allows for self-administration of olfactory threshold tests, among other types of tests, and automatically calculates the threshold value based upon subject responses. This system eliminates administrator error in the presentation of test stimuli and provides exacting control of stimulus duration, inter-stimulus intervals, and other factors. Photograph courtesy of Sensonics International, Haddon Heights, New Jersey USA. Copyright©2013, Sensonics International.
Figure 6
Figure 6
Test scores for men and women on a 12-item odor discrimination/memory test as a function of age. Note age-related decline in performance and the fact that women outperform men at all ages. Data are collapsed over 0-, 30- and 60-s delay intervals. From Choudhury et al. (2003), with permission. Copyright©2003, Oxford University Press.
Figure 7
Figure 7
Magnitude estimates given to six concentrations of amyl butyrate after adjustment for number usage by the employment of a cross-modal matching procedure. Each age group was comprised of 10 men and 10 women. The younger group ranged in age from 18 to 25 years, and the older group from 65 to 85 years. From Stevens et al. (1982), with permission. Copyright©1982, ANKHO International, Inc.
Figure 8
Figure 8
Air-dilution olfactometer used to present pulses of odorants into a purified and humidified airstream directed through nares of a subject. This device ensures that the odor event-related potentials (OERPs) are not confounded by somatosensory artifacts due to alterations in stimulus pressure, temperature, or other factors. Photo courtesy of the University of Pennsylvania Smell and Taste Center, Philadelphia, PA.
Figure 9
Figure 9
Olfactory event-related potentials obtained from 12 younger (mean age: 24 years) and 12 older (mean age: 71 years) subjects using normal breathing or breathing after being trained to close the palate to minimize airflow from the mouth (velopharyngeal closure). Note the smaller amplitude and longer latency responses in the older group. From Thesen and Murphy (2001), with permission. Copyright©2001, Elsevier Science B.V.
Figure 10
Figure 10
Mean (s.e.m.) sniff magnitude ratios obtained from the Sniff Magnitude Test as a function of age. Sample size = 137 subjects, 74% of whom were female. From Frank et al. (2006), with permission. Copyright©2006, American Medical Association.
Figure 11
Figure 11
Left: left and right halves of the cribriform plate of a 25-year-old female in superior view. Right: left half of cribriform plate of a 66-year-old male in superior view. Note the difference in size and number of patent foramina that transmit cranial nerve I between the young and old cribriform plates. Anterior is toward top. From Kalmey et al. (1998), with permission. Copyright©1998, Wiley-Liss, Inc.
Figure 12
Figure 12
Respiratory epithelium in the olfactory region of the adult human. Top: ciliated and goblet cell-containing respiratory epithelium has invaded degenerated olfactory neuroepithelium (between arrows). Arrows indicate junction of respiratory and olfactory epithelia (HandE, × 100). Middle: gland-like invagination (between arrows) of respiratory epithelium into the lamina propria (HandH, × 200). Bottom: gland-like respiratory epithelium with large lumina in the lamina propria (HandE, × 1000). From Nakashima et al. (1984), with permission. Copyright©1984, American Medical Association.
Figure 13
Figure 13
Olfactory functional magnetic resonance imaging (fMRI) activation maps from 11 younger (left; mean age = 23.9 years) and 8 older (right; mean age = 66.4 years) persons to lavender and spearmint odors. Note greater activation in the younger subjects. From Wang et al. (2005), with permission. Copyright©2005, Gerontological Society of America.

References

    1. Abolmaali N. D., Hietschold V., Vogl T. J., Huttenbrink K. B., Hummel T. (2002). MR evaluation in patients with isolated anosmia since birth or early childhood. Am. J. Neuroradiol. 23, 157–164
    1. Allen W. F. (1928). Effect on respiration, blood pressure, and carotid pulse of various inhaled and insufflated vapors when stimulating one cranial nerve and various combinations of cranial nerves. Amer. J. Physiol. 87, 319–325
    1. Arendt T., Bigl V., Arendt A., Tennstedt A. (1983). Loss of neurons in the nucleus basalis of Meynert in Alzheimer's disease, paralysis agitans and Korsakoff's disease. Acta Neuropathol. 61, 101–108 10.1007/BF00697388
    1. Bahar-Fuchs A., Chetelat G., Villemagne V. L., Moss S., Pike K., Masters C. L., et al. (2010). Olfactory deficits and amyloid-beta burden in Alzheimer's disease, mild cognitive impairment, and healthy aging: a PiB PET study. J. Alzheimers. Dis. 22, 1081–1087 10.3233/JAD-2010-100696
    1. Barresi M., Ciurleo R., Giacoppo S., Foti C. V., Celi D., Bramanti P., et al. (2012). Evaluation of olfactory dysfunction in neurodegenerative diseases. J. Neurol. Sci. 323, 16–24 10.1016/j.jns.2012.08.028
    1. Bedard A., Parent A. (2004). Evidence of newly generated neurons in the human olfactory bulb. Dev. Brain Res. 151, 159–168 10.1016/j.devbrainres.2004.03.021
    1. Bende M. (1983). Blood flow with 133Xe in human nasal mucosa in relation to age, sex and body position. Acta Otolaryngol. 96, 175–179 10.3109/00016488309132889
    1. Bensafi M., Rouby C., Farget V., Bertrand B., Vigouroux M., Holley A. (2002). Influence of affective and cognitive judgments on autonomic parameters during inhalation of pleasant and unpleasant odors in humans. Neurosci. Lett. 319, 162–166 10.1016/S0304-3940(01)02572-1
    1. Bhandawat V., Reisert J., Yau K. W. (2005). Elementary response of olfactory receptor neurons to odorants. Science 308, 1931–1934 10.1126/science.1109886
    1. Bhatnagar K. P., Kennedy R. C., Baron G., Greenberg R. A. (1987). Number of mitral cells and the bulb volume in the aging human olfactory bulb: a quantitative morphological study. Anat. Rec. 218, 73–87 10.1002/ar.1092180112
    1. Bitter T., Gudziol H., Burmeister H. P., Mentzel H. J., Guntinas-Lichius O., Gaser C. (2010). Anosmia leads to a loss of gray matter in cortical brain areas. Chem. Senses 35, 407–415 10.1093/chemse/bjq028
    1. Borders A. S., Hersh M. A., Getchell M. L., van R. N., Cohen D. A., Stromberg A. J., et al. (2007). Macrophage-mediated neuroprotection and neurogenesis in the olfactory epithelium. Physiol. Genomics 31, 531–543 10.1152/physiolgenomics.00008.2007
    1. Bramerson A., Johansson L., Ek L., Nordin S., Bende M. (2004). Prevalence of olfactory dysfunction: the skovde population-based study. Laryngoscope 114, 733–737 10.1097/00005537-200404000-00026
    1. Breer H. (1994). Odor recognition and second messenger signaling in olfactory receptor neurons. Sem. Cell Biol. 5, 25–32 10.1006/scel.1994.1004
    1. Brodoehl S., Klingner C., Volk G. F., Bitter T., Witte O. W., Redecker C. (2012). Decreased olfactory bulb volume in idiopathic Parkinson's disease detected by 3.0-Tesla magnetic resonance imaging. Mov. Disord. 27, 1019–1025 10.1002/mds.25087
    1. Bromley S. M., Doty R. L. (1995). Odor recognition memory is better under bilateral than unilateral test conditions. Cortex 31, 25–40 10.1016/S0010-9452(13)80103-7
    1. Buschhuter D., Smitka M., Puschmann S., Gerber J. C., Witt M., Abolmaali N. D., et al. (2008). Correlation between olfactory bulb volume and olfactory function. Neuroimage 42, 498–502 10.1016/j.neuroimage.2008.05.004
    1. Cain W. S., Gent J., Catalanotto F. A., Goodspeed R. B. (1983). Clinical evaluation of olfaction. Am. J. Otolaryngol. 4, 252–256 10.1016/S0196-0709(83)80068-4
    1. Cain W. S., Gent J. F. (1991). Olfactory sensitivity: reliability, generality, and association with aging. J. Exp. Psychol. Hum Percept. Perform. 7, 382–391 10.1037/0096-1523.17.2.382
    1. Cain W. S., Stevens J. C. (1989). Uniformity of olfactory loss in aging. Ann. N.Y. Acad. Sci. 561, 29–38 10.1111/j.1749-6632.1989.tb20967.x
    1. Calderon-Garciduenas L., Franco-Lira M., Henriquez-Roldan C., Osnaya N., Gonzalez-Maciel A., Reynoso-Robles R., et al. (2010). Urban air pollution: influences on olfactory function and pathology in exposed children and young adults. Exp. Tox. Pathol. 62, 91–102 10.1016/j.etp.2009.02.117
    1. Calhoun-Haney R., Murphy C. (2005). Apolipoprotein epsilon4 is associated with more rapid decline in odor identification than in odor threshold or dementia rating scale scores. Brain Cogn. 58, 178–182 10.1016/j.bandc.2004.10.004
    1. Camara C. G., Harding J. W. (1984). Thymidine incorporation in the olfactory epithelium of mice: early exponential response induced by olfactory neurectomy. Brain Res. 308, 63–68 10.1016/0006-8993(84)90917-X
    1. Cameron E. L., Doty R. L. (2013). Odor identification testing in children and young adults using the smell wheel. Int. J. Pediatr. Otorhinolaryngol. 77, 346–350 10.1016/j.ijporl.2012.11.022
    1. Casanova M. F., Walker L. C., Whitehouse P. J., Price D. L. (1985). Abnormalities of the nucleus basalis in Down's syndrome. Ann. Neurol. 18, 310–313 10.1002/ana.410180306
    1. Chalke H. D., Dewhurst J. R., Ward C. W. (1958). Loss of smell in old people. Public Health 72, 223–230 10.1016/S0033-3506(58)80053-0
    1. Chess A., Simon I., Cedar H., Axel R. (1994). Allelic inactivation regulates olfactory receptor gene expression. Cell 78, 823–834 10.1016/S0092-8674(94)90562-2
    1. Cho S. H., Hong S. J., Han B., Lee S. H., Suh L., Norton J., et al. (2012). Age-related differences in the pathogenesis of chronic rhinosinusitis. J. Allergy Clin. Immunol. 129, 858–860 10.1016/j.jaci.2011.12.002
    1. Choudhury E. S., Moberg P., Doty R. L. (2003). Influences of age and sex on a microencapsulated odor memory test. Chem. Senses 28, 799–805 10.1093/chemse/bjg072
    1. Cleland T. A., Linster C. (2003). “Central olfactory structures,” in Handbook of Olfaction and Gustation. 2nd Edn., ed Doty R. L. (New York, NY: Marcel Dekker; ), 165–180
    1. Cohen N. A. (2006). Sinonasal mucociliary clearance in health and disease. Ann. Otol. Rhinol. Laryngol. Suppl 196, 20–26
    1. Conti M. Z., Vicini-Chilovi B., Riva M., Zanetti M., Liberini P., Padovani A., et al. (2013). Odor identification deficit predicts clinical conversion from mild cognitive impairment to dementia due to Alzheimer's disease. Arch. Clin. Neuropsychol. 28, 391–399 10.1093/arclin/act032
    1. Covington J. W., Geisler M. W., Polich J., Murphy C. (1999). Normal aging and odor intensity effects on the olfactory event-related potential. Int. J. Psychophysiol. 32, 205–214 10.1016/S0167-8760(99)00012-4
    1. Cowart B. J. (1989). Relationships between taste and smell across the adult life span. Ann. N.Y. Acad. Sci. 561, 39–55 10.1111/j.1749-6632.1989.tb20968.x
    1. Croy I., Lange K., Krone F., Negoias S., Seo H. S., Hummel T. (2009). Comparison between odor thresholds for phenyl ethyl alcohol and butanol. Chem. Senses. 34, 523–527 10.1093/chemse/bjp029
    1. Croy I., Negoias S., Symmank A., Schellong J., Joraschky P., Hummel T. (2013). Reduced olfactory bulb volume in adults with a history of childhood maltreatment. Chem. Senses 38, 679–684 10.1093/chemse/bjt037
    1. Cummings D. M., Belluscio L. (2010). Continuous neural plasticity in the olfactory intrabulbar circuitry. J. Neurosci. 30, 9172–9180 10.1523/JNEUROSCI.1717-10.2010
    1. de Almeida L., Idiart M., Linster C. (2013). A model of cholinergic modulation in olfactory bulb and piriform cortex. J. Neurophysiol. 109, 1360–1377 10.1152/jn.00577.2012
    1. Deems D. A., Doty R. L. (1987). Age-related changes in the phenyl ethyl alcohol odor detection threshold. Trans. Pa. Acad. Ophthalmol. Otolaryngol. 39, 646–650
    1. De Lorenzo A. J. (1957). Electron microscopic observations of the olfactory mucosa and olfactory nerve. J. Biophys. Biochem. Cytol. 3, 839–850 10.1083/jcb.3.6.839
    1. Devanand D. P., Michaels-Marston K. S., Liu X., Pelton G. H., Padilla M., Marder K., et al. (2000). Olfactory deficits in patients with mild cognitive impairment predict Alzheimer's disease at follow-up. Am. J. Psychiatry 157, 1399–1405 10.1176/appi.ajp.157.9.1399
    1. Dewey S. L., Volkow N. D., Logan J., MacGregor R. R., Fowler J. S., Schlyer D. J., et al. (1990). Age-related decreases in muscarinic cholinergic receptor binding in the human brain measured with positron emission tomography (PET). J. Neurosci. Res. 27, 569–575 10.1002/jnr.490270418
    1. Ding X., Dahl A. R. (2003). “Olfactory mucosa: composition, enzymatic localization, and metabolism,” in Handbook of Olfaction and Gustation. 2nd Edn., ed Doty R. L. (New York, NY: Marcel Dekker; ), 51–73
    1. Doty R. L. (1995). The Smell Identification TestTM Administration Manual. 3rd Edn. Haddon Heights, NJ: Sensonics, Inc
    1. Doty R. L. (2012a). Olfaction in Parkinson's disease and related disorders. Neurobiol. Dis. 46, 527–552 10.1016/j.nbd.2011.10.026
    1. Doty R. L. (2012b). Olfactory dysfunction in Parkinson disease. Nat. Rev. Neurol. 8, 329–339 10.1038/nrneurol.2012.80
    1. Doty R. L., Deems D. A., Stellar S. (1988). Olfactory dysfunction in parkinsonism: a general deficit unrelated to neurologic signs, disease stage, or disease duration. Neurology 38, 1237–1244 10.1212/WNL.38.8.1237
    1. Doty R. L., Golbe L. I., McKeown D. A., Stern M. B., Lehrach C. M., Crawford D. (1993). Olfactory testing differentiates between progressive supranuclear palsy and idiopathic Parkinson's disease. Neurology 43, 962–965 10.1212/WNL.43.5.962
    1. Doty R. L., Laing D. A. (2003). “Psychophysical measurement of human olfactory function, including odorant mixture assessment,” in Handbook of Olfaction and Gustation. 2nd Edn., ed Doty R. L. (New York, NY: Marcel Dekker; ), 203–228 10.1201/9780203911457
    1. Doty R. L., Marcus A., Lee W. W. (1996). Development of the 12-item cross-cultural smell identification test (CC-SIT). Laryngoscope 106, 353–356 10.1097/00005537-199603000-00021
    1. Doty R. L., McKeown D. A., Lee W. W., Shaman P. (1995). A study of the test-retest reliability of ten olfactory tests. Chem. Senses 20, 645–656 10.1093/chemse/20.6.645
    1. Doty R. L., Perl D. P., Steele J. C., Chen K. M., Pierce J. D., Jr., Reyes P., et al. (1991). Odor identification deficit of the parkinsonism-dementia complex of Guam: equivalence to that of Alzheimer's and idiopathic Parkinson's disease. Neurology 41, 77–80 10.1212/WNL.41.5_Suppl_2.77
    1. Doty R. L., Petersen I., Mensah N., Christensen K. (2011). Genetic and environmental influences on odor identification ability in the very old. Psychol. Aging 26, 864–871 10.1037/a0023263
    1. Doty R. L., Reyes P. F., Gregor T. (1987). Presence of both odor identification and detection deficits in Alzheimer's disease. Brain Res. Bull. 18, 597–600 10.1016/0361-9230(87)90129-8
    1. Doty R. L., Shaman P., Applebaum S. L., Giberson R., Siksorski L., Rosenberg L. (1984a). Smell identification ability: changes with age. Science 226, 1441–1443 10.1126/science.6505700
    1. Doty R. L., Shaman P., Dann M. (1984b). Development of the University of Pennsylvania smell identification test: a standardized microencapsulated test of olfactory function. Physiol. Behav. 32, 489–502 10.1016/0031-9384(84)90269-5
    1. Doty R. L., Smith R., McKeown D. A., Raj J. (1994). Tests of human olfactory function: principal components analysis suggests that most measure a common source of variance. Percept. Psychophys. 56, 701–707 10.3758/BF03208363
    1. Doty R. L., Yousem D. M., Pham L. T., Kreshak A. A., Geckle R., Lee W. W. (1997). Olfactory dysfunction in patients with head trauma. Arch. Neurol. 54, 1131–1140 10.1001/archneur.1997.00550210061014
    1. Duda J. E. (2010). Olfactory system pathology as a model of Lewy neurodegenerative disease. J. Neurol. Sci. 289, 49–54 10.1016/j.jns.2009.08.042
    1. Duffy V. B., Backstrand J. R., Ferris A. M. (1995). Olfactory dysfunction and related nutritional risk in free-living, elderly women. J. Am. Diet. Assoc. 8, 879–884 10.1016/S0002-8223(95)00244-8
    1. Edelstein D. R. (1996). Aging of the normal nose in adults. Laryngoscope 106, 1–25 10.1097/00005537-199609001-00001
    1. Engen T., Kuisma J. E., Eimas P. D. (1973). Short-term memory of odors. J. Exp. Psychol. 99, 222–225 10.1037/h0034645
    1. Evans W. J., Cui L., Starr A. (1995). Olfactory event-related potentials in normal human subjects: effects of age and gender. EEG Clin. Neurophysiol. 95, 293–301 10.1016/0013-4694(95)00055-4
    1. Farajnia S., Deboer T., Rohling J. H., Meijer J. H., Michel S. (2014). Aging of the suprachiasmatic clock. Neuroscientist 20, 44–55 10.1177/1073858413498936
    1. Federico G., Maremmani C., Cinquanta L., Baroncelli G. I., Fattori B., Saggese G. (1999). Mucus of the human olfactory epithelium contains the insulin-like growth factor-I system which is altered in some neurodegenerative diseases. Brain Res. 835, 306–314 10.1016/S0006-8993(99)01614-5
    1. Feron F., Mackay-Sim A., Andrieu J. L., Matthaei K. I., Holley A., Sicard G. (1999). Stress induces neurogenesis in non-neuronal cell cultures of adult olfactory epithelium. Neuroscience. 88, 571–583 10.1016/S0306-4522(98)00233-4
    1. Fordyce I. D. (1961). Olfaction tests. Br. J. Ind. Med. 18, 213–215
    1. Frank R. A., Dulay M. F., Gesteland R. C. (2003). Assessment of the sniff magnitude test as a clinical test of olfactory function. Physiol. Behav. 78, 195–204 10.1016/S0031-9384(02)00965-4
    1. Frank R. A., Dulay M. F., Niergarth K. A., Gesteland R. C. (2004). A comparison of the sniff magnitude test and the University of Pennsylvania smell identification test in children and nonnative english speakers. Physiol. Behav. 81, 475–480 10.1016/j.physbeh.2004.02.020
    1. Frank R. A., Gesteland R. C., Bailie J., Rybalsky K., Seiden A., Dulay M. F. (2006). Characterization of the sniff magnitude test. Arch. Otolaryngol. Head Neck Surg. 132, 532–536 10.1001/archotol.132.5.532
    1. Frühwald V. (1935). Die Folgen des einseitigen Nasenverschlusses auf die Riechschleimhaut und auf den Bulbus und Tractus olfactorius. Archiv. fur Ohren Nasen und Kehlkopfheilkunde 139, 153–173 10.1007/BF01586653
    1. Frye R. E. (2003). “Nasal patency and the aerodynamics of nasal airflow: measurement by rhinomanometry and acoustic rhinometry, and the influence of pharmacological agents,” in Handbook of Olfaction and Gustation. 2nd Edn., ed Doty R. L. (New York, NY: Marcel Dekker; ), 439–460
    1. Frye R. E., Doty R. L. (1992). Chemical Signals in Vertebrates, Vol. VI, eds Doty R. L., Müller-Schwarze D. (New York, NY: Plenum; ), 595–596 10.1007/978-1-4757-9655-1_91
    1. Gaskell B. A., Hext P. M., Pigott G. H., Doe J. E., Hodge M. C. (1990). Olfactory and hepatic changes following a single inhalation exposure of 3-trifluoromethyl pyridine in rats: concentration and temporal aspects. Toxicology 62, 35–51 10.1016/0300-483X(90)90029-G
    1. Getchell M. L., Getchell T. V. (1992). Fine structural aspects of secretion and extrinsic innervation in the olfactory mucosa. Microsc. Res. Tech. 23, 111–127 10.1002/jemt.1070230203
    1. Getchell T. V., Krishna N. S., Dhooper N., Sparks D. L., Getchell M. L. (1995). Human olfactory receptor neurons express heat shock protein 70: age-related trends. Ann. Otol. Rhinol. Laryngol. 104, 47–56
    1. Gevins A. S., Remond A. (1987). Methods of Analysis of Brain Electrical and Magnetic Signals. New York, NY: Elsevier
    1. Gilbert A. N. (1989). Reciprocity versus rhythmicity in spontaneous alternations of nasal airflow. Chronobiol. Int. 6, 251–257 10.3109/07420528909056926
    1. Gladysheva O., Kukushkina D., Martynova G. (1986). Glycoprotein composition of olfactory mucus in vertebrates. Acta Histochem. 78, 141–146 10.1016/S0065-1281(86)80047-2
    1. Glusman G., Yanai I., Rubin I., Lancet D. (2001). The complete human olfactory subgenome. Genome Res. 11, 685–702 10.1101/gr.171001
    1. Goektas O., Schmidt F., Bohner G., Erb K., Ludemann L., Dahlslett B., et al. (2011). Olfactory bulb volume and olfactory function in patients with multiple sclerosis. Rhinology 49, 221–226 10.4193/Rhino10.136
    1. Graves A. B., Bowen J. D., Rajaram L., McCormick W. C., McCurry S. M., Schellenberg G. D., et al. (1999). Impaired olfaction as a marker for cognitive decline: interaction with apolipoprotein E epsilon4 status. Neurology 53, 1480–1487 10.1212/WNL.53.7.1480
    1. Griep M. I., Mets T. F., Collys K., Vogelaere P., Laska M., Massart D. L. (1997). Odour perception in relation to age, general health, anthropometry and dental state. Arch. Gerontol. Geriatr. 25, 263–275 10.1016/S0167-4943(97)00017-4
    1. Gudziol V., Buschhuter D., Abolmaali N., Gerber J., Rombaux P., Hummel T. (2009). Increasing olfactory bulb volume due to treatment of chronic rhinosinusitis–a longitudinal study. Brain 132, 3096–3101 10.1093/brain/awp243
    1. Haehner A., Rodewald A., Gerber J. C., Hummel T. (2008). Correlation of olfactory function with changes in the volume of the human olfactory bulb. Arch. Otolaryngol. Head Neck Surg. 134, 621–624 10.1001/archotol.134.6.621
    1. Harkema J. R., Carey S. A., Wagner J. G. (2006). The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicol. Pathol. 34, 252–269 10.1080/01926230600713475
    1. Hedner M., Larsson M., Arnold N., Zucco G. M., Hummel T. (2010a). Cognitive factors in odor detection, odor discrimination, and odor identification tasks. J. Clin. Exp. Neuropsychol. 32, 1062–1067 10.1080/13803391003683070
    1. Hedner M., Nilsson L. G., Olofsson J. K., Bergman O., Eriksson E., Nyberg L., et al. (2010b). Age-related olfactory decline is associated with the BDNF Val66met polymorphism: evidence from a population-based study. Front. Aging Neurosci. 2:24 10.3389/fnagi.2010.00024
    1. Herting B., Schulze S., Reichmann H., Haehner A., Hummel T. (2008). A longitudinal study of olfactory function in patients with idiopathic Parkinson's disease. J. Neurol. 255, 367–370 10.1007/s00415-008-0665-5
    1. Herzallah I. R., Askar S. M., Amer H. S., Ahmed A. F., El-Anwar M. W., Eesa M. H. (2013). Olfactory bulb volume changes in patients with sinonasal polyposis: a magnetic resonance imaging study. Otolaryngol. Head Neck Surg. 148, 689–693 10.1177/0194599813477606
    1. Hinds J. W., McNelly N. A. (1977). Aging of the rat olfactory bulb: growth and atrophy of constituent layers and changes in size and number of mitral cells. J. Comp. Neurol. 72, 345–367 10.1002/cne.901710304
    1. Hinds J. W., McNelly N. A. (1981). Aging in the rat olfactory system: correlation of changes in the olfactory epithelium and olfactory bulb. J. Comp. Neurol. 203, 441–453 10.1002/cne.902030308
    1. Hirai T., Kojima S., Shimada A., Umemura T., Sakai M., Itakura C. (1996). Age-related changes in the olfactory system of dogs. Neuropathol. Appl. Neurobiol. 22, 531–539 10.1111/j.1365-2990.1996.tb01132.x
    1. Holley A., Duchamp A., Revial M. F., Juge A. (1974). Qualitative and quantitative discrimination in the frog olfactory receptors: analysis from electrophysiological data. Ann. N.Y. Acad. Sci. 237, 102–128 10.1111/j.1749-6632.1974.tb49847.x
    1. Holt C. M. (1917). Studies on the olfactory bulbs of the albino rat. I. Experiments to determine the effect of a defective diet and of exercise upon the weight of the olfactory bulbs. J. Comp. Neurol. 27, 201–234 10.1002/cne.900270203
    1. Hosoya Y., Yashida H. (1937). Über die bioelektrische Erscheinungen an der Riechschleimhaut. Jpn. J. Med. Sci. III. Biophys. 5, 22–23
    1. Huart C., Legrain V., Hummel T., Rombaux P., Mouraux A. (2012). Time-frequency analysis of chemosensory event-related potentials to characterize the cortical representation of odors in humans. PLoS ONE 7:e33221 10.1371/journal.pone.0033221
    1. Hummel T., Barz S., Pauli E., Kobal G. (1998). Chemosensory event-related potentials change with age. Electroencephalogr. Clin. Neurophysiol. 108, 208–217 10.1016/S0168-5597(97)00074-9
    1. Hummel T., Henkel S., Negoias S., Galvan J. R., Bogdanov V., Hopp P., et al. (2012). Olfactory bulb volume in patients with temporal lobe epilepsy. J. Neurol. 260, 1004–1008 10.1007/s00415-012-6741-x
    1. Hummel T., Sekinger B., Wolf S. R., Pauli E., Kobal G. (1997). “Sniffin' sticks”: olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem. Senses 22, 39–52 10.1093/chemse/22.1.39
    1. Hummel T., Smitka M., Puschmann S., Gerber J. C., Schaal B., Buschhuter D. (2011). Correlation between olfactory bulb volume and olfactory function in children and adolescents. Exp. Brain Res. 214, 285–291 10.1007/s00221-011-2832-7
    1. Iranzo A., Serradell M., Vilaseca I., Valldeoriola F., Salamero M., Molina C., et al. (2013). Longitudinal assessment of olfactory function in idiopathic REM sleep behavior disorder. Parkinsonism Relat. Disord. 19, 600–604 10.1016/j.parkreldis.2013.02.009
    1. Iwai N., Zhou Z., Roop D. R., Behringer R. R. (2008). Horizontal basal cells are multipotent progenitors in normal and injured adult olfactory epithelium. Stem Cells 26, 1298–1306 10.1634/stemcells.2007-0891
    1. Jarvis D., Newson R., Lotvall J., Hastan D., Tomassen P., Keil T., et al. (2012). Asthma in adults and its association with chronic rhinosinusitis: the GA2LEN survey in Europe. Allergy 67, 91–98 10.1111/j.1398-9995.2011.02709.x
    1. Jehl C., Royet J. P., Holley A. (1995). Odor discrimination and recognition memory as a function of familiarization. Percept. Psychophys. 57, 1002–1011 10.3758/BF03205459
    1. Jiang R. S., Chai J. W., Chen W. H., Fuh W. B., Chiang C. M., Chen C. C. (2009). Olfactory bulb volume in Taiwanese patients with posttraumatic anosmia. Am. J. Rhinol. Allergy 23, 582–584 10.2500/ajra.2009.23.3370
    1. Johnson B. A., Leon M. (2007). Chemotopic odorant coding in a mammalian olfactory system. J. Comp. Neurol. 503, 1–34 10.1002/cne.21396
    1. Jones-Gotman M., Zatorre R. J. (1988). Olfactory identification deficits in patients with focal cerebral excision. Neuropsychologia 26, 387–400 10.1016/0028-3932(88)90093-0
    1. Jonsson F. U., Moller P., Olsson M. J. (2011). Olfactory working memory: effects of verbalization on the 2-back task. Mem. Cogn. 39, 1023–1032 10.3758/s13421-011-0080-5
    1. Joyner R. E. (1963). Olfactory acuity in an industrial population. J. Occup. Med. 5, 37–42
    1. Kajiya K., Inaki K., Tanaka M., Haga T., Kataoka H., Touhara K. (2001). Molecular bases of odor discrimination: reconstitution of olfactory receptors that recognize overlapping sets of odorants. J. Neurosci. 21, 6018–6025
    1. Kalmey J. K., Thewissen J. G., Dluzen D. E. (1998). Age-related size reduction of foramina in the cribriform plate. Anat. Rec. 251, 326–329 10.1002/(SICI)1097-0185(199807)251:3<326::AID-AR7>;2-#
    1. Kam M., Curtis M. A., McGlashan S. R., Connor B., Nannmark U., Faull R. L. (2009). The cellular composition and morphological organization of the rostral migratory stream in the adult human brain. J. Chem. Neuroanat. 37, 196–205 10.1016/j.jchemneu.2008.12.009
    1. Kaneda H., Maeshima K., Goto N., Kobayakawa T., Ayabe-Kanamura S., Saito S. (2000). Decline in taste and odor discrimination abilities with age, and relationship between gustation and olfaction. Chem. Senses 25, 331–337 10.1093/chemse/25.3.331
    1. Karpa M. J., Gopinath B., Rochtchina E., Jie J. W., Cumming R. G., Sue C. M., et al. (2010). Prevalence and neurodegenerative or other associations with olfactory impairment in an older community. J. Aging Health 22, 154–168 10.1177/0898264309353066
    1. Kasashima S., Oda Y. (2003). Cholinergic neuronal loss in the basal forebrain and mesopontine tegmentum of progressive supranuclear palsy and corticobasal degeneration. Acta Neuropathol. 105, 117–124 10.1007/s00401-002-0621-x
    1. Katoh H., Shibata S., Fukuda K., Sato M., Satoh E., Nagoshi N., et al. (2011). The dual origin of the peripheral olfactory system: placode and neural crest. Mol. Brain 4, 34, 10.1186/1756-6606-4-34
    1. Kay L. M., Sherman S. M. (2007). An argument for an olfactory thalamus. Trends Neurosci. 30, 47–53 10.1016/j.tins.2006.11.007
    1. Kemper T. (1984). “Neuroanatomical and neuropathological changes during age and dementia,” in Clinical Neurology of Aging, ed Albert M. L. (New York, NY: Oxford University Press; ), 3–67
    1. Kimbrell G. M., Furchtgott E. (1963). The effect of aging on olfactory threshold. J. Gerontol. 18, 364–365 10.1093/geronj/18.4.364
    1. Kirstein C. L., Coopersmith R., Bridges R. J., Leon M. (1991). Glutathione levels in olfactory and non-olfactory neural structures of rats. Brain Res. 543, 341–346 10.1016/0006-8993(91)90047-Y
    1. Kishikawa M., Iseki M., Nishimura M., Sekine I., Fujii H. (1990). A histopathological study on senile changes in the human olfactory bulb. Acta Pathol. Jpn. 40, 255–260 10.1111/j.1440-1827.1990.tb01559.x
    1. Kleemann A. M., Kopietz R., Albrecht J., Schopf V., Pollatos O., Schreder T., et al. (2009). Investigation of breathing parameters during odor perception and olfactory imagery. Chem. Senses 34, 1–9 10.1093/chemse/bjn042
    1. Kobal G., Hummel T., Sekinger B., Barz S., Roscher S., Wolf S. (1996). “Sniffin' sticks”: screening of olfactory performance. Rhinology 34, 222–226
    1. Kobal G., Klimek L., Wolfensberger M., Gudziol H., Temmel A., Owen C. M., et al. (2000). Multicenter investigation of 1,036 subjects using a standardized method for the assessment of olfactory function combining tests of odor identification, odor discrimination, and olfactory thresholds. Eur. Arch. Otorhinolaryngol. 257, 205–211 10.1007/s004050050223
    1. Kobayashi M., Saito S., Kobayakawa T., Deguchi Y., Costanzo R. M. (2006). Cross-cultural comparison of data using the odor stick identification test for Japanese (OSIT-J). Chem Senses 31, 335–342 10.1093/chemse/bjj037
    1. Koenigkam-Santos M., Santos A. C., Versiani B. R., Diniz P. R., Junior J. E., de Castro M. (2011). Quantitative magnetic resonance imaging evaluation of the olfactory system in Kallmann syndrome: correlation with a clinical smell test. Neuroendocrinology 94, 209–217 10.1159/000328437
    1. Kopala L. C., Good K. P., Honer W. G. (1994). Olfactory hallucinations and olfactory identification ability in patients with schizophrenia and other psychiatric disorders. Schizophr. Res. 12, 205–211 10.1016/0920-9964(94)90030-2
    1. Koskinen S., Vento S., Malmberg H., Tuorila H. (2004). Correspondence between three olfactory tests and suprathreshold odor intensity ratings. Acta Otolaryngol. (Stockh) 124, 1072–1077 10.1080/00016480410015776
    1. Krantz E. M., Schubert C. R., Dalton D. S., Zhong W., Huang G. H., Klein B. E., et al. (2009). Test-retest reliability of the San Diego odor identification test and comparison with the brief smell identification test. Chem. Senses 34, 435–440 10.1093/chemse/bjp018
    1. Krishna N. S., Getchell T. V., Dhooper N., Awasthi Y. C., Getchell M. L. (1995). Age- and gender-related trends in the expression of glutathione S-transferases in human nasal mucosa. Ann. Otol. Rhinol. Laryngol. 104, 812–822
    1. Krmpotic-Nemanic J. (1969). Presbycusis, presbystasis and presbyosmia as consequences of the analogous biological process. Acta Otolaryngol. (Stockh) 67, 217–223 10.3109/00016486909125446
    1. Lalancette-Hebert M., Phaneuf D., Soucy G., Weng Y. C., Kriz J. (2009). Live imaging of Toll-like receptor 2 response in cerebral ischaemia reveals a role of olfactory bulb microglia as modulators of inflammation. Brain 132, 940–954 10.1093/brain/awn345
    1. LaMantia A. S., Purves D. (1989). Development of glomerular pattern visualized in the olfactory bulbs of living mice. Nature 341, 646–649 10.1038/341646a0
    1. Landis B. N., Beutner D., Frasnelli J., Huttenbrink K. B., Hummel T. (2005). Gustatory function in chronic inflammatory middle ear diseases. Laryngoscope 115, 1124–1127 10.1097/01.MLG.0000163750.72441.C3
    1. Larsson M., Farde L., Hummel T., Witt M., Lindroth N. E., Backman L. (2009). Age-related loss of olfactory sensitivity: association to dopamine transporter binding in putamen. Neuroscience 161, 422–426 10.1016/j.neuroscience.2009.03.074
    1. Larsson M., Finkel D., Pedersen N. L. (2000). Odor identification: influences of age, gender, cognition, and personality. J. Gerontol. Psychol. Sci. Soc. Sci. 55, 304–310 10.1093/geronb/55.5.P304
    1. Larsson M., Nilsson L. G., Olofsson J. K., Nordin S. (2004). Demographic and cognitive predictors of cued odor identification: evidence from a population-based study. Chem. Senses 29, 547–554 10.1093/chemse/bjh059
    1. Larsson M., Oberg C., Backman L. (2006). Recollective experience in odor recognition: influences of adult age and familiarity. Psychol. Res. 70, 68–75 10.1007/s00426-004-0190-9
    1. Lehnardt S., Lehmann S., Kaul D., Tschimmel K., Hoffmann O., Cho S., et al. (2007). Toll-like receptor 2 mediates CNS injury in focal cerebral ischemia. J. Neuroimmunol. 190, 28–33 10.1016/j.jneuroim.2007.07.023
    1. Leopold D. A., Hummel T., Schwob J. E., Hong S. C., Knecht M., Kobal G. (2000). Anterior distribution of human olfactory epithelium. Laryngoscope 110, 417–421 10.1097/00005537-200003000-00016
    1. Levy L. M., Degnan A. J., Sethi I., Henkin R. I. (2013). Anatomic olfactory structural abnormalities in congenital smell loss: magnetic resonance imaging evaluation of olfactory bulb, groove, sulcal, and hippocampal morphology. J. Comput. Assist. Tomogr. 37, 650–657 10.1097/RCT.0b013e31829bfa3b
    1. Liberles S. D., Buck L. B. (2006). A second class of chemosensory receptors in the olfactory epithelium. Nature. 442, 645–650 10.1038/nature05066
    1. Liss L., Gomez F. (1958). The nature of senile changes of the human olfactory bulb and tract. AMA Arch. Otolaryngol. 67, 167–171 10.1001/archotol.1958.00730010173006
    1. London B., Nabet B., Fisher A. R., White B., Sammel M. D., Doty R. L. (2008). Predictors of prognosis in patients with olfactory disturbance. Ann. Neurol. 63, 159–166 10.1002/ana.21293
    1. Loo A. T., Youngentob S. L., Kent P. F., Schwob J. E. (1996). The aging olfactory epithelium: neurogenesis, response to damage, and odorant-induced activity. Int. J. Dev. Neurosci. 14, 881–900 10.1016/S0736-5748(96)00046-9
    1. Lotsch J., Hummel T. (2006). The clinical significance of electrophysiological measures of olfactory function. Behav. Brain. Res. 170, 78–83 10.1016/j.bbr.2006.02.013
    1. Mackay-Sim A. (2003). “Neurogenesis in the olfactory neuroepithelium,” in Handbook of Olfaction and Gustation. 2nd Edn., ed Doty R. L. (New York, NY: Marcel Dekker; ), 93–113
    1. Mackay-Sim A. (2010). Stem cells and their niche in the adult olfactory mucosa. Arch. Ital. Biol. 148, 47–58
    1. Mackay-Sim A., Patel U. (1984). Regional differences in cell density and cell genesis in the olfactory epithelium of the salamander, Ambystoma tigrinum. Exp. Brain Res. 57, 99–106 10.1007/BF00231136
    1. Mair R. G., Doty R. L., Kelly K. M., Wilson C. S., Langlais P. J., McEntee W. J., et al. (1986). Multimodal sensory discrimination deficits in Korsakoff's psychosis. Neuropsychologia 24, 831–839 10.1016/0028-3932(86)90082-5
    1. Malnic B., Hirono J., Sato T., Buck L. B. (1999). Combinatorial receptor codes for odors. Cell 96, 713–723 10.1016/S0092-8674(00)80581-4
    1. Matulionis D. H. (1982). “Effects of the aging process on olfactory neuron plasticity,” in Olfaction and Endocrine Regulation, ed Breipohl W. (London: IRL Press; ), 299–308
    1. McKeown D. A., Doty R. L., Perl D. P., Frye R. E., Simms I., Mester A. (1996). Olfactory function in young adolescents with Down's syndrome. J. Neurol. Neurosurg. Psychiatry 61, 412–414 10.1136/jnnp.61.4.412
    1. Meisami E., Mikhail L., Baim D., Bhatganar K. (1998). Observations on glomeruli and mitral cell numbers and accessory olfactory bulb in adult and aging human olfactory bulbs. Proc. N.Y. Acad. Sci. 855, 708–715 10.1111/j.1749-6632.1998.tb10649.x
    1. Menco B. P. M., Morrison E. E. (2003). “Morphology of the mammalian olfactory epithelium: form, fine structure, function, and pathology,” in Handbook of Olfaction and Gustation. 2nd Edn., ed Doty R. L. (New York, NY: Marcel Dekker; ), 17–49
    1. Menon C., Westervelt H. J., Jahn D. R., Dressel J. A., O'Bryant S. E. (2013). Normative Performance on the brief smell identification test (BSIT) in a multi-ethnic bilingual cohort: a project FRONTIER study. Clin. Neuropsychol. 27, 946–961 10.1080/13854046.2013.796406
    1. Meurman O. H. (1950). Experimental studies of the effect of pathological changes in the nasal mucous membrane on the olfactory bulb. Acta Otolaryngol. 38, 477–483 10.3109/00016485009118408
    1. Mirza N., Kroger H., Doty R. L. (1997). Influence of age on the “nasal cycle.” Laryngoscope 107, 62–66 10.1097/00005537-199701000-00014
    1. Møller P., Dijksterhuis G. (2003). Differential human electrodermal responses to odours. Neurosci. Lett. 346, 129–132 10.1016/S0304-3940(03)00498-1
    1. Møller P., Mojet J., Koster E. P. (2007). Incidental and intentional flavor memory in young and older subjects. Chem. Senses 32, 557–567 10.1093/chemse/bjm026
    1. Møller P., Wulff C., Koster E. P. (2004). Do age differences in odour memory depend on differences in verbal memory? Neuroreport 15, 915–917 10.1097/00001756-200404090-00036
    1. Morgan C. D., Murphy C. (2010). Differential effects of active attention and age on event-related potentials to visual and olfactory stimuli. Int. J. Psychophysiol. 78, 190–199 10.1016/j.ijpsycho.2010.07.008
    1. Morrison E. E., Costanzo R. M. (1990). Morphology of the human olfactory epithelium. J. Comp. Neurol. 297, 1–13 10.1002/cne.902970102
    1. Murphy C. (1983). Age-related effects on the threshold, psychophysical function, and pleasantness of menthol. J. Gerontol. 38, 217–222 10.1093/geronj/38.2.217
    1. Murphy C., Nordin S., de W. R., Cain W. S., Polich J. (1994). Olfactory-evoked potentials: assessment of young and elderly, and comparison to psychophysical threshold. Chem. Senses 19, 47–56 10.1093/chemse/19.1.47
    1. Murphy C., Schubert C. R., Cruickshanks K. J., Klein B. E., Klein R., Nondahl D. M. (2002). Prevalence of olfactory impairment in older adults. JAMA 288, 2307–2312 10.1001/jama.288.18.2307
    1. Naessen R. (1971). An enquiry on the morphological characteristics and possible changes with age in the olfactory region of man. Acta Otolaryngol. 71, 49–62 10.3109/00016487109125332
    1. Nagai M., Wada M., Usui N., Tanaka A., Hasebe Y. (2000). Pleasant odors attenuate the blood pressure increase during rhythmic handgrip in humans. Neurosci. Lett. 289, 227–229 10.1016/S0304-3940(00)01278-7
    1. Nakano I., Hirano A. (1983). Neuron loss in the nucleus basalis of Meynert in parkinsonism-dementia complex of Guam. Ann. Neurol. 13, 87–91 10.1002/ana.410130118
    1. Nakano I., Hirano A. (1984). Parkinson's disease: neuron loss in the nucleus basalis without concomitant Alzheimer's disease. Ann. Neurol. 15, 415–418 10.1002/ana.410150503
    1. Nakashima T., Kimmelman C. P., Snow J. B., Jr. (1984). Structure of human fetal and adult olfactory neuroepithelium. Arch. Otolaryngol. 110, 641–646 10.1001/archotol.1984.00800360013003
    1. Negoias S., Croy I., Gerber J., Puschmann S., Petrowski K., Joraschky P., et al. (2010). Reduced olfactory bulb volume and olfactory sensitivity in patients with acute major depression. Neuroscience 169, 415–421 10.1016/j.neuroscience.2010.05.012
    1. Nguyen A. D., Pelavin P. E., Shenton M. E., Chilakamarri P., McCarley R. W., Nestor P. G., et al. (2011). Olfactory sulcal depth and olfactory bulb volume in patients with schizophrenia: an MRI study. Brain Imag. Behav. 5, 252–261 10.1007/s11682-011-9129-0
    1. Nordin S., Nyroos M., Maunuksela E., Niskanen T., Tuorila H. (2002). Applicability of the scandinavian odor identification test: a Finnish-Swedish comparison. Acta Otolaryngol. 122, 294–297 10.1080/000164802753648187
    1. O'Connor S., Jacob T. J. (2008). Neuropharmacology of the olfactory bulb. Curr. Mol. Pharmacol. 1, 181–190 10.2174/1874467210801030181
    1. Olofsson J., Ronnlund M., Nordin S., Hedner M., Nilsson L. G., Nyberg L., et al. (2008). Odor identification impairment predicts cognitive decline and Alzheimer's disease. Int. J. Psychol. 43, 469
    1. Olofsson J. K., Nordin S., Wiens S., Hedner M., Nilsson L. G., Larsson M. (2010). Odor identification impairment in carriers of ApoE-varepsilon4 is independent of clinical dementia. Neurobiol. Aging 31, 567–577 10.1016/j.neurobiolaging.2008.05.019
    1. Olofsson J. K., Ronnlund M., Nordin S., Nyberg L., Nilsson L. G., Larsson M. (2009). Odor identification deficit as a predictor of five-year global cognitive change: interactive effects with age and ApoE-epsilon4. Behav. Genet. 39, 496–503 10.1007/s10519-009-9289-5
    1. Osman A., Silas J. (2014). “Electrophysiological measurement of olfactory function,” in Handbook of Olfaction and Gustation, 3rd Edn., ed Doty R. L. (New York, NY: Wiley-Liss; ).
    1. Ottoson D. (1956). Analysis of the electrical activity of the olfactory epithelium. Acta Physiol. Scand. 35, 1–83
    1. Paik S. I., Lehman M. N., Seiden A. M., Duncan H. J., Smith D. V. (1992). Human olfactory biopsy. The influence of age and receptor distribution. Arch. Otolaryngol. Head Neck Surg. 118, 731–738 10.1001/archotol.1992.01880070061012
    1. Panni P., Ferguson I. A., Beacham I., Mackay-Sim A., Ekberg J. A., St. John J. A. (2013). Phagocytosis of bacteria by olfactory ensheathing cells and Schwann cells. Neurosci. Lett. 539, 65–70 10.1016/j.neulet.2013.01.052
    1. Peele D. B., Allison S. D., Bolon B., Prah J. D., Jensen K. F., Morgan K. T. (1991). Functional deficits produced by 3-methylindole-induced olfactory mucosal damage revealed by a simple olfactory learning task. Toxicol. Appl. Pharmacol. 107, 191–202 10.1016/0041-008X(91)90202-P
    1. Pelosi P. (1994). Odorant-binding proteins. Crit. Rev. Biochem. Mol. Biol. 29, 199–228 10.3109/10409239409086801
    1. Pinto J. M., Schumm L. P., Wroblewski K. E., Kern D. W., McClintock M. K. (2013). Racial disparities in olfactory loss among older adults in the United States. J. Gerontol. A Biol. Sci. Med. Sci. [Ebub ahead of print]. 10.1093/gerona/glt063
    1. Rawson N. E., Gomez G., Cowart B., Restrepo D. (1998). The use of olfactory receptor neurons (ORNs) from biopsies to study changes in aging and neurodegenerative diseases. Ann. N.Y. Acad. Sci. 855, 701–707 10.1111/j.1749-6632.1998.tb10648.x
    1. Rehn B., Breipohl W., Mendoza A. S., Apfelbach R. (1986). Changes in granule cells of the ferret olfactory bulb associated with imprinting on prey odours. Brain Res. 373, 114–125 10.1016/0006-8993(86)90321-5
    1. Richman R. A., Post E. M., Sheehe P. R., Wright H. N. (1992). Olfactory performance during childhood. I. Development of an odorant identification test for children. J. Pediatr. 121, 908–911 10.1016/S0022-3476(05)80337-3
    1. Rogers J. D., Brogan D., Mirra S. S. (1985). The nucleus basalis of Meynert in neurological disease: a quantitative morphological study. Ann. Neurol. 17, 163–170 10.1002/ana.410170210
    1. Rolls E. T., Grabenhorst F. (2008). The orbitofrontal cortex and beyond: from affect to decision-making. Prog. Neurobiol. 86, 216–244 10.1016/j.pneurobio.2008.09.001
    1. Rombaux P., Huart C., Deggouj N., Duprez T., Hummel T. (2012). Prognostic value of olfactory bulb volume measurement for recovery in postinfectious and posttraumatic olfactory loss. Otolaryngol. Head Neck Surg. 147, 1136–1141 10.1177/0194599812459704
    1. Rombaux P., Martinage S., Huart C., Collet S. (2009). Post-infectious olfactory loss: a cohort study and update. B-ENT, 5(Suppl. 13), 89–95
    1. Rombaux P., Potier H., Bertrand B., Duprez T., Hummel T. (2008). Olfactory bulb volume in patients with sinonasal disease. Am. J. Rhinol. 22, 598–601 10.2500/ajr.2008.22.3237
    1. Rosier A., Dupont P., Peuskens J., Bormans G., Vandenberghe R., Maes M., et al. (1996). Visualisation of loss of 5-HT2A receptors with age in healthy volunteers using [18F]altanserin and positron emission tomographic imaging. Psychiat. Res. 68, 11–22 10.1016/S0925-4927(96)02806-5
    1. Ross G. W., Petrovitch H., Abbott R. D., Tanner C. M., Popper J., Masaki K., et al. (2008). Association of olfactory dysfunction with risk for future Parkinson's disease. Ann. Neurol. 63, 167–173 10.1002/ana.21291
    1. Rouquier S., Blancher A., Giorgi D. (2000). The olfactory receptor gene repertoire in primates and mouse: evidence for reduction of the functional fraction in primates. Proc. Natl. Acad. Sci. U.S.A. 97, 2870–2874 10.1073/pnas.040580197
    1. Rovee C. K., Cohen R. Y., Shlapack W. (1975). Life-span stability in olfactory sensitivity. Dev. Psychol. 11, 311–318 10.1037/h0076566
    1. Saito H., Chi Q., Zhuang H., Matsunami H., Mainland J. D. (2009). Odor coding by a Mammalian receptor repertoire. Sci. Signal. 2, ra9 10.1126/scisignal.2000016
    1. Sajjadian A., Doty R. L., Gutnick D. N., Chirurgi R. J., Sivak M., Perl D. (1994). Olfactory dysfunction in amyotrophic lateral sclerosis. Neurodegeneration 3, 153–157
    1. Sakakura Y., Ukai K., Majima Y., Murai S., Harada T., Miyoshi Y. (1983). Nasal mucociliary clearance under various conditions. Acta Otolaryngol. 96, 167–173 10.3109/00016488309132888
    1. Salihoglu M., Kendirli M. T., Altundag A., Tekeli H., Saglam M., Cayonu M., et al. (2013). The effect of obstructive sleep apnea on olfactory functions. Laryngoscope. [Epub ahead of print]. 10.1002/lary.24565
    1. Sama U. H., Tahir M., Lone K. P. (2008). Age and gender-related differences in mitral cells of olfactory bulb. J. Coll. Physicians Surg. Pak. 18, 669–673
    1. Santos D. V., Reiter E. R., DiNardo L. J., Costanzo R. M. (2004). Hazardous events associated with impaired olfactory function. Arch. Head Neck Surg. 130, 317–319 10.1001/archotol.130.3.317
    1. Sawada M., Kaneko N., Inada H., Wake H., Kato Y., Yanagawa Y., et al. (2011). Sensory input regulates spatial and subtype-specific patterns of neuronal turnover in the adult olfactory bulb. J. Neurosci. 31, 11587–11596 10.1523/JNEUROSCI.0614-11.2011
    1. Schiffman S., Pasternak M. (1979). Decreased discrimination of food odors in the elderly. J. Gerontol. 34, 73–79 10.1093/geronj/34.1.73
    1. Schiffman S. S. (1991). Taste and smell losses with age. Bol. Asoc. Med. P.R. 83, 411–414
    1. Schiffman S. S., Leffingwell J. C. (1981). Perception of odors of simple pyrazines by young and elderly subjects: a multidimensional analysis. Pharmacol. Biochem. Behav. 14, 787–798 10.1016/0091-3057(81)90362-2
    1. Schiffman S. S., Moss J., Erickson R. P. (1976). Thresholds of food odors in the elderly. Exp. Aging Res. 2, 389–398 10.1080/03610737608257997
    1. Schiffman S. S., Zervakis J. (2002). Taste and smell perception in the elderly: effect of medication and disease. Adv. Food Nutr. Res. 44, 247–346 10.1016/S1043-4526(02)44006-5
    1. Schliebs R., Arendt T. (2011). The cholinergic system in aging and neuronal degeneration. Behav. Brain Res. 221, 555–563 10.1016/j.bbr.2010.11.058
    1. Schmidt F. A., Goktas O., Harms L., Bohner G., Erb K., Dahlslett B., et al. (2011). Structural correlates of taste and smell loss in encephalitis disseminata. PLoS ONE 6:e19702 10.1371/journal.pone.0019702
    1. Schriever V. A., Reither N., Gerber J., Iannilli E., Hummel T. (2013). Olfactory bulb volume in smokers. Exp. Brain Res. 225, 153–157 10.1007/s00221-012-3356-5
    1. Schubert C. R., Carmichael L. L., Murphy C., Klein B. E., Klein R., Cruickshanks K. J. (2008). Olfaction and the 5-year incidence of cognitive impairment in an epidemiological study of older adults. J. Am. Geriatr. Soc. 56, 1517–1521 10.1111/j.1532-5415.2008.01826.x
    1. Schubert C. R., Cruickshanks K. J., Fischer M. E., Huang G. H., Klein B. E., Klein R., et al. (2012). Olfactory impairment in an adult population: the Beaver Dam Offspring Study. Chem. Senses 37, 325–334 10.1093/chemse/bjr102
    1. Schubert C. R., Cruickshanks K. J., Klein B. E., Klein R., Nondahl D. M. (2011). Olfactory impairment in older adults: five-year incidence and risk factors. Laryngoscope 121, 873–878 10.1002/lary.21416
    1. Schumm L. P., McClintock M., Williams S., Leitsch S., Lundstrom J., Hummel T., et al. (2009). Assessment of sensory function in the national social life, health, and aging project. J. Gerontol. B Psychol. Sci. Soc. Sci. 64B (Suppl. 1), i76–i85 10.1093/geronb/gbp048
    1. Schwab J. A., Zenkel M. (1998). Filtration of particulates in the human nose. Laryngoscope 108, 120–124 10.1097/00005537-199801000-00023
    1. Segura B., Baggio H. C., Solana E., Palacios E. M., Vendrell P., Bargallo N., et al. (2013). Neuroanatomical correlates of olfactory loss in normal aged subjects. Behav. Brain Res. 246, 148–153 10.1016/j.bbr.2013.02.025
    1. Selkoe D., Kosik K. (1984). “Neurochemical changes with aging,” in Clinical Neurology of Aging, ed Albert M. L. (New York, NY: Oxford University Press; ), 53–75
    1. Settipane G. A. (1996). Nasal polyps and immunoglobulin E (IgE). Allergy Asthma Proc. 17, 269–273 10.2500/108854196778662237
    1. Shepherd G. M. (1972). Synaptic organization of the mammalian olfactory bulb. Physiol. Rev. 52, 864–917
    1. Ship J. A., Pearson J. D., Cruise L. J., Brant L. J., Metter E. J. (1996). Longitudinal changes in smell identification. J. Gerontol. A Biol. Sci. Med. Sci. 51, M86–M91 10.1093/gerona/51A.2.M86
    1. Ship J. A., Weiffenbach J. M. (1993). Age, gender, medical treatment, and medication effects on smell identification. J. Gerontol. A. Biol. Sci. Med. Sci. 48, M26–M32 10.1093/geronj/48.1.M26
    1. Sicard G., Holley A. (1984). Receptor cell responses to odorants: similarities and differences among odorants. Brain Res. 292, 283–296 10.1016/0006-8993(84)90764-9
    1. Smith C. G. (1935). The change in volume of the olfactory and accessory olfactory bulbs of the albino rat during postnatal life. J. Comp. Neurol. 61, 477–508 10.1002/cne.900610305
    1. Smith C. G. (1942). Age incidence of atrophy of olfactory nerves in man. J. Comp. Neurol. 77, 589–594 10.1002/cne.900770306
    1. Smithson L. J., Kawaja M. D. (2010). Microglial/macrophage cells in mammalian olfactory nerve fascicles. J. Neurosci. Res. 88, 858–865 10.1002/jnr.22254
    1. Somlyo A. P., Somlyo A. V. (1968). Vascular smooth muscle. I. Normal structure, pathology, biochemistry, and biophysics. Pharmacol. Rev. 20, 197–272
    1. Staubert C., Boselt I., Bohnekamp J., Rompler H., Enard W., Schoneberg T. (2010). Structural and functional evolution of the trace amine-associated receptors TAAR3, TAAR4 and TAAR5 in primates. PLoS ONE 5:e11133 10.1371/journal.pone.0011133
    1. Stephan A. B., Shum E. Y., Hirsh S., Cygnar K. D., Reisert J., Zhao H. (2009). ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc. Natl. Acad. Sc.i U.S.A. 106, 11776–11781 10.1073/pnas.0903304106
    1. Stevens J. C., Cain W. S. (1985). Age-related deficiency in the perceived strength of 6 odorants. Chem. Senses 10, 517–529 10.1093/chemse/10.4.517
    1. Stevens J. C., Cain W. S., Weinstein D. E. (1987). Agining impairs the ability to detect gas odor. Fire Technol. 23, 198–204 10.1007/BF01036936
    1. Stevens J. C., Plantinga A., Cain W. S. (1982). Reduction of odor and nasal pungency associated with aging. Neurobiol. Aging 3, 125–132 10.1016/0197-4580(82)90008-2
    1. Strauss E. L. (1970). A study on olfactory acuity. Ann. Otol. Rhinol. Laryngol. 79, 95–104
    1. Strong R. (1998). Neurochemical changes in the aging human brain: implications for behavioral impairment and neurodegenerative disease. Geriatrics 53(Suppl. 1), S9–S12
    1. Stuck B. A., Frey S., Freiburg C., Hormann K., Zahnert T., Hummel T. (2006). Chemosensory event-related potentials in relation to side of stimulation, age, sex, and stimulus concentration. Clin. Neurophysiol. 117, 1367–1375 10.1016/j.clinph.2006.03.004
    1. Suzuki Y., Critchley H. D., Suckling J., Fukuda R., Williams S. C., Andrew C., et al. (2001). Functional magnetic resonance imaging of odor identification: the effect of aging. J. Gerontol. A Biol. Sci. Med. Sci. 56, M756–M760 10.1093/gerona/56.12.M756
    1. Takagi S. F. (1989). Standardized olfactometries in Japan – a review over ten years. Chem. Senses 14, 25–46 10.1093/chemse/14.1.25
    1. Tang S. C., Arumugam T. V., Xu X., Cheng A., Mughal M. R., Jo D. G., et al. (2007). Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc. Natl. Acad. Sci. U. S. A 104, 13798–13803 10.1073/pnas.0702553104
    1. Thesen T., Murphy C. (2001). Age-related changes in olfactory processing detected with olfactory event-related brain potentials using velopharyngeal closure and natural breathing. Internat J. Psychophysiol. 40, 119–127 10.1016/S0167-8760(00)00157-4
    1. Thomann P. A., Dos S. V., Seidl U., Toro P., Essig M., Schroder J. (2009). MRI-derived atrophy of the olfactory bulb and tract in mild cognitive impairment and Alzheimer's disease. J. Alzheimers Dis. 17, 213–221 10.3233/JAD-2009-1036
    1. Tourbier I. A., Doty R. L. (2007). Sniff magnitude test: relationship to odor identification, detection, and memory tests in a clinic population. Chem. Senses 32, 515–523 10.1093/chemse/bjm020
    1. Turetsky B. I., Moberg P. J., Arnold S. E., Doty R. L., Gur R. E. (2003). Low olfactory bulb volume in first-degree relatives of patients with schizophrenia. Am. J. Psychiatry 160, 703–708 10.1176/appi.ajp.160.4.703
    1. Van Toller S., Dodd G. H. (1987). Presbyosmia and olfactory compensation for the elderly. Brit. J. Clin. Pract. 41, 725–728
    1. Velayudhan L., Pritchard M., Powell J. F., Proitsi P., Lovestone S. (2013). Smell identification function as a severity and progression marker in Alzheimer's disease. Int. Psychogeriatr. 25, 1157–1166 10.1017/S1041610213000446
    1. Venstrom D., Amoore J. E. (1968). Olfactory threshold in relation to age, sex or smoking. J. Food Sci. 33, 264–265 10.1111/j.1365-2621.1968.tb01364.x
    1. Vogalis F., Hegg C. C., Lucero M. T. (2005). Ionic conductances in sustentacular cells of the mouse olfactory epithelium. J. Physiol 562, 785–799 10.1113/jphysiol.2004.079228
    1. Vogels O. J., Broere C. A., ter Laak H. J., ten Donkelaar H. J., Nieuwenhuys R., Schulte B. P. (1990). Cell loss and shrinkage in the nucleus basalis Meynert complex in Alzheimer's disease. Neurobiol. Aging 11, 3–13 10.1016/0197-4580(90)90056-6
    1. Volkow N. D., Logan J., Fowler J. S., Wang G. J., Gur R. C., Wong C., et al. (2000). Association between age-related decline in brain dopamine activity and impairment in frontal and cingulate metabolism. Am. J. Psychiatry 157, 75–80 10.1176/appi.ajp.157.10.1709
    1. Wang C., Liu F., Liu Y. Y., Zhao C. H., You Y., Wang L., et al. (2011a). Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res. 21, 1534–1550 10.1038/cr.2011.83
    1. Wang J., Eslinger P. J., Smith M. B., Yang Q. X. (2005). Functional magnetic resonance imaging study of human olfaction and normal aging. J. Gerontol. A Biol. Sci. Med. Sci. 60, 510–514 10.1093/gerona/60.4.510
    1. Wang J., You H., Liu J. F., Ni D. F., Zhang Z. X., Guan J. (2011b). Association of olfactory bulb volume and olfactory sulcus depth with olfactory function in patients with Parkinson disease. AJNR Am. J. Neuroradiol. 32, 677–681 10.3174/ajnr.A2350
    1. Watabe-Rudolph M., Begus-Nahrmann Y., Lechel A., Rolyan H., Scheithauer M. O., Rettinger G., et al. (2011). Telomere shortening impairs regeneration of the olfactory epithelium in response to injury but not under homeostatic conditions. PLoS ONE 6:e27801 10.1371/journal.pone.0027801
    1. Wehling E., Nordin S., Espeseth T., Reinvang I., Lundervold A. J. (2011). Unawareness of olfactory dysfunction and its association with cognitive functioning in middle aged and old adults. Arch. Clin Neuropsychol. 26, 260–269 10.1093/arclin/acr019
    1. Weierstall R., Pause B. M. (2012). Development of a 15-item odour discrimination test (Dusseldorf Odour Discrimination Test). Perception 41, 193–203 10.1068/p7113
    1. Wenning G. K., Shephard B., Hawkes C., Petruckevitch A., Lees A., Quinn N. (1995). Olfactory function in atypical parkinsonian syndromes. Acta Neurol. Scand. 91, 247–250 10.1111/j.1600-0404.1995.tb06998.x
    1. Wilson R. S., Arnold S. E., Schneider J. A., Tang Y., Bennett D. A. (2007a). The relationship between cerebral Alzheimer's disease pathology and odour identification in old age. J. Neurol. Neurosurg. Psychiatry 78, 30–35 10.1136/jnnp.2006.099721
    1. Wilson R. S., Schneider J. A., Arnold S. E., Tang Y., Boyle P. A., Bennett D. A. (2007b). Olfactory identification and incidence of mild cognitive impairment in older age. Arch. Gen. Psychiatry 64, 802–808 10.1001/archpsyc.64.7.802
    1. Wilson R. S., Yu L., Bennett D. A. (2011a). Odor identification and mortality in old age. Chem. Senses 36, 63–67 10.1093/chemse/bjq098
    1. Wilson R. S., Yu L., Schneider J. A., Arnold S. E., Buchman A. S., Bennett D. A. (2011b). Lewy bodies and olfactory dysfunction in old age. Chem. Senses 36, 367–373 10.1093/chemse/bjq139
    1. Wong K. K., Muller M. L., Kuwabara H., Studenski S. A., Bohnen N. I. (2010). Olfactory loss and nigrostriatal dopaminergic denervation in the elderly. Neurosci. Lett. 484, 163–167 10.1016/j.neulet.2010.08.037
    1. Wysocki C. J., Gilbert A. N. (1989). National geographic smell survey. Effects of age are heterogenous. Ann. N.Y. Acad. Sci. 561, 12–28 10.1111/j.1749-6632.1989.tb20966.x
    1. Yoshida M. (1984). Correlation analysis of detection threshold data for “standard test” odors. Bull. Fac. Sci. Eng. Cho. Univ. 27, 343–353
    1. Yoshida M., Murakami N., Hashizume Y., Takahashi A. (1992). A clinicopathological study on 13 cases of motor neuron disease with dementia. Rinsho Shinkeigaku 32, 1193–1202
    1. Yousem D. M., Geckle R., Doty R. L. (1995a). MR of patients with post-traumatic olfactory deficits. Chem. Senses 20, 338
    1. Yousem D. M., Geckle R. J., Doty R. L. (1995b). Evaluation of olfactory deficits in neurodegenerative disorders. Radiology 197, 173
    1. Yousem D. M., Geckle R. J., Bilker W. B., Doty R. L. (1998). Olfactory bulb and tract and temporal lobe volumes. Normative data across decades. Ann. N.Y. Acad. Sci. 855, 546–555 10.1111/j.1749-6632.1998.tb10624.x
    1. Yousem D. M., Geckle R. J., Bilker W., McKeown D. A., Doty R. L. (1996). MR evaluation of patients with congenital hyposmia or anosmia. Am. J. Roentgenol. 166, 439–443 10.2214/ajr.166.2.8553963
    1. Yousem D. M., Maldjian J. A., Hummel T., Alsop D. C., Geckle R. J., Kraut M. A., et al. (1999). The effect of age on odor-stimulated functional MR imaging. AJNR Am. J. Neuroradiol. 20, 600–608
    1. Yousem D. M., Turner W. J., Li C., Snyder P. J., Doty R. L. (1993). Kallmann syndrome: MR evaluation of olfactory system. AJNR Am. J. Neuroradiol. 14, 839–843
    1. Zald D. H. (2006). “Neuropsychological assessment of the orbitofrontal cortex,” in The Orbitofrontal Cortex, eds Zald D. H., Rauch S. L. (New York, NY: Oxford University Press; ), 449–480 10.1093/acprof:oso/9780198565741.001.0001
    1. Ziegler G., Harhausen D., Schepers C., Hoffmann O., Rohr C., Prinz V., et al. (2007). TLR2 has a detrimental role in mouse transient focal cerebral ischemia. Biochem. Biophys. Res Commun. 359, 574–579 10.1016/j.bbrc.2007.05.157
    1. Zielinski B. S., Getchell M. L., Wenokur R. L., Getchell T. V. (1989). Ultrastructural localization and identification of adrenergic and cholinergic nerve terminals in the olfactory mucosa. Anat. Rec. 225, 232–245 10.1002/ar.1092250309

Source: PubMed

3
구독하다