Carbonyl Emissions in E-cigarette Aerosol: A Systematic Review and Methodological Considerations

Konstantinos E Farsalinos, Gene Gillman, Konstantinos E Farsalinos, Gene Gillman

Abstract

Carbonyl emissions from tobacco cigarettes represent a substantial health risk contributing to smoking-related morbidity and mortality. As expected, this is an important research topic for tobacco harm reduction products, in an attempt to compare the relative risk of these products compared to tobacco cigarettes. In this study, a systematic review of the literature available on PubMed was performed analyzing the studies evaluating carbonyl emissions from e-cigarettes. A total of 32 studies were identified and presented. We identified a large diversity of methodologies, with substantial discrepancies in puffing patterns, aerosol collection and analytical methods as well as reported units of measurements. Such discrepancies make comparisons difficult, and in some cases the accuracy of the findings cannot be determined. Importantly, control for the generation of dry puffs was not performed in the vast majority of studies, particularly in studies using variable power devices, which could result in testing conditions and reported carbonyl levels that have no clinical relevance or context. Some studies have been replicated, verifying the presence of dry puff conditions. Whenever realistic use conditions were ensured, carbonyl emissions from e-cigarettes were substantially lower than tobacco cigarette smoke, while newer generation (bottom-coil, cotton wick) atomizers appeared to emit minimal levels of carbonyls with questionable clinical significance in terms of health risk. However, extremely high levels of carbonyl emissions were reported in some studies, and all these studies need to be replicated because of potentially important health implications.

Keywords: aerosol; carbonyls; e-cigarettes; emissions; smoking.

Figures

Figure 1
Figure 1
Prisma flow diagram showing the methodology for literature review and selection of studies.

References

    1. Baker R. R., Coburn S., Liu C. (2006). The pyrolytic formation of formaldehyde from sugars and tobacco. J. Anal. Appl. Pyrolysis 77, 12–21. 10.1016/j.jaap.2005.12.009
    1. Beauval N., Antherieu S., Soyez M., Gengler N., Grova N., Howsam M., et al. . (2017). Chemical evaluation of electronic cigarettes: multicomponent analysis of liquid refills and their corresponding aerosols. J. Anal. Toxicol. 41, 670–678. 10.1093/jat/bkx054
    1. Bekki K., Uchiyama S., Ohta K., Inaba Y., Nakagome H., Kunugita N. (2014). Carbonyl compounds generated from electronic cigarettes. Int. J. Environ. Res. Public Health 11, 11192–11200. 10.3390/ijerph111111192
    1. Blair S. L., Epstein S. A., Nizkorodov S. A., Staimer N. (2015). A real-time fast-flow tube study of VOC and particulate emissions from electronic, potentially reduced-harm, conventional, and reference cigarettes. Aerosol. Sci. Technol. 49, 816–827. 10.1080/02786826.2015.1076156
    1. CORESTA (2014). Recommended Method No. 74: Determination of Selected Carbonyls in Mainstream Cigarette Smoke by HPLC. Cooperation Centre for Scientific Research Relative to Tobacco (CORESTA).
    1. Counts M. E., Morton M. J., Laffoon S. W., Cox R. H., Lipowicz P. J. (2005). Smoke composition and predicting relationships for international commercial cigarettes smoked with three machine-smoking conditions. Regul. Toxicol. Pharmacol. 41, 185–227. 10.1016/j.yrtph.2004.12.002
    1. Dawkins L. E., Kimber C. F., Doig M., Feyerabend C., Corcoran O. (2016). Self-titration by experienced e-cigarette users: blood nicotine delivery and subjective effects. Psychopharmacology 233, 2933–2941. 10.1007/s00213-016-4338-2
    1. Dawkins L., Turner J., Roberts A., Soar K. (2013). “Vaping” profiles and preferences: an online survey of electronic cigarette users. Addiction. 108, 1115–1125. 10.1111/add.12150
    1. El-Hellani A., Salman R., El-Hage R., Talih S., Malek N., Baalbaki R., et al. (2016). Nicotine and carbonyl emissions from popular electronic cigarette products: correlation to liquid composition and design characteristics. Nicotine Tob. Res. 20, 215–223. 10.1093/ntr/ntw280
    1. Farsalinos K. E., Polosa R. (2014). Safety evaluation and risk assessment of electronic cigarettes as tobacco cigarette substitutes: a systematic review. Ther. Adv. Drug Saf. 5, 67–86. 10.1177/2042098614524430
    1. Farsalinos K. E., Kistler K. A., Pennington A., Spyrou A., Kouretas D., Gillman G. (2017a). Aldehyde levels in e-cigarette aerosol: findings from a replication study and from use of a new-generation device. Food Chem. Toxicol. 111, 64–70. 10.1016/j.fct.2017.11.002
    1. Farsalinos K. E., Romagna G., Tsiapras D., Kyrzopoulos S., Voudris V. (2013a). Evaluation of electronic cigarette use (vaping) topography and estimation of liquid consumption: implications for research protocol standards definition and for public health authorities' regulation. Int. J. Environ. Res. Public Health 10, 2500–2514. 10.3390/ijerph10062500.
    1. Farsalinos K. E., Romagna G., Tsiapras D., Kyrzopoulos S., Spyrou A., Voudris V.. (2013b). Impact of flavour variability on electronic cigarette use experience: an internet survey. Int. J. Environ. Res. Public Health 10, 7272–7282. 10.3390/ijerph10127272
    1. Farsalinos K. E., Voudris V., Poulas K. (2015). E-cigarettes generate high levels of aldehydes only in “dry puff” conditions. Addiction 110, 1352–1356. 10.1111/add.12942
    1. Farsalinos K. E., Voudris V., Spyrou A., Poulas K. (2017b). E-cigarettes emit very high formaldehyde levels only in conditions that are aversive to users: a replication study under verified realistic use conditions. Food Chem. Toxicol. 109(Pt 1), 90–94. 10.1016/j.fct.2017.08.044
    1. Farsalinos K. E., Yannovits N., Sarri T., Voudris V., Poulas K. (2016). Protocol proposal for, and evaluation of, consistency in nicotine delivery from the liquid to the aerosol of electronic cigarettes atomizers: regulatory implications. Addiction 111, 1069–1076. 10.1111/add.13299
    1. Farsalinos K., Gillman G., Kistler K., Yannovits N. (2017a). Comment on “flavoring compounds dominate toxic aldehyde production during e cigarette vaping.” Environ. Sci. Technol. 51, 2491–2492. 10.1021/acs.est.6b06030
    1. Farsalinos K., Poulas K., Voudris V. (2017b). Changes in puffing topography and nicotine consumption depending on the power setting of electronic cigarettes. Nicotine Tob. Res. [Epub ahead of print]. 10.1093/ntr/ntx219
    1. Farsalinos K., Romagna G., Tsiapras D., Kyrzopoulos S., Voudris V. (2014). Characteristics, perceived side effects and benefits of electronic cigarette use: a worldwide survey of more than 19,000 consumers. Int. J. Environ. Res. Public Health 11, 4356–4373. 10.3390/ijerph110404356
    1. Flora J. W., Meruva N., Huang C. B., Wilkinson C. T., Ballentine R., Smith D. C., et al. . (2016). Characterization of potential impurities and degradation products in electronic cigarette formulations and aerosols. Regul. Toxicol. Pharmacol. 74, 1–11. 10.1016/j.yrtph.2015.11.009
    1. Flora J. W., Wilkinson C. T., Wilkinson J. W., Lipowicz P. J., Skapars J. A., Anderson A., et al. . (2017). Method for the determination of carbonyl compounds in e-cigarette aerosols. J. Chromatogr. Sci. 55, 142–148. 10.1093/chromsci/bmw157
    1. Geiss O., Bianchi I., Barrero-Moreno J. (2016). Correlation of volatile carbonyl yields emitted by e-cigarettes with the temperature of the heating coil and the perceived sensorial quality of the generated vapours. Int. J. Hyg. Environ. Health. 219, 268–277. 10.1016/j.ijheh.2016.01.004
    1. Geiss O., Bianchi I., Barahona F., Barrero-Moreno J. (2015). Characterisation of mainstream and passive vapours emitted by selected electronic cigarettes. Int. J. Hyg. Environ. Health 218, 169–180. 10.1016/j.ijheh.2014.10.001
    1. Gillman I. G., Kistler K. A., Stewart E. W., Paolantonio A. R. (2016). Effect of variable power levels on the yield of total aerosol mass and formation of aldehydes in e-cigarette aerosols. Regul. Toxicol. Pharmacol. 75, 58–65. 10.1016/j.yrtph.2015.12.019
    1. Goniewicz M. L., Knysak J., Gawron M., Kosmider L., Sobczak A., Kurek J., et al. . (2014). Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob. Control. 23, 133–139. 10.1136/tobaccocontrol-2012-050859
    1. Havel C. M., Benowitz N. L., Jacob P., III., St Helen G. (2017). An electronic cigarette vaping machine for the characterization of aerosol delivery and composition. Nicotine Tob. Res. 19, 1224–1231. 10.1093/ntr/ntw147.
    1. Herrington J. S., Myers C. (2015). Electronic cigarette solutions and resultant aerosol profiles. J. Chromatogr. A 1418, 192–199. 10.1016/j.chroma.2015.09.034
    1. Ho S. S. H., Ho K. F., Liu W. D., Lee S. C., Dai W. T., Cao J. J., et al. (2011). Unsuitability of using the DNPH-coated solid sorbent cartridge for determination of airborne unsaturated carbonyls. Atmos. Environ. 45, 261–265. 10.1016/j.atmosenv.2010.09.042
    1. Hua M., Yip H., Talbot P. (2013). Mining data on usage of electronic nicotine delivery systems (ENDS) from YouTube videos. Tob. Control 22, 103–106. 10.1136/tobaccocontrol-2011-050226
    1. Hutzler C., Paschke M., Kruschinski S., Henkler F., Hahn J., Luch A. (2014). Chemical hazards present in liquids and vapors of electronic cigarettes. Arch. Toxicol. 88, 1295–1308. 10.1007/s00204-014-1294-7
    1. Ingebrethsen B. J., Cole S. K., Alderman S. L. (2012). Electronic cigarette aerosol particle size distribution measurements. Inhal. Toxicol. 24, 976–984. 10.3109/08958378.2012.744781
    1. Jensen R. P., Luo W., Pankow J. F., Strongin R. M., Peyton D. H. (2015). Hidden formaldehyde in e-cigarette aerosols. N. Engl. J. Med. 372, 392–394. 10.1056/NEJMc1413069
    1. Jo S. H., Kim K. H. (2016). Development of a sampling method for carbonyl compounds released due to the use of electronic cigarettes and quantitation of their conversion from liquid to aerosol. J. Chromatogr. A 1429, 369–373. 10.1016/j.chroma.2015.12.061
    1. Khlystov A., Samburova V. (2016). Flavoring compounds dominate toxic aldehyde production during e-cigarette vaping. Environ. Sci. Technol. 50, 13080–13085. 10.1021/acs.est.6b05145
    1. Klager S., Vallarino J., MacNaughton P., Christiani D. C., Lu Q., Allen J. G. (2017). Flavoring chemicals and aldehydes in e-cigarette emissions. Environ. Sci. Technol. 51, 10806–10813. 10.1021/acs.est.7b02205
    1. Kosmider L., Kimber C. F., Kurek J., Corcoran O., Dawkins L. E. (2017). Compensatory puffing with lower nicotine concentration e-liquids increases carbonyl exposure in e-cigarette aerosols. Nicotine Tob Res. 10.1093/ntr/ntx162
    1. Kosmider L., Sobczak A., Fik M., Knysak J., Zaciera M., Kurek J., et al. . (2014). Carbonyl compounds in electronic cigarette vapors: effects of nicotine solvent and battery output voltage. Nicotine Tob. Res. 16, 1319–1326. 10.1093/ntr/ntu078
    1. Laugesen M. (2015). Nicotine and toxicant yield ratings of electronic cigarette brands in New Zealand. N. Z. Med. J. 128, 77–82.
    1. Lee P. N., Hamling J. (2009). Systematic review of the relation between smokeless tobacco and cancer in Europe and North America. BMC Med. 7:36. 10.1186/1741-7015-7-36
    1. Logue J. M., Sleiman M., Montesinos V. N., Russell M. L., Litter M. I., Benowitz N. L., et al. . (2017). Emissions from electronic cigarettes: assessing vapers' intake of toxic compounds, secondhand exposures, and the associated health impacts. Environ. Sci. Technol. 51, 9271–9279. 10.1021/acs.est.7b00710
    1. Lopez A. A., Hiler M. M., Soule E. K., Ramôa C. P., Karaoghlanian N. V., Lipato T., et al. . (2016). Effects of electronic cigarette liquid nicotine concentration on plasma nicotine and puff topography in tobacco cigarette smokers: a preliminary report. Nicotine Tob. Res. 18, 720–723. 10.1093/ntr/ntv182
    1. Ogunwale M. A., Li M., Ramakrishnam Raju M. V., Chen Y., Nantz M. H., Conklin D. J., et al. . (2017). Aldehyde detection in electronic cigarette aerosols. ACS Omega. 2, 1207–1214. 10.1021/acsomega.6b00489
    1. Paschke T., Scherer G., Heller W. D. (2014). Effects of ingredients on cigarette smoke composition and biological activity: a literature overview. Beiträge zur Tabakforschung 20, 107–247. 10.2478/cttr-2013-0736
    1. Ramström L., Wikmans T. (2014). Mortality attributable to tobacco among men in Sweden and other European countries: an analysis of data in a WHO report. Tob. Induc. Dis. 12:14. 10.1186/1617-9625-12-14
    1. Romagna G., Allifranchini E., Bocchietto E., Todeschi S., Esposito M., Farsalinos K. E. (2013). Cytotoxicity evaluation of electronic cigarette vapor extract on cultured mammalian fibroblasts (ClearStream-LIFE): comparison with tobacco cigarette smoke extract. Inhal. Toxicol. 25, 354–361. 10.3109/08958378.2013.793439
    1. Rustemeier K., Stabbert R., Haussmann H. J., Roemer E., Carmines E. L. (2002). Evaluation of the potential effects of ingredients added to cigarettes. Part 2: chemical composition of mainstream smoke. Food Chem. Toxicol. 40, 93–104.
    1. Sala C., Medana C., Pellegrino R., Aigotti R., Bello F. D., Bianchi G., et al. . (2017). Dynamic measurement of newly formed carbonyl compounds in vapors from electronic cigarettes. Eur. J. Mass.Spectrom. 23, 64–69. 10.1177/1469066717699078
    1. Sleiman M., Logue J. M., Montesinos V. N., Russell M. L., Litter M. I., Gundel L. A., et al. . (2016). Emissions from electronic cigarettes: key parameters affecting the release of harmful chemicals. Environ. Sci. Technol. 50, 9644–9651. 10.1021/acs.est.6b01741
    1. Soulet S., Pairaud C., Lalo H. (2017). A novel vaping machine dedicated to fully controlling the generation of e-cigarette emissions. Int. J. Environ. Res. Public Health 14:E1225. 10.3390/ijerph14101225
    1. Spencer A., Lauterbach J. H. (2015). generation of acetaldehyde and other carbonyl compounds during vaporization of glycerol and propylene glycol during puffing of a popular style of e-cigarette, in 54th Meeting of the Society of Toxicology, (2015). Abstract 188. Available online at: (Accessed on September 30, 2017).
    1. Talih S., Balhas Z., Eissenberg T., Salman R., Karaoghlanian N., El Hellani A., et al. . (2015). Effects of user puff topography, device voltage, and liquid nicotine concentration on electronic cigarette nicotine yield: measurements and model predictions. Nicotine Tob. Res. 17, 50–157. 10.1093/ntr/ntu174
    1. Talih S., Balhas Z., Salman R., Karaoghlanian N., Shihadeh A. (2016). “Direct dripping”: a high-temperature, high-formaldehyde emission electronic cigarette use method. Nicotine Tob. Res. 18, 453–459. 10.1093/ntr/ntv080
    1. Talih S., Salman R., Karaoghlanian N., El-Hellani A., Saliba N., Eissenberg T., et al. (2017). “Juice monsters”: sub-ohm vaping and toxic volatile aldehyde emissions. Chem. Res. Toxicol. 30, 1791–1793. 10.1021/acs.chemrestox.7b00212
    1. Tayyarah R., Long G. A. (2014). Comparison of select analytes in aerosol from e-cigarettes with smoke from conventional cigarettes and with ambient air. Regul. Toxicol. Pharmacol. 70, 704–710. 10.1016/j.yrtph.2014.10.010
    1. Uchiyama S., Inaba Y., Kunugita N. (2010). Determination of acrolein and other carbonyls in cigarette smoke using coupled silica cartridges impregnated with hydroquinone and 2,4-dinitrophenylhydrazine. J. Chromatogr. A 1217, 4383–4388. 10.1016/j.chroma.2010.04.056
    1. Uchiyama S., Ohta K., Inaba Y., Kunugita N. (2013). Determination of carbonyl compounds generated from the e-cigarette using coupled silica cartridges impregnated with hydroquinone and 2,4-dinitrophenylhydrazine, followed by high-performance liquid chromatography. Anal. Sci. 29, 1219–1222. 10.2116/analsci.29.1219
    1. Uchiyama S., Senoo Y., Hayashida H., Inaba Y., Nakagome H., Kunugita N. (2016). Determination of chemical compounds generated from second-generation e-cigarettes using a sorbent cartridge followed by a two-step elution method. Anal. Sci. 32, 549–555. 10.2116/analsci.32.549
    1. US OSHA (2007). Acetaldehyde. United States Department of Labor, Occupational Safety and Health Administration (OSHA). Washington, DC: Available online at: (Accessed September 30, 2017).
    1. US OSHA (2011). OSHA Fact Sheet: Formaldehyde. United States Department of Labor, Occupational Safety and Health Administration (OSHA). Washington, DC: Available online at: (Accessed September 30, 2017).
    1. USEPA (1999). Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition. Compendium Method TO-11A: Determination of Formaldehyde in Ambient Air Using Adsorbent Cartridge Followed by High Performance Liquid Chromatography (HPLC) [Active Sampling Methodology]. Cincinnati, OH: Center for Environmental Research Information Office of Research and Development, United States Environmental Protection Agency (USEPA).
    1. Vidyasagaran A. L., Siddiqi K., Kanaan M. (2016). Use of smokeless tobacco and risk of cardiovascular disease: a systematic review and meta-analysis. Eur. J. Prev. Cardiol. 23, 1970–1981. 10.1177/2047487316654026
    1. Wang P., Chen W., Liao J., Matsuo T., Ito K., Fowles J., et al. . (2017). A device-independent evaluation of carbonyl emissions from heated electronic cigarette solvents. PLoS ONE. 12:e0169811. 10.1371/journal.pone.0169811
    1. World Health Organization (2010). WHO Guidelines for Indoor Air Quality: Selected Pollutants. Copenhagen: World Health Organization; Available online at (Accessed on September 30, 2017).

Source: PubMed

3
구독하다