Identification of Febuxostat as a New Strong ABCG2 Inhibitor: Potential Applications and Risks in Clinical Situations

Hiroshi Miyata, Tappei Takada, Yu Toyoda, Hirotaka Matsuo, Kimiyoshi Ichida, Hiroshi Suzuki, Hiroshi Miyata, Tappei Takada, Yu Toyoda, Hirotaka Matsuo, Kimiyoshi Ichida, Hiroshi Suzuki

Abstract

ATP-binding cassette transporter G2 (ABCG2) is a plasma membrane protein that regulates the pharmacokinetics of a variety of drugs and serum uric acid (SUA) levels in humans. Despite the pharmacological and physiological importance of this transporter, there is no clinically available drug that modulates ABCG2 function. Therefore, to identify such drugs, we investigated the effect of drugs that affect SUA levels on ABCG2 function. This strategy was based on the hypothesis that the changes of SUA levels might caused by interaction with ABCG2 since it is a physiologically important urate transporter. The results of the in vitro screening showed that 10 of 25 drugs investigated strongly inhibited the urate transport activity of ABCG2. Moreover, febuxostat was revealed to be the most promising candidate of all the potential ABCG2 inhibitors based on its potent inhibition at clinical concentrations; the half-maximal inhibitory concentration of febuxostat was lower than its maximum plasma unbound concentrations reported. Indeed, our in vivo study demonstrated that orally administered febuxostat inhibited the intestinal Abcg2 and, thereby, increased the intestinal absorption of an ABCG2 substrate sulfasalazine in wild-type mice, but not in Abcg2 knockout mice. These results suggest that febuxostat might inhibit human ABCG2 at a clinical dose. Furthermore, the results of this study lead to a proposed new application of febuxostat for enhancing the bioavailability of ABCG2 substrate drugs, named febuxostat-boosted therapy, and also imply the potential risk of adverse effects by drug-drug interactions that could occur between febuxostat and ABCG2 substrate drugs.

Keywords: BCRP; URAT1; allopurinol; benzbromarone; bioavailability; drug repositioning; drug-drug interactions; topiroxostat.

Figures

FIGURE 1
FIGURE 1
Effect of serum uric acid (SUA)-affecting drugs on the urate transport activity of ABCG2.(A) Expression of ABCG2 on membrane vesicles. Membrane vesicles (5 μg) were subjected to western blot analysis using a BXP-21, an anti-ABCG2 or anti-Na+/K+-ATPase antibody. (B) Time-dependent increase in the urate transport by ABCG2. The urate transport into membrane vesicles was measured at the indicated periods with (closed) or without (open) ATP. Values are expressed as mean ± SD. (n = 3). (C) The urate transport activities of ABCG2 in the presence of each SUA-affecting drug. Concentrations of each drug are shown in Table 1. The urate transport into membrane vesicles was measured in the presence of each SUA-affecting drug for 10 min. Data are shown as the percentage of vehicle control (without drugs). Values are expressed as mean ± SD (n = 3).
FIGURE 2
FIGURE 2
Dose-dependent inhibition of ABCG2-mediated urate transport by serum uric acid (SUA)-affecting drugs. The urate transport activities were measured in the presence of the following drugs at the indicated concentrations for 10 min. (A) Losartan, (B) Fenofibrate, (C) Atorvastatin, (D) Cyclosporine, (E) Furosemide, (F) Tacrolimus, (G) Rosuvastatin, (H) Benzbromarone, (I) Topiroxostat, and (J) Febuxostat. Data are shown as the percentage of vehicle control (without drugs). Values are expressed as mean ± SD (n = 3).
FIGURE 3
FIGURE 3
Inhibition of mouse Abcg2 by febuxostat in vitro and in vivo.(A) Dose-dependent inhibition of mouse Abcg2 by febuxostat in vitro. The urate transport activities of mouse Abcg2 were measured in the presence of febuxostat at the indicated concentrations. Data are shown as the percentage of vehicle control (without febuxostat). Values are expressed as mean ± SD (n = 3). (B) Time-dependent changes in sulfasalazine plasma concentration with the pre-administration of febuxostat. Twenty minutes after the oral administration of febuxostat (n = 4) or vehicle (n = 7), sulfasalazine was orally administered to WT mice. The blood samples were collected at the indicated periods, and the plasma concentrations of sulfasalazine were determined using LC/MS/MS. Values are expressed as mean ± SEM. (C) AUC 0-120 min of sulfasalazine in WT and Abcg2 KO mice with or without pre-administration of febuxostat. Twenty minutes after the oral administration of febuxostat (n = 4 for both WT and Abcg2 KO) or vehicle (n = 7 and 5 for WT and Abcg2 KO, respectively), sulfasalazine was orally administered to WT and Abcg2 KO mice. The blood samples were collected at 15, 30, 60, 90, and 120 min and then the plasma concentrations of sulfasalazine were determined using LC/MS/MS. AUC 0-120 min was determined for each group using the well-used trapezoidal rule. Values are expressed as mean ± SEM. Statistical analyses for significant differences were performed using two-way ANOVA followed by Tukey–Kramer method; ∗p < 0.05 vs. vehicle control WT mice; N.S., not significantly different among groups.
FIGURE 4
FIGURE 4
Inhibitory effect of serum uric acid (SUA)-affecting drugs on the urate transport activities mediated by ABCG2 and URAT1.(A) Expression of FLAG-URAT1 on 293A cells. Whole cell lysates (30 μg) of transient FLAG-URAT1-expressing 293A cells were subjected to western blot analysis using anti-FLAG or anti-Na+/K+-ATPase antibody. (B) Time-dependent increase of urate transport into FLAG-URAT1-expressing 293A cells. Values are expressed as mean ± SD (n = 3). (C) Effects of each SUA-affecting drug on the urate transport activities of ABCG2 and URAT1. The urate transport activities of ABCG2 and URAT1 were evaluated in the presence of 3 μM of each SUA-affecting drug. Data are shown as the percentage of vehicle control (without drugs). Values are expressed as mean ± SD (n = 3). Individual data for each drug are shown in Supplementary Figure S1.
FIGURE 5
FIGURE 5
Summary of potential effects of inhibiting ABCG2 in vivo.(A) Schematic illustration of potential precautions and putative application of febuxostat as an ABCG2 inhibitor. (B) Schematic illustration of canceled out mechanism of benzbromarone, febuxostat and topiroxostat as SUA-lowering drugs. ALA, 5-aminolevulinic acid; Feb, febuxostat; Top, topiroxostat; Ben, benzbromarone.

References

    1. Allen J. D., van Loevezijn A., Lakhai J. M., van der Valk M., van Tellingen O., Reid G., et al. (2002). Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol. Cancer Ther. 1 417–425.
    1. Arellano F., Sacristan J. A. (1993). Allopurinol hypersensitivity syndrome: a review. Ann. Pharmacother. 27 337–343.
    1. Cruess-Callaghan A., FitzGerald O. (1966). A mechanism of nicotinic acid-induced hyperuricaemia. Ir. J. Med. Sci. 6 484–487. 10.1007/BF02943214
    1. Cullen J. H., Early L. J., Fiore J. M. (1956). The occurrence of hyperuricemia during pyrazinamide-isoniazid therapy. Am. Rev. Tuberc. 74 289–292.
    1. Doyle L. A., Yang W., Abruzzo L. V., Krogmann T., Gao Y., Rishi A. K., et al. (1998). A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. U.S.A. 95 15665–15670. 10.1073/pnas.95.26.15665
    1. Enomoto A., Kimura H., Chairoungdua A., Shigeta Y., Jutabha P., Cha S. H., et al. (2002). Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 417 447–452.
    1. Giacomini K. M., Huang S. M., Tweedie D. J., Benet L. Z., Brouwer K. L., Chu X., et al. (2010). Membrane transporters in drug development. Nat. Rev. Drug Discov. 9 215–236. 10.1038/nrd3028
    1. Gutman A. B., Yu T. F., Randolph V. (1954). Further observation on the uricosuric effects of probenecid (benemid) in tophaceous gout. Trans. Assoc. Am. Physicians 67 250–260.
    1. Haimeur A., Conseil G., Deeley R. G., Cole S. P. (2004). The MRP-related and BCRP/ABCG2 multidrug resistance proteins: biology, substrate specificity and regulation. Curr. Drug Metab. 5 21–53. 10.2174/1389200043489199
    1. Harvengt C., Heller F., Desager J. P. (1980). Hypolipidemic and hypouricemic action of fenofibrate in various types of hyperlipoproteinemias. Artery 7 73–82.
    1. Hayashi H., Takada T., Suzuki H., Onuki R., Hofmann A. F., Sugiyama Y. (2005). Transport by vesicles of glycine- and taurine-conjugated bile salts and taurolithocholate 3-sulfate: a comparison of human BSEP with rat Bsep. Biochim. Biophys. Acta 1738 54–62. 10.1016/j.bbalip.2005.10.006
    1. Healey L. A., Magid G. J., Decker J. L. (1959). Uric acid retention due to hydrochlorothiazide. N. Engl. J. Med. 261 1358–1362. 10.1056/NEJM195912312612702
    1. Hyafil F., Vergely C., Du Vignaud P., Grand-Perret T. (1993). In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res 53 4595–4602.
    1. Ichida K., Matsuo H., Takada T., Nakayama A., Murakami K., Shimizu T., et al. (2012). Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun. 3 764 10.1038/ncomms1756
    1. Ishikawa I., Maekawa S., Saito T., Horiguchi T., Shinoda A., Ishii H. (1986). [Mizoribine-induced hyperuricemia]. Nihon Jinzo Gakkai Shi 28 1353–1357.
    1. Ishikawa T., Kajimoto Y., Inoue Y., Ikegami Y., Kuroiwa T. (2015). Critical role of ABCG2 in ALA-photodynamic diagnosis and therapy of human brain tumor. Adv. Cancer Res. 125 197–216. 10.1016/bs.acr.2014.11.008
    1. Ito N., Ito K., Ikebuchi Y., Kito T., Miyata H., Toyoda Y., et al. (2014). Organic cation transporter/solute carrier family 22a is involved in drug transfer into milk in mice. J. Pharm. Sci. 103 3342–3348. 10.1002/jps.24138
    1. Ito N., Ito K., Ikebuchi Y., Toyoda Y., Takada T., Hisaka A., et al. (2015). Prediction of drug transfer into milk considering Breast Cancer Resistance Protein (BCRP)-mediated transport. Pharm. Res. 32 2527–2537. 10.1007/s11095-015-1641-2
    1. Jonker J. W., Buitelaar M., Wagenaar E., Van Der Valk M. A., Scheffer G. L., Scheper R. J., et al. (2002). The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc. Natl. Acad. Sci. U.S.A. 99 15649–15654. 10.1073/pnas.202607599
    1. Juvale K., Wiese M. (2015). Design of inhibitors of BCRP/ABCG2. Future Med Chem 7 1521–1527. 10.4155/fmc.15.83
    1. Kamper A., Nielsen A. H. (2001). Uricosuric effect of losartan in renal transplanted patients. Transplant. Proc. 33 1201 10.1016/S0041-1345(00)02385-X
    1. Kanbay M., Akcay A., Huddam B., Usluogullari C. A., Arat Z., Ozdemir F. N., et al. (2005). Influence of cyclosporine and tacrolimus on serum uric acid levels in stable kidney transplant recipients. Transplant. Proc. 37 3119–3120. 10.1016/j.transproceed.2005.08.042
    1. Kelley W. N., Grobner W., Holmes E. (1973). Current concepts in the pathogenesis of hyperuricemia. Metabolism 22 939–959. 10.1016/0026-0495(73)90066-8
    1. Keskitalo J. E., Zolk O., Fromm M. F., Kurkinen K. J., Neuvonen P. J., Niemi M. (2009). ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin. Pharmacol. Ther. 86 197–203. 10.1038/clpt.2009.79
    1. Larson K. B., Wang K., Delille C., Otofokun I., Acosta E. P. (2014). Pharmacokinetic enhancers in HIV therapeutics. Clin. Pharmacokinet. 53 865–872. 10.1007/s40262-014-0167-9
    1. Lee C. A., O’Connor M. A., Ritchie T. K., Galetin A., Cook J. A., Ragueneau-Majlessi I., et al. (2015). Breast cancer resistance protein (ABCG2) in clinical pharmacokinetics and drug interactions: practical recommendations for clinical victim and perpetrator drug-drug interaction study design. Drug Metab. Dispos. 43 490–509. 10.1124/dmd.114.062174
    1. Magni P., Macchi C., Morlotti B., Sirtori C. R., Ruscica M. (2015). Risk identification and possible countermeasures for muscle adverse effects during statin therapy. Eur. J. Intern. Med. 26 82–88. 10.1016/j.ejim.2015.01.002
    1. Mao Q., Unadkat J. D. (2015). Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport–an update. AAPS J. 17 65–82. 10.1208/s12248-014-9668-6
    1. Massey P. R., Okman J. S., Wilkerson J., Cowen E. W. (2015). Tyrosine kinase inhibitors directed against the vascular endothelial growth factor receptor (VEGFR) have distinct cutaneous toxicity profiles: a meta-analysis and review of the literature. Support. Care Cancer 23 1827–1835. 10.1007/s00520-014-2520-9
    1. Matsumoto K., Okamoto K., Ashizawa N., Nishino T. (2011). FYX-051: a novel and potent hybrid-type inhibitor of xanthine oxidoreductase. J. Pharmacol. Exp. Ther. 336 95–103. 10.1124/jpet.110.174540
    1. Matsuo H., Nakayama A., Sakiyama M., Chiba T., Shimizu S., Kawamura Y., et al. (2014). ABCG2 dysfunction causes hyperuricemia due to both renal urate underexcretion and renal urate overload. Sci. Rep. 4 3755 10.1038/srep03755
    1. Matsuo H., Takada T., Ichida K., Nakamura T., Nakayama A., Ikebuchi Y., et al. (2009). Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Sci. Transl. Med. 1 5ra11 10.1126/scitranslmed.3000237
    1. Mizuno T., Terada T., Kamba T., Fukudo M., Katsura T., Nakamura E., et al. (2010). ABCG2 421C > A polymorphism and high exposure of sunitinib in a patient with renal cell carcinoma. Ann. Oncol. 21 1382–1383. 10.1093/annonc/mdq150
    1. Nicholaou T., Wong R., Davis I. D. (2007). Tumour lysis syndrome in a patient with renal-cell carcinoma treated with sunitinib malate. Lancet 369 1923–1924. 10.1016/S0140-6736(07)60903-9
    1. Ogata N., Fujimori S., Oka Y., Kaneko K. (2010). Effects of three strong statins (atorvastatin, pitavastatin, and rosuvastatin) on serum uric acid levels in dyslipidemic patients. Nucleosides Nucleotides Nucleic Acids 29 321–324. 10.1080/15257771003741323
    1. Okamoto K., Eger B. T., Nishino T., Kondo S., Pai E. F., Nishino T. (2003). An extremely potent inhibitor of xanthine oxidoreductase. Crystal structure of the enzyme-inhibitor complex and mechanism of inhibition. J. Biol. Chem. 278 1848–1855. 10.1074/jbc.M208307200
    1. Osada Y., Tsuchimoto M., Fukushima H., Takahashi K., Kondo S., Hasegawa M., et al. (1993). Hypouricemic effect of the novel xanthine oxidase inhibitor, TEI-6720, in rodents. Eur. J. Pharmacol. 241 183–188. 10.1016/0014-2999(93)90201-R
    1. Palasuberniam P., Yang X., Kraus D., Jones P., Myers K. A., Chen B. (2015). ABCG2 transporter inhibitor restores the sensitivity of triple negative breast cancer cells to aminolevulinic acid-mediated photodynamic therapy. Sci Rep 5 13298 10.1038/srep13298
    1. Palestine A. G., Nussenblatt R. B., Chan C. C. (1984). Side effects of systemic cyclosporine in patients not undergoing transplantation. Am. J. Med. 77 652–656. 10.1016/0002-9343(84)90356-5
    1. Postlethwaite A. E., Bartel A. G., Kelley W. N. (1972). Hyperuricemia due to ethambutol. N. Engl. J. Med. 286 761–762. 10.1056/NEJM197204062861407
    1. Powles T., Perry J., Shamash J., Liu W., Oliver T., Joel S. (2007). A comparison of the platinum analogues in bladder cancer cell lines. Urol Int 79 67–72. 10.1159/000102917
    1. Ricci J. W., Lovato D. M., Severns V., Sklar L. A., Larson R. S. (2016). Novel ABCG2 antagonists reverse topotecan-mediated chemotherapeutic resistance in ovarian carcinoma xenografts. Mol. Cancer Ther. 15 2853–2862. 10.1158/1535-7163.MCT-15-0789
    1. Richette P., Perez-Ruiz F., Doherty M., Jansen T. L., Nuki G., Pascual E., et al. (2014). Improving cardiovascular and renal outcomes in gout: what should we target? Nat. Rev. Rheumatol. 10 654–661. 10.1038/nrrheum.2014.124
    1. Stiburkova B., Miyata H., Zavada J., Tomcik M., Pavelka K., Storkanova G., et al. (2016). Novel dysfunctional variant in ABCG2 as a cause of severe tophaceous gout: biochemical, molecular genetics and functional analysis. Rheumatology (Oxford) 55 191–194. 10.1093/rheumatology/kev350
    1. Szakacs G., Paterson J. K., Ludwig J. A., Booth-Genthe C., Gottesman M. M. (2006). Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 5 219–234. 10.1038/nrd1984
    1. Takada T., Yamanashi Y., Konishi K., Yamamoto T., Toyoda Y., Masuo Y., et al. (2015). NPC1L1 is a key regulator of intestinal vitamin K absorption and a modulator of warfarin therapy. Sci. Transl. Med. 7 275ra223 10.1126/scitranslmed.3010329
    1. Takano Y., Hase-Aoki K., Horiuchi H., Zhao L., Kasahara Y., Kondo S., et al. (2005). Selectivity of febuxostat, a novel non-purine inhibitor of xanthine oxidase/xanthine dehydrogenase. Life Sci. 76 1835–1847. 10.1016/j.lfs.2004.10.031
    1. Thomas D. W., Edwards J. B., Edwards R. G. (1975). Side effects of sugar substitutes during intravenous administration. Nutr. Metab. 18(Suppl. 1), 227–241. 10.1159/000175635
    1. Tomlinson B., Hu M., Lee V. W., Lui S. S., Chu T. T., Poon E. W., et al. (2010). ABCG2 polymorphism is associated with the low-density lipoprotein cholesterol response to rosuvastatin. Clin. Pharmacol. Ther 87 558–562. 10.1038/clpt.2009.232
    1. Toyoda Y., Hagiya Y., Adachi T., Hoshijima K., Kuo M. T., Ishikawa T. (2008). MRP class of human ATP binding cassette (ABC) transporters: historical background and new research directions. Xenobiotica 38 833–862. 10.1080/00498250701883514
    1. Toyoda Y., Takada T., Miyata H., Ishikawa T., Suzuki H. (2016a). Regulation of the axillary osmidrosis-associated ABCC11 protein stability by N-linked glycosylation: effect of glucose condition. PLoS ONE 11:e0157172 10.1371/journal.pone.0157172
    1. Toyoda Y., Takada T., Suzuki H. (2016b). Halogenated hydrocarbon solvent-related cholangiocarcinoma risk: biliary excretion of glutathione conjugates of 1,2-dichloropropane evidenced by untargeted metabolomics analysis. Sci. Rep. 6 24586 10.1038/srep24586
    1. Watts R. W., Watts J. E., Seegmiller J. E. (1965). Xanthine oxidase activity in human tissues and its inhibition by allopurinol (4-hydroxypyrazolo[3,4-d] pyrimidine). J. Lab. Clin. Med. 66 688–697.
    1. Wiese M. D., Alotaibi N., O’Doherty C., Sorich M. J., Suppiah V., Cleland L. G., et al. (2014). Pharmacogenomics of NAT2 and ABCG2 influence the toxicity and efficacy of sulphasalazine containing DMARD regimens in early rheumatoid arthritis. Pharmacogenomics J. 14 350–355. 10.1038/tpj.2013.45
    1. Woodward O. M., Kottgen A., Coresh J., Boerwinkle E., Guggino W. B., Kottgen M. (2009). Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc. Natl. Acad. Sci. U.S.A. 106 10338–10342. 10.1073/pnas.0901249106
    1. Yamamoto T., Moriwaki Y., Suda M., Takahashi S., Hiroishi K., Higashino K. (1991). Theophylline-induced increase in plasma uric acid–purine catabolism increased by theophylline. Int. J. Clin. Pharmacol. Ther. Toxicol. 29 257–261.
    1. Yamanaka H. (2011). Japanese guideline for the management of hyperuricemia and gout: second edition. Nucleosides Nucleotides Nucleic Acids 30 1018–1029. 10.1080/15257770.2011.596496
    1. Yamasaki Y., Ieiri I., Kusuhara H., Sasaki T., Kimura M., Tabuchi H., et al. (2008). Pharmacogenetic characterization of sulfasalazine disposition based on NAT2 and ABCG2 (BCRP) gene polymorphisms in humans. Clin. Pharmacol. Ther. 84 95–103. 10.1038/sj.clpt.6100459
    1. Yamashita N., Enjoji M., Kotoh K., Kato M., Ueda A., Horikawa Y., et al. (2008). Investigation of hyperuricemia during pegylated-interferon-alpha2b plus ribavirin combination therapy in patients with chronic hepatitis C. J. Dig. Dis. 9 27–31. 10.1111/j.1443-9573.2007.00316.x
    1. Yu T. F., Gutman A. B. (1959). Study of the paradoxical effects of salicylate in low, intermediate and high dosage on the renal mechanisms for excretion of urate in man. J. Clin. Invest. 38 1298–1315. 10.1172/JCI103905
    1. Zaher H., Khan A. A., Palandra J., Brayman T. G., Yu L., Ware J. A. (2006). Breast cancer resistance protein (Bcrp/abcg2) is a major determinant of sulfasalazine absorption and elimination in the mouse. Mol. Pharm. 3 55–61. 10.1021/mp050113v

Source: PubMed

3
구독하다