The effectiveness of early colchicine administration in patients over 60 years old with high risk of developing severe pulmonary complications associated with coronavirus pneumonia SARS-CoV-2 (COVID-19): study protocol for an investigator-driven randomized controlled clinical trial in primary health care-COLCHICOVID study

Elena Bustamante Estebanez, Lucía Lavín Alconero, Beatriz Josa Fernández, Monica Gozalo Marguello, Juan Carlos López Caro, Jonathan Diez Vallejo, Marta Fernandez Sampedro, Pedro Muñoz Cacho, Carlos Richard Espiga, María Mar García Saiz, Elena Bustamante Estebanez, Lucía Lavín Alconero, Beatriz Josa Fernández, Monica Gozalo Marguello, Juan Carlos López Caro, Jonathan Diez Vallejo, Marta Fernandez Sampedro, Pedro Muñoz Cacho, Carlos Richard Espiga, María Mar García Saiz

Abstract

Background: There is no strong evidence that any drug is beneficial either for the treatment of SARS-CoV-2 disease or for post-exposure prophylaxis. Therefore, clinical research is crucial to generate results and evaluate strategies against COVID-19. Primary care (PC) centers, the first level of care in the health system, are in a favorable position to carry out clinical trials (CD), as they work with a large volume of patients with varied profiles (from acute to chronic pathologies). During the COVID-19 pandemic, the need for hospital admission and mortality is higher in people > 60 years. Therefore, this is a target population to try to reduce the serious complications and lethality of COVID pneumonia and to avoid overloading the hospital system. Given the pharmacological properties of colchicine (anti-inflammatory and anti-fibrotic, possible inhibition of viral replication, and inhibitory effect on coagulation activation), early treatment with colchicine may reduce the rate of death and serious pulmonary complications from COVID-19 in vulnerable patients.

Methods: The COLCHICOVID study is a randomized, multicenter, controlled, open-label parallel group (2:1 ratio), phase III clinical trial to investigate the efficacy of early administration of colchicine in reducing the development of severe pulmonary complications associated with COVID-19 infection in patients over 60 years of age with at-risk comorbidities.

Discussion: This is a pragmatic clinical trial, adapted to usual clinical practice. The demonstration that early administration of colchicine has clinical effectiveness in reducing the complications of SARS-CoV-2 infection in a population highly susceptible may mitigate the health crisis and prevent the collapse of the health system in the successive waves of the coronavirus pandemic. In addition, colchicine is a well-known medicine, simple to use in the primary care setting and with a low cost for the health system.

Trial registration: ClinicalTrials.gov NCT04416334 . Registered on 4 June 2020. Protocol version: v 3.0, dated 22 September 2020.

Keywords: Colchicine; Coronavirus; Early treatment; No hospitalized; Primary health care.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2021. The Author(s).

References

    1. World Health Organization. Director-General’s remarks at the media briefing on 2019-nCoV on 11 February 2020. . (Accessed on 12 Feb 2020).
    1. Centers for Disease Control and Prevention. Interim clinical guidance for management of patients with confirmed 2019 novel coronavirus (2019-nCoV) infection, updated February 12, 2020. . (Accessed on 14 Feb 2020).
    1. Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020. 10.1001/jama.2020.4683.
    1. Karamanou M, Tsoucalas G, Pantos K, Androutsos G. Isolating colchicine in 19th century: an old drug revisited. Curr Pharm Des. 2018;24(6):654–658. doi: 10.2174/1381612824666180115105850.
    1. Alkadi H, Khubeiz MJ, Jbeily R. Colchicine: a review on chemical structure and clinical usage. Infect Disord Drug Targets. 2018;18(2):105–121. doi: 10.2174/1871526517666171017114901.
    1. Slobodnick A, Shah B, Krasnokutsky S, Pillinger MH. Update on colchicine, 2017. Rheumatology (Oxford) 2018;57(suppl1):i4–i11. doi: 10.1093/rheumatology/kex453.
    1. Andreu JM, Timasheff SN. Tubulin bound to colchicine forms polymers different from microtubules. Proc Natl Acad Sci USA. 1982;79(22):6753–6756. doi: 10.1073/pnas.79.22.6753.
    1. Sackett DL, Varma JK. Molecular mechanism of colchicine action: induced local unfolding of beta-tubulin. Biochemistry. 1993;32(49):13560–13565. doi: 10.1021/bi00212a023.
    1. Vandecandelaere A, Martin SR, Engelborghs Y. Response of microtubules to the addition of colchicine and tubulin-colchicine: evaluation of models for the interaction of drugs with microtubules. Biochem J. 1997;323(1):189–196. doi: 10.1042/bj3230189.
    1. Cronstein BN, Molad Y, Reibman J, Balakhane E, Levin RI, Weissmann G. Colchicine alters the quantitative and qualitative display of selectins on endothelial cells and neutrophils. J Clin Invest. 1995;96(2):994–1002. doi: 10.1172/JCI118147.
    1. Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237–241. doi: 10.1038/nature04516.
    1. Leung YY, Yao Hui LL, Kraus VB. Colchicine--update on mechanisms of action and therapeutic uses. Semin Arthritis Rheum. 2015;45(3):341–350. doi: 10.1016/j.semarthrit.2015.06.013.
    1. Lu N, Yang Y, Liu H, et al. Inhibition of respiratory syncytial virus replication and suppression of RSV-induced airway inflammation in neonatal rats by colchicine. 3 Biotech. 2019;9(11):392. doi: 10.1007/s13205-019-1917-z.
    1. Worachartcheewan A, Songtawee N, Siriwong S, Prachayasittikul S, Nantasenamat C, Prachayasittikul V. Rational design of colchicine derivatives as anti-HIV agents via QSAR and molecular docking. Med Chem. 2019;15(4):328–340. doi: 10.2174/1573406414666180924163756.
    1. Richter M, Boldescu V, Graf D, Streicher F, Dimoglo A, Bartenschlager R, Klein CD. Synthesis, biological evaluation, and molecular docking of combretastatin and colchicine derivatives and their hCE1-activated prodrugs as antiviral agents. Chem Med Chem. 2019;14(4):469–483. doi: 10.1002/cmdc.201800641.
    1. Gultekin N, Kucukates E. Microtubule inhibition therapy by colchicine in severe myocarditis especially caused by Epstein-Barr and cytomegalovirus co-infection during a two-year period: a novel therapeutic approach. J Pak Med Assoc. 2014;64(12):1420–1423.
    1. Vukomanovic V, Prijic S, Krasic S, Borovic R, Ninic S, Nesic D, Bjelakovic B, Popovic S, Stajević M, Petrović G. Does colchicine substitute corticosteroids in treatment of idiopathic and viral pediatric pericarditis? Medicina (Kaunas). 2019;55(10):609. doi: 10.3390/medicina55100609.
    1. Farag NS, Breitinger U, Breitinger HG, El Azizi MA. Viroporins and inflammasomes: a key to understand virus-induced inflammation. Int J Biochem Cell Biol. 2020;122:105738. doi: 10.1016/j.biocel.2020.105738.
    1. Nieto-Torres JL, Verdiá-Báguena C, Jimenez-Guardeño JM, et al. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology. 2015;485:330–339. doi: 10.1016/j.virol.2015.08.010.
    1. Chen IY, Moriyama M, Chang MF, Ichinohe T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front Microbiol. 2019;10:50. doi: 10.3389/fmicb.2019.00050.
    1. Castaño-Rodriguez C, Honrubia JM, Gutiérrez-Álvarez J, et al. Role of severe acute respiratory syndrome coronavirus viroporins E, 3a, and 8a in replication and pathogenesis. mBio. 2018;9(3):e02325–e02317. doi: 10.1128/mBio.02325-17.
    1. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein [published online ahead of print, 2020 Mar 6] Cell. 2020;181(2):281–292.e6. doi: 10.1016/j.cell.2020.02.058.
    1. Wang H, Yang P, Liu K, Guo F, Zhang Y, Zhang G, Jiang C. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res. 2008;18(2):290–301. doi: 10.1038/cr.2008.15.
    1. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1–23. doi: 10.1007/978-1-4939-2438-7_1.
    1. Naghavi MH, Walsh D. Microtubule regulation and function during virus infection. J Virol. 2017;91(16):e00538–e00517. doi: 10.1128/JVI.00538-17.
    1. Lester SN, Li K. Toll-like receptors in antiviral innate immunity. J Mol Biol. 2014;426(6):1246–1264. doi: 10.1016/j.jmb.2013.11.024.
    1. Compeer EB, Flinsenberg TW, Boon L, Hoekstra ME, Boes M. Tubulation of endosomal structures in human dendritic cells by Toll-like receptor ligation and lymphocyte contact accompanies antigen cross-presentation. J Biol Chem. 2014;289(1):520–528. doi: 10.1074/jbc.M113.511147.
    1. Muruve DA, Pétrilli V, Zaiss AK, White LR, Clark SA, Ross PJ, Parks RJ, Tschopp J. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature. 2008;452(7183):103–107. doi: 10.1038/nature06664.
    1. Lai CC, Liu YH, Wang CY, Wang YH, Hsueh SC, Yen MY, Ko WC, Hsueh PR. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): facts and myths. J Microbiol Immunol Infect. 2020;53(3):404–412. doi: 10.1016/j.jmii.2020.02.012.
    1. Pedersen SF, Ho YC. SARS-CoV-2: a storm is raging. J Clin Invest.2020 May 1;130(5):2202-2205. 10.1172/JCI137647.
    1. Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy [published online ahead of print, 2020 Apr 6]. JAMA. 2020. 10.1001/jama.2020.5394.
    1. Jackson SP, Darbousset R, Schoenwaelder SM. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood. 2019;133(9):906–918. doi: 10.1182/blood-2018-11-882993.
    1. Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020;135(23):2033–2040. doi: 10.1182/blood.2020006000.
    1. Reddel CJ, Pennings GJ, Curnow JL, Chen VM, Kritharides L. Procoagulant effects of low-level platelet activation and its inhibition by colchicine. Thromb Haemost. 2018;118(4):723–733. doi: 10.1055/s-0038-1636915.
    1. Shah B, Allen N, Harchandani B, Pillinger M, Katz S, Sedlis SP, Echagarruga C, Samuels SK, Morina P, Singh P, Karotkin L, Berger JS. Effect of colchicine on platelet-platelet and platelet-leukocyte interactions: a pilot study in healthy subjects [published correction appears in Inflammation. 2016 Feb;39(1):501] Inflammation. 2016;39(1):182–189. doi: 10.1007/s10753-015-0237-7.
    1. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi: 10.1016/s0140-6736(20)30566-3.
    1. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846–848. doi: 10.1007/s00134-020-05991-x.
    1. Liu PP, Blet A, Smyth D, Li H. The science underlying COVID-19: implications for the cardiovascular system. Circulation. 2020;142(1):68–78. doi: 10.1161/CIRCULATIONAHA.120.047549.
    1. Calkins H, Hendricks G, Capitol R, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary. J Arrhythmia. 2017;33(5):369–409. doi: 10.1016/j.joa.2017.08.001.
    1. Hemkens LG, Ewald H, Gloy VL, Arpagaus A, Olu KK, Nidorf M, Glinz D, Nordmann AJ, Briel M. Cardiovascular effects and safety of long-term colchicine treatment: Cochrane review and meta-analysis. Heart. 2016;102(8):590–596. doi: 10.1136/heartjnl-2015-308542.
    1. Tardif JC, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, Pinto FJ, Ibrahim R, Gamra H, Kiwan GS, Berry C, López-Sendón J, Ostadal P, Koenig W, Angoulvant D, Grégoire JC, Lavoie MA, Dubé MP, Rhainds D, Provencher M, Blondeau L, Orfanos A, L’Allier PL, Guertin MC, Roubille F. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med. 2019;381(26):2497–2505.42. doi: 10.1056/NEJMoa1912388.
    1. Lopes MI, Bonjorno LP, Giannini MC, Amaral NB, Menezes PI, Dib SM, Gigante SL, Benatti MN, Rezek UC, Emrich-Filho LL, Sousa BAA, Almeida SCL, Luppino Assad R, Veras FP, Schneider A, Rodrigues TS, Leiria LOS, Cunha LD, Alves-Filho JC, Cunha TM, Arruda E, Miranda CH, Pazin-Filho A, Auxiliadora-Martins M, Borges MC, Fonseca BAL, Bollela VR, del-Ben CM, Cunha FQ, Zamboni DS, Santana RC, Vilar FC, Louzada-Junior P, Oliveira RDR. Beneficial effects of colchicine for moderate to severe COVID-19: a randomised, double-blinded, placebo-controlled clinical trial. RMD Open. 2021;7(1):e001455. doi: 10.1136/rmdopen-2020-001455.
    1. Deftereos SG, Giannopoulos G, Vrachatis DA, et al. Effect of colchicine vs standard care on cardiac and inflammatory biomarkers and clinical outcomes in patients hospitalized with coronavirus disease 2019: the GRECCO-19 randomized clinical trial. JAMA Netw Open. 2020;3(6):e2013136. doi: 10.1001/jamanetworkopen.2020.13136.
    1. Tardif JC, Bouabdallaoui N, L'Allier PL, et al. Colchicine for community-treated patients with COVID-19 (COLCORONA): a phase 3, randomised, double-blinded, adaptive, placebo-controlled, multicentre trial. Lancet Respir Med. 2021; S2213-2600(21)00222-8. 10.1016/S2213-2600(21)00222-8.
    1. Sandhu T, Tieng A, Chilimuri S, Franchin G. A case control study to evaluate the impact of colchicine on patients admitted to the hospital with moderate to severe COVID-19 infection. Can J Infect Dis Med Microbiol. 2020;2020:8865954. doi: 10.1155/2020/8865954.
    1. Scarsi M, Piantoni S, Colombo E, Airó P, Richini D, Miclini M, Bertasi V, Bianchi M, Bottone D, Civelli P, Cotelli MS, Damiolini E, Galbassini G, Gatta D, Ghirardelli ML, Magri R, Malamani P, Mendeni M, Molinari S, Morotti A, Salada L, Turla M, Vender A, Tincani A, Brucato A, Franceschini F, Furloni R, Andreoli L. Association between treatment with colchicine and improved survival in a single-centre cohort of adult hospitalised patients with COVID-19 pneumonia and acute respiratory distress syndrome. Ann Rheum Dis. 2020;79(10):1286–1289. doi: 10.1136/annrheumdis-2020-217712.
    1. Manenti L, Maggiore U, Fiaccadori E, Meschi T, Antoni AD, Nouvenne A, Ticinesi A, Cerundolo N, Prati B, Delsante M, Gandoflini I, Donghi L, Gentile M, Farina MT, Oliva V, Zambrano C, Regolisti G, Palmisano A, Caminiti C, Cocchi E, Ferrari C, Riella LV, Cravedi P, Peruzzi L. Reduced mortality in COVID-19 patients treated with colchicine: results from a retrospective, observational study. PLoS One. 2021;16(3):e0248276. doi: 10.1371/journal.pone.0248276.
    1. Pinzon MA, Arango DC, Betancur JP, et al. Clinical outcome of patients with COVID-19 pneumonia treated with corticosteroids and colchicine in Colombia. Res Square. 2020. 10.21203/-94922/v1.
    1. Rodriguez-Nava G, Trelles-Garcia DP, Yanez-Bello MA, et al. Atorvastatin associated with decreased hazard for death in COVID-19 patients admitted to an ICU: a retrospective cohort study. Crit Care. 2020;24(1):429. doi: 10.1186/s13054-020-03154-4.
    1. Brunetti L, Diawara O, Tsai A, Firestein BL, Nahass RG, Poiani G, Schlesinger N. Colchicine to weather the cytokine storm in hospitalized patients with COVID-19. J Clin Med. 2020;9(9):2961. doi: 10.3390/jcm9092961.
    1. Colchicine treatment can improve outcomes of coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. Clin Exp Pharmacol Physiol. 2021;48(6):823–30. 10.1111/1440-1681.13488.
    1. World Health Organization 2020. Home care for patients with suspected or confirmed COVID-19 and management of their contacts on 23 August 2020. . (Accessed on 24 Aug 2020).

Source: PubMed

3
구독하다