Evaluation of highly sensitive diagnostic tools for the detection of P. falciparum in pregnant women attending antenatal care visits in Colombia

A M Vásquez, G Vélez, A Medina, E Serra-Casas, A Campillo, I J Gonzalez, S C Murphy, A M Seilie, X C Ding, A Tobón Castaño, A M Vásquez, G Vélez, A Medina, E Serra-Casas, A Campillo, I J Gonzalez, S C Murphy, A M Seilie, X C Ding, A Tobón Castaño

Abstract

Background: In low transmission settings early diagnosis is the main strategy to reduce adverse outcomes of malaria in pregnancy; however, microscopy and rapid diagnostic tests (RDTs) are inadequate for detecting low-density infections. We studied the performance of the highly sensitive-RDT (hsRDT) and the loop mediated isothermal DNA amplification (LAMP) for the detection of P. falciparum in pregnant women.

Methods: A cross-sectional study was conducted in two malaria-endemic municipalities in Colombia. We screened pregnant women in the context of an antenatal care program in health facilities and evaluated five tests (microscopy, conventional RDT, hsRDT, LAMP and nested polymerase chain reaction-PCR) for the detection of P. falciparum in peripheral blood, using a quantitative reverse transcription PCR (qRT-PCR) as the reference standard. Diagnostic performance of hsRDT and LAMP were compared with routine testing.

Results: The prevalence of P. falciparum was 4.5% by qRT-PCR, half of those infections were subpatent. The sensitivity of the hsRDT (64.1%) was slightly better compared to microscopy and cRDT (59 and 53.8% respectively). LAMP had the highest sensitivity (89.7%) for detecting P. falciparum and the ability to detect very low-density infections (minimum parasite density detected 0.08 p/μL).

Conclusions: There is an underestimation of Plasmodium spp. infections by tests routinely used in pregnant women attending antenatal care visits. LAMP methodology can be successfully implemented at local hospitals in malaria-endemic areas. The relevance of detecting and treating this sub-patent P. falciparum infections in pregnant women should be evaluated.

Trial registration: ClinicalTrials.gov, Identifier: NCT03172221 , Date of registration: May 29, 2017.

Keywords: Diagnostics; Loop mediated isothermal DNA amplification (LAMP); Malaria in pregnancy; Microscopy; Nucleic acid amplification techniques; Rapid diagnostic test.

Conflict of interest statement

All authors: No reported conflicts of interest.

Figures

Fig. 1
Fig. 1
Study participant flow and testing results for P. falciparum. The chart shows the total number of pregnant women recruited, as well as the overall number of P. falciparum infections detected by each test. Red and bold text: Discrepant results when compared with the reference test. Pos. (positive); Neg. (negative); LM (Light Microscopy); cRDT (conventional Rapid Diagnostic Test); hsRDT (highly sensitive Rapid Diagnostic Test); nPCR (nested Polymerase Chain reaction), LAMP (Loop-mediated isothermal amplification), qRT-PCR (Quantitative Reverse Transcription polymerase chain reaction)
Fig. 2
Fig. 2
Venn diagram of P. falciparum positivity by different diagnostic methods. a Positivity by the index tests (hsRDT and LAMP), and the reference test (qRT-PCR); (b) & (c) Positivity by the standards of practice (LM and cRDT), the reference test (qRT-PCR) and one of the index tests (hsRDT & LAMP, respectively); (d) Positivity by the nucleic-acid amplification tests (nPCR, LAMP, qRT-PCR). Testing conducted in 858 pregnant women during antenatal care visits
Fig. 3
Fig. 3
Distribution of P. falciparum parasitemias among infected pregnant women, according to positivity by different diagnostic methods. Distribution of parasite densities in 38 samples with P. falciparum positivity by qRT-PCR, according to detection by cRDT or hsRDT (a and b) and by LAMP and hsRDT (c and d). −, negative; +, positive

References

    1. Bardají A, Martínez-Espinosa FE, Arévalo-Herrera M, Padilla N, Kochar S, Ome-Kaius M, Bôtto-Menezes C, Castellanos ME, Kochar DK, Kochar SK, et al. Burden and impact of Plasmodium vivax in pregnancy: a multi-Centre prospective observational study. PLoS Negl Trop Dis. 2017;11(6):e0005606.
    1. Desai M, ter Kuile FO, Nosten F, McGready R, Asamoa K, Brabin B, Newman RD. Epidemiology and burden of malaria in pregnancy. Lancet Infect Dis. 2007;7(2):93–104.
    1. Moore KA, Simpson JA, Scoullar MJL, McGready R, Fowkes FJI. Quantification of the association between malaria in pregnancy and stillbirth: a systematic review and meta-analysis. Lancet Glob Health. 2017;5(11):e1101–e1112.
    1. Rogerson SJ, Desai M, Mayor A, Sicuri E, Taylor SM, van Eijk AM. Burden, pathology, and costs of malaria in pregnancy: new developments for an old problem. Lancet Infect Dis. 2018;18(4):e107–e118.
    1. Dellicour S, Tatem AJ, Guerra CA, Snow RW, ter Kuile FO. Quantifying the number of pregnancies at risk of malaria in 2007: a demographic study. PLoS Med. 2010;7(1):e1000221.
    1. Padilla J, Montoya R. Guía de Atención Clínica de Malaria. Infectio. 2011;15(4):215–323.
    1. Yanow SK, Gavina K, Gnidehou S, Maestre A. Impact of malaria in pregnancy as Latin America approaches elimination. Trends Parasitol. 2016;32(5):416–427.
    1. Kattenberg JH, Ochodo EA, Boer KR, Schallig HD, Mens PF, Leeflang MM. Systematic review and meta-analysis: rapid diagnostic tests versus placental histology, microscopy and PCR for malaria in pregnant women. Malar J. 2011;10:321.
    1. Uneke CJ. Diagnosis of Plasmodium falciparum malaria in pregnancy in sub-Saharan Africa: the challenges and public health implications. Parasitol Res. 2008;102(3):333–342.
    1. Campos IM, Uribe ML, Cuesta C, Franco-Gallego A, Carmona-Fonseca J, Maestre A. Diagnosis of gestational, congenital, and placental malaria in Colombia: comparison of the efficacy of microscopy, nested polymerase chain reaction, and histopathology. Am J Trop Med Hyg. 2011;84(6):929–935.
    1. Agudelo O, Arango E, Maestre A, Carmona-Fonseca J. Prevalence of gestational, placental and congenital malaria in north-West Colombia. Malar J. 2013;12:341.
    1. Arango EM, Samuel R, Agudelo OM, Carmona-Fonseca J, Maestre A, Yanow SK. Molecular detection of malaria at delivery reveals a high frequency of submicroscopic infections and associated placental damage in pregnant women from Northwest Colombia. Am J Trop Med Hyg. 2013;89(1):178–183.
    1. Gavina K, Gnidehou S, Arango E, Hamel-Martineau C, Mitran C, Agudelo O, Lopez C, Karidio A, Banman S, Carmona-Fonseca J, et al. Clinical Outcomes of Submicroscopic Infections and Correlates of Protection of VAR2CSA Antibodies in a Longitudinal Study of Pregnant Women in Colombia. Infect Immun. 2018;86(4):e00797–e00717.
    1. Vásquez AM, Zuluaga L, Tobón A, Posada M, Vélez G, González IJ, Campillo A, Ding X. Diagnostic accuracy of loop-mediated isothermal amplification (LAMP) for screening malaria in peripheral and placental blood samples from pregnant women in Colombia. Malar J. 2018;17(1):262.
    1. Vásquez AM, Medina AC, Tobón-Castaño A, Posada M, Vélez GJ, Campillo A, González IJ, Ding X. Performance of a highly sensitive rapid diagnostic test (HS-RDT) for detecting malaria in peripheral and placental blood samples from pregnant women in Colombia. PLoS One. 2018;13(8):e0201769.
    1. Fried M, Muehlenbachs A, Duffy PE. Diagnosing malaria in pregnancy: an update. Expert Rev Anti-Infect Ther. 2012;10(10):1177–1187.
    1. Ahmed R, Levy EI, Maratina SS, de Jong JJ, Asih PB, Rozi IE, Hawley W, Syafruddin D, ter Kuile F. Performance of four HRP-2/pLDH combination rapid diagnostic tests and field microscopy as screening tests for malaria in pregnancy in Indonesia: a cross-sectional study. Malar J. 2015;14:420.
    1. Umbers AJ, Unger HW, Rosanas-Urgell A, Wangnapi RA, Kattenberg JH, Jally S, Silim S, Lufele E, Karl S, Ome-Kaius M, et al. Accuracy of an HRP-2/panLDH rapid diagnostic test to detect peripheral and placental Plasmodium falciparum infection in Papua new Guinean women with anaemia or suspected malaria. Malar J. 2015;14:412.
    1. Kyabayinze DJ, Zongo I, Cunningham J, Gatton M, Angutoko P, Ategeka J, Compaoré YD, Muehlenbachs A, Mulondo J, Nakalembe M, et al. HRP2 and pLDH-based rapid diagnostic tests, expert microscopy, and PCR for detection of malaria infection during pregnancy and at delivery in areas of varied transmission: a prospective cohort study in Burkina Faso and Uganda. PLoS One. 2016;11(7):e0156954.
    1. Williams JE, Cairns M, Njie F, Laryea Quaye S, Awine T, Oduro A, Tagbor H, Bojang K, Magnussen P, Ter Kuile FO, et al. The performance of a rapid diagnostic test in detecting malaria infection in pregnant women and the impact of missed infections. Clin Infect Dis. 2016;62(7):837–844.
    1. Britton S, Cheng Q, McCarthy JS. Novel molecular diagnostic tools for malaria elimination: a review of options from the point of view of high-throughput and applicability in resource limited settings. Malar J. 2016;15:88.
    1. Lucchi NW, Ndiaye D, Britton S, Udhayakumar V. Expanding the malaria molecular diagnostic options: opportunities and challenges for loop-mediated isothermal amplification tests for malaria control and elimination. Expert Rev Mol Diagn. 2018;18(2):195–203.
    1. Tegegne B, Getie S, Lemma W, Mohon AN, Pillai DR. Performance of loop-mediated isothermal amplification (LAMP) for the diagnosis of malaria among malaria suspected pregnant women in Northwest Ethiopia. Malar J. 2017;16(1):34.
    1. Das S, Jang IK, Barney B, Peck R, Rek JC, Arinaitwe E, Adrama H, Murphy M, Imwong M, Ling CL, et al. Performance of a high-sensitivity rapid diagnostic test for Plasmodium falciparum malaria in asymptomatic individuals from Uganda and Myanmar and naive human challenge infections. Am J Trop Med Hyg. 2017;97(5):1540–1550.
    1. Landier J, Haohankhunnatham W, Das S, Konghahong K, Christensen P, Raksuansak J, Phattharakokoedbun P, Kajeechiwa L, Thwin MM, Jang IK, et al. Operational Performance of a Plasmodium falciparum Ultrasensitive Rapid Diagnostic Test for Detection of Asymptomatic Infections in Eastern Myanmar. J Clin Microbiol. 2018;56(8):e00565–e00518.
    1. Girma S, Cheaveau J, Mohon AN, Marasinghe D, Legese R, Balasingam N, Abera A, Feleke SM, Golassa L, Pillai DR. Prevalence and epidemiological characteristics of asymptomatic malaria based on ultrasensitive diagnostics: a cross-sectional study. Clin Infect Dis. 2019;9(6):1003-10.
    1. Instituto Nacional de Salud de Colombia. Boletín epidemiológico. []. Accesed Feb 2017.
    1. Departamento Administrativo Nacional de Estadística (DANE). Series de población 1985–2020. Colombia. In: Proyecciones de población a nivel nacional y departamental por sexo y edades simples hasta 80 años y más. []. Accesed Sept 2018.
    1. Dorado EJ, Okoth SA, Montenegro LM, Diaz G, Barnwell JW, Udhayakumar V, Murillo Solano C. Genetic characterisation of Plasmodium falciparum isolates with deletion of the pfhrp2 and/or pfhrp3 genes in Colombia: the Amazon region, a challenge for malaria diagnosis and control. PLoS One. 2016;11(9):e0163137.
    1. Buderer NM. Statistical methodology: I. incorporating the prevalence of disease into the sample size calculation for sensitivity and specificity. Acad Emerg Med. 1996;3(9):895–900.
    1. World Health Organization (WHO) Microscopy for the detection, identification and quantification of malaria parasites on stained thick and thin blood films in research settings (version 1.0): procedure: methods manual. 1 2015.
    1. Rosen M, Dhorda M, Bell D, Gatton M. Obare Method Calculator v.1.0. 2015.
    1. Hopkins H, González IJ, Polley SD, Angutoko P, Ategeka J, Asiimwe C, Agaba B, Kyabayinze DJ, Sutherland CJ, Perkins MD, et al. Highly sensitive detection of malaria parasitemia in a malaria-endemic setting: performance of a new loop-mediated isothermal amplification kit in a remote clinic in Uganda. J Infect Dis. 2013;208(4):645–652.
    1. Singh B, Bobogare A, Cox-Singh J, Snounou G, Abdullah MS, Rahman HA. A genus- and species-specific nested polymerase chain reaction malaria detection assay for epidemiologic studies. Am J Trop Med Hyg. 1999;60(4):687–692.
    1. Murphy SC, Daza G, Chang M, Coombs R. Laser cutting eliminates nucleic acid cross-contamination in dried-blood-spot processing. J Clin Microbiol. 2012;50(12):4128–4130.
    1. Seilie AM, Chang M, Hanron AE, Billman ZP, Stone BC, Zhou K, Olsen TM, Daza G, Ortega J, Cruz KR, et al. Beyond blood smears: qualification of. Am J Trop Med Hyg. 2019;100(6):1466–1476.
    1. Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics. 2015;16:169.
    1. Kattenberg JH, Tahita CM, Versteeg IA, Tinto H, Traoré Coulibaly M, D'Alessandro U, Schallig HD, Mens PF. Evaluation of antigen detection tests, microscopy, and polymerase chain reaction for diagnosis of malaria in peripheral blood in asymptomatic pregnant women in Nanoro, Burkina Faso. Am J Trop Med Hyg. 2012;87(2):251–256.
    1. Hofmann NE, Antunes Moniz C, Holzschuh A, Keitel K, Boillat-Blanco N, Kagoro F, Samaka J, Mbarack Z, Ding XC, González IJ, et al. Diagnostic performance of conventional and ultrasensitive rapid diagnostic tests for malaria in febrile outpatients in Tanzania. J Infect Dis. 2019;219(9):1490–1498.
    1. Rogerson SJ, Meshnick S. Malaria in pregnancy: late consequences of early infections. J Infect Dis. 2019;220(9):1396–8.
    1. Cohee LM, Kalilani-Phiri L, Boudova S, Joshi S, Mukadam R, Seydel KB, Mawindo P, Thesing P, Kamiza S, Makwakwa K, et al. Submicroscopic malaria infection during pregnancy and the impact of intermittent preventive treatment. Malar J. 2014;13:274.
    1. Cottrell G, Moussiliou A, Luty AJ, Cot M, Fievet N, Massougbodji A, Deloron P, Tuikue Ndam N. Submicroscopic Plasmodium falciparum infections are associated with maternal Anemia, premature births, and low birth weight. Clin Infect Dis. 2015;60(10):1481–1488.

Source: PubMed

3
구독하다