Vitamin D and Endothelial Function

Do-Houn Kim, Cesar A Meza, Holly Clarke, Jeong-Su Kim, Robert C Hickner, Do-Houn Kim, Cesar A Meza, Holly Clarke, Jeong-Su Kim, Robert C Hickner

Abstract

Vitamin D is known to elicit a vasoprotective effect, while vitamin D deficiency is a risk factor for endothelial dysfunction (ED). ED is characterized by reduced bioavailability of a potent endothelium-dependent vasodilator, nitric oxide (NO), and is an early event in the development of atherosclerosis. In endothelial cells, vitamin D regulates NO synthesis by mediating the activity of the endothelial NO synthase (eNOS). Under pathogenic conditions, the oxidative stress caused by excessive production of reactive oxygen species (ROS) facilitates NO degradation and suppresses NO synthesis, consequently reducing NO bioavailability. Vitamin D, however, counteracts the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase which produces ROS, and improves antioxidant capacity by enhancing the activity of antioxidative enzymes such as superoxide dismutase. In addition to ROS, proinflammatory mediators such as TNF-α and IL-6 are risk factors for ED, restraining NO and eNOS bioactivity and upregulating the expression of various atherosclerotic factors through the NF-κB pathway. These proinflammatory activities are inhibited by vitamin D by suppressing NF-κB signaling and production of proinflammatory cytokines. In this review, we discuss the diverse activities of vitamin D in regulating NO bioavailability and endothelial function.

Keywords: NO; NOX; ROS; calcitriol; eNOS; endothelial dysfunction; inflammation; nitric oxide; oxidative stress; vitamin D deficiency.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Basic physiology of vitamin D action. Humans obtain vitamin D mainly through endogenous production of previtamin D3 and vitamin D3 in the skin, followed by subsequent conversions in the liver and kidney. When exposed to the sun, 7-dehydrocholesterol converts to previtamin D3 and vitamin D3 by ultraviolet B (UVB) radiation and heat, respectively, in the skin. A small amount of vitamin D can be present in natural food as vitamin D2 and D3. Vitamin D2/D3 go through hydroxylation two times in the liver (vitamin D2/D3 → 25 (OH) D3) and the kidney (25 (OH) D3 → 1α,25 (OH)2D3) to become a biologically active form of vitamin D3, 1α,25 (OH)2D3;1α,25 (OH)2D3 exerts its biological actions by binding to the nuclear vitamin d receptor (VDR), which associates with a retinoid x receptor (RXR) in the nucleus. The VDR/RXR heterodimers bind to the vitamin D response element (VDRE) in the promoter region of vitamin D-regulated genes and initiate expression of various genes. VDR is also found in the plasma membrane, and the liganded plasma membrane VDR activates an intracellular signaling transduction involved in many physiological actions.
Figure 2
Figure 2
Role of vitamin D and vitamin D receptor (VDR) in regulating nitric oxide (NO) bioavailability. Ligand-bound VDR plays an important role in regulating NO synthesis via alterations in eNOS activity. Activation of plasma membrane VDR upregulates the activity of endothelial NO synthase (eNOS), a calcium dependent enzyme, by upregulating the formation of intracellular second messengers including adenylyl cyclase (AC), diacylglycerol (DAG) and inositol trisphosphate (IP3), which in turn result in calcium influx through the voltage-sensitive calcium channel (VSCC) in the plasma membrane and the sarcoplasmic reticulum and through the ip3 receptor/calcium channel (IP3CC) in the sarcoplasmic reticulum. The increased intracellular calcium concentrations facilitate the calcium-calmodulin (CaM) pathway to activate eNOS. In addition, plasma membrane VDR triggers eNOS activation through phosphorylation of serine-1779 (human serine 1177) on eNOS by activating the phosphoinositide 3-kinase (PI3K)/ protein kinase b (Akt) pathway. Furthermore, genetic action of vitamin D via the nuclear VDR promotes eNOS expression, which synthesizes NO from L-arginine, and suppresses arginase-2 (AG2) expression, which inhibits eNOS activity by hydrolyzing the substrate for NO synthesis (arginine) to ornithine and urea. Increased NO production promotes angiogenesis by upregulating gene expression of matrix metalloproteinase 2 (MMP-2) which improves endothelial cell (EC) migration and proliferation capacity. In addition, NO mediates angiogenetic activity of the cell via upregulation of vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) and suppression of the angiogenesis inhibitor, angiostatin.
Figure 3
Figure 3
Antioxidant effect of vitamin D and endothelial function. In pathophysiological conditions, overproduction of reactive oxygen species (ROS), such as superoxide anion (O2−), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and peroxynitrite (ONOO−), outbalances antioxidative defenses and causes oxidative stress, which is implicated to development of endothelial dysfunction. In the cell, ROS are produced by various intracellular sources including mitochondria, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX), xanthine oxidase (XO), and uncoupled endothelial nitric oxide synthase (eNOS). Vitamin D elicits antioxidant effects through upregulating expression of antioxidative enzymes including superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), ascorbic acid (AA), α-tocopherol, and glutathione (GSH) that can scavenge the free radicals. In addition, the genetic action of vitamin D triggers the expression of nuclear respiratory factor 2 (Nrf2), a key transcriptional factor that suppresses ROS production from its various sources and upregulates the expression of the antioxidative enzymes.
Figure 4
Figure 4
Vitamin D, inflammation, and endothelial dysfunction. The chronic inflammation process contributes to developing endothelial dysfunction through proinflammatory cytokine activity. Ligand bound vitamin D receptor (VDR) activation suppresses gene expression of nuclear factor-κB (NF-κB) and tumor necrosis factor (TNF)-α receptors 2 and 4 (TNFRs). The NF-κB is a key transcription factor that promotes expression of various proinflammatory mediators including advanced glycation end products (AGEs), interleukin (IL)-1 and 6, TNF-α, and monocyte chemoattractant protein-(MCP)-1 which are implicated in endothelial dysfunction. Among these proinflammatory cytokines, TNF-α activates the c-Jun N-terminal kinase (JNK) pathway that inhibits endothelial NO synthase (eNOS) activity, consequently resulting in reduction of nitric oxide (NO) bioavailability. In addition, the upregulated JNK pathway induces the formation of superoxide anion O2− from oxygen (O2) through upregulating xanthine oxidase (XO) activity, which further impairs endothelial function via inducing oxidative stress in the cell. Furthermore, TNF-α bound TNFRs trigger the translocation of NF-κB to the nucleus to promote the expression of proinflammatory mediators.

References

    1. Fleming I., Busse R. Signal transduction of eNOS activation. Cardiovasc. Res. 1999;43:532–541. doi: 10.1016/S0008-6363(99)00094-2.
    1. Dedeoglu M., Garip Y., Bodur H. Osteomalacia in Crohn’s disease. Arch. Osteoporos. 2014 doi: 10.1007/s11657-014-0177-0.
    1. Kanikarla-Marie P., Jain S.K. 1,25(OH) 2 D 3 inhibits oxidative stress and monocyte adhesion by mediating the upregulation of GCLC and GSH in endothelial cells treated with acetoacetate (ketosis) J. Steroid Biochem. Mol. Biol. 2016 doi: 10.1016/j.jsbmb.2016.03.002.
    1. Bischoff H., Borchers M., Gudat F., Duermueller U., Theiler R., Stähelin H., Dick W. In Situ Detection of 1,25-dihydroxyvitamin D Receptor In human Skeletal Muscle Tissue. Histochem. J. 2001;33:19–24. doi: 10.1023/A:1017535728844.
    1. Napoli C., De Nigris F., Williams-Ignarro S., Pignalosa O., Sica V., Ignarro L.J. Nitric oxide and atherosclerosis: An update. Nitric Oxide Biol. Chem. 2006;15:265–279. doi: 10.1016/j.niox.2006.03.011.
    1. González-Molero I., Rojo-Martínez G., Morcillo S., Gutiérrez C., Rubio-Martín E., Pérez-Valero V., Esteva I., De Adana M.S.R., Almaraz M.C., Colomo N., et al. Hypovitaminosis D and incidence of obesity: A prospective study. Eur. J. Clin. Nutr. 2013;67:680–682. doi: 10.1038/ejcn.2013.48.
    1. Sokol S.I., Srinivas V., Crandall J.P., Kim M., Tellides G., Lebastchi A., Yu Y., Gupta A.K., Alderman M.H. The effects of vitamin D repletion on endothelial function and inflammation in patients with coronary artery disease. Vasc. Med. 2012 doi: 10.1177/1358863X12466709.
    1. Labudzynskyi D.O., Zaitseva O.V., Latyshko N.V., Gud Kova O.O., Veliky M.M. Vitamin D3 contribution to the regulation of oxidative metabolism in the liver of diabetic mice. Ukr. Biochem. J. 2015;87:75–90. doi: 10.15407/ubj87.03.075.
    1. Barthelmes J., Nägele M.P., Ludovici V., Ruschitzka F., Sudano I., Flammer A.J. Endothelial dysfunction in cardiovascular disease and Flammer syndrome-similarities and differences. EPMA J. 2017;8:99–109. doi: 10.1007/s13167-017-0099-1.
    1. Zhang Q.-Y., Jiang C., Sun C., Tang T.-F., Jin B., Cao D.-W., He J., Zhang M. Hypovitaminosis D is associated with endothelial dysfunction in patients with non-dialysis chronic kidney disease. J. Nephrol. 2014;28:471–476. doi: 10.1007/s40620-014-0167-8.
    1. Equils O., Naiki Y., Shapiro A.M., Michelsen K., Lu D., Adams J., Jordan S. 1,25-Dihydroxyvitamin D 3 inhibits lipopolysaccharide-induced immune activation in human endothelial cells. Clin. Exp. Immunol. 2006 doi: 10.1111/j.1365-2249.2005.02961.x.
    1. Zella J.B., DeLuca H.F. Vitamin D and autoimmune diabetes. J. Cell. Biochem. 2003;88:216–222. doi: 10.1002/jcb.10347.
    1. Holick M.F. Vitamin D and bone health. J. Nutr. 1996;126:1159S–1164S. doi: 10.1093/jn/126.suppl_4.1159S.
    1. Deluca H.F., Cantorna M.T. Vitamin D: Its role and uses in immunology. FASEB J. 2001;15:2579–2585. doi: 10.1096/fj.01-0433rev.
    1. Dulak J., Józkowicz A., Dembinska-Kiec A., Guevara I., Zdzienicka A., Zmudzinska-Grochot D., Florek I., Wójtowicz A., Szuba A., Cooke J.P. Nitric oxide induces the synthesis of vascular endothelial growth factor by rat vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. :2000. doi: 10.1161/01.ATV.20.3.659.
    1. Bouillon R., Carmeliet G., Verlinden L., Van Etten E., Verstuyf A., Luderer H.F., Lieben L., Mathieu C., DeMay M. Vitamin D and human health: Lessons from vitamin D receptor null mice. Endocr. Rev. 2008;29:726–776. doi: 10.1210/er.2008-0004.
    1. Radomski M.W., Palmer R.M.J., Moncada S. The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium. Biochem. Biophys. Res. Commun. 1987 doi: 10.1016/S0006-291X(87)80299-1.
    1. Ramagopalan S.V., Heger A., Berlanga A.J., Maugeri N.J., Lincoln M.R., Burrell A., Handunnetthi L., Handel A., Disanto G., Orton S.-M., et al. A ChIP-seq defined genome-wide map of vitamin D receptor binding: Associations with disease and evolution. Genome Res. 2010;20:1352–1360. doi: 10.1101/gr.107920.110.
    1. Suzuki Y.J., Forman H.J., Sevanian A. Oxidants as stimulators of signal transduction. Free Radic. Biol. Med. 1997 doi: 10.1016/S0891-5849(96)00275-4.
    1. Haussler M.R., Haussler C.A., Jurutka P.W., Thompson P.D., Hsieh J.C., Remus L.S., Selznick S.H., Whitfield G.K. The vitamin D hormone and its nuclear receptor: Molecular actions and disease states. J. Endocrinol. 1997;154(Suppl.):S57–S73.
    1. Holick M.F. Vitamin D: Importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis. Am. J. Clin. Nutr. 2004;79:362–371. doi: 10.1093/ajcn/79.3.362.
    1. Lakshmi S.V.V., Padmaja G., Kuppusamy P., Kutala V.K. Oxidative stress in cardiovascular disease. Indian J. Biochem. Biophys. 2009;46:421–440.
    1. Hingorani A.D. Polymorphisms in endothelial nitric oxide synthase and atherogenesis: John French Lecture 2000. Atherosclerosis. 2001;154:521–527. doi: 10.1016/S0021-9150(00)00699-7.
    1. Donato A.J., Pierce G.L., Lesniewski L.A., Seals D.R. Role of NFkappaB in age-related vascular endothelial dysfunction in humans. Aging. 2009;1:678–680. doi: 10.18632/aging.100080.
    1. Feghali C.A., Wright T.M. Cytokines in acute and chronic inflammation. Front. Biosci. 1997;2:d12–d16.
    1. Haussler M.R., Whitfield G.K., Kaneko I., Haussler C.A., Hsieh D., Hsieh J.C., Jurutka P.W. Molecular mechanisms of vitamin D action. Calcif. Tissue Int. 2013 doi: 10.1007/s00223-012-9619-0.
    1. Forrest K.Y.Z., Stuhldreher W.L. Prevalence and correlates of vitamin D deficiency in US adults. Nutr. Res. 2011 doi: 10.1016/j.nutres.2010.12.001.
    1. Dharmashankar K., Widlansky M.E. Vascular endothelial function and hypertension: Insights and directions. Curr. Hypertens. Rep. 2010;12:448–455. doi: 10.1007/s11906-010-0150-2.
    1. Guzik T.J., Harrison D.G. Endothelial NF-κB as a mediator of kidney damage: The missing link between systemic vascular and renal disease? Circ. Res. 2007;101:227–229. doi: 10.1161/CIRCRESAHA.107.158295.
    1. Hussin A.M., Ashor A.W., Schoenmakers I., Hill T., Mathers J.C., Siervo M. Effects of vitamin D supplementation on endothelial function: A systematic review and meta-analysis of randomised clinical trials. Eur. J. Nutr. 2017;56:1095–1104. doi: 10.1007/s00394-016-1159-3.
    1. Higashi Y., Noma K., Yoshizumi M., Kihara Y. Endothelial function and oxidative stress in cardiovascular diseases. Circ. J. 2009;73:411–418. doi: 10.1253/circj.CJ-08-1102.
    1. Sadeghi K., Wessner B., Laggner U., Ploder M., Tamandl D., Friedl J., Zügel U., Steinmeyer A., Pollak A., Roth E., et al. Vitamin D3 down-regulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular patterns. Eur. J. Immunol. 2006;36:361–370. doi: 10.1002/eji.200425995.
    1. Vazquez G., de Boland A.R., Boland R. Stimulation of Ca2+Release-Activated Ca2+Channels as a Potential Mechanism Involved in Non-Genomic 1,25(OH)2-Vitamin D3-Induced Ca2+Entry in Skeletal Muscle Cells. Biochem. Biophys. Res. Commun. 1997;239:562–565. doi: 10.1006/bbrc.1997.7501.
    1. Cayatte A.J., Palacino J.J., Horten K., Cohen R.A. Chronic inhibition of nitric oxide production accelerates neointima formation and impairs endothelial function in hypercholesterolemic rabbits. Arterioscler. Thromb. Vasc. Biol. 1994 doi: 10.1161/01.ATV.14.5.753.
    1. Oldham K.M., Bowen P.E. Oxidative stress in critical care: Is antioxidant supplementation beneficial? J. Am. Diet. Assoc. 1998;98:1001–1008. doi: 10.1016/S0002-8223(98)00230-2.
    1. Igari K., Kudo T., Toyofuku T., Inoue Y. Endothelial Dysfunction of Patients with Peripheral Arterial Disease Measured by Peripheral Arterial Tonometry. Int. J. Vasc. Med. 2016 doi: 10.1155/2016/3805380.
    1. Ignarro L. The Pharmacological and Physiological Role of Cyclic GMP in Vascular Smooth Muscle Relaxation. Annu. Rev. Pharmacol. Toxicol. 1985 doi: 10.1146/annurev.pa.25.040185.001131.
    1. Tohari A.M., Alhasani R.H., Biswas L., Patnaik S.R., Reilly J., Zeng Z., Shu X. Vitamin D attenuates oxidative damage and inflammation in retinal pigment epithelial cells. Antioxidants. 2019;8:341. doi: 10.3390/antiox8090341.
    1. Abdali D., Samson S.E., Grover A.K. How effective are antioxidant supplements in obesity and diabetes? Med. Princ. Pract. 2015;24:201–215. doi: 10.1159/000375305.
    1. Furchgott R.F., Zawadzki J.V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 doi: 10.1038/288373a0.
    1. Polidoro L., Properzi G., Marampon F., Gravina G.L., Festuccia C., Di Cesare E., Scarsella L., Ciccarelli C., Zani B.M., Ferri C. Vitamin D protects human endothelial cells from H2O2 oxidant injury through the Mek/Erk-sirt1 axis activation. J. Cardiovasc. Transl. Res. 2013 doi: 10.1007/s12265-012-9436-x.
    1. Nakai K., Fujii H., Kono K., Goto S., Kitazawa R., Kitazawa S., Hirata M., Shinohara M., Fukagawa M., Nishi S. Vitamin D activates the Nrf2-keap1 antioxidant pathway and ameliorates nephropathy in diabetic rats. Am. J. Hypertens. 2014 doi: 10.1093/ajh/hpt160.
    1. Brandenburg V.M., Vervloet M.G., Marx N. The role of vitamin D in cardiovascular disease: From present evidence to future perspectives. Atherosclerosis. 2012;225:253–263. doi: 10.1016/j.atherosclerosis.2012.08.005.
    1. Andrukhova O., Slavic S., Zeitz U., Riesen S.C., Heppelmann M.S., Ambrisko T.D., Markovic M., Kuebler W.M., Erben R.G. Vitamin D is a regulator of endothelial nitric oxide synthase and arterial stiffness in mice. Mol. Endocrinol. 2014 doi: 10.1210/me.2013-1252.
    1. Li Y.C., Pirro A.E., Amling M., Delling G., Baron R., Bronson R., Demay M.B. Targeted ablation of the vitamin D receptor: An animal model of vitamin D-dependent rickets type II with alopecia. Proc. Natl. Acad. Sci. USA. 1997 doi: 10.1073/pnas.94.18.9831.
    1. Fleet J.C. Rapid, Membrane-Initiated Actions of 1,25 Dihydroxyvitamin D: What Are They and What Do They Mean? J. Nutr. 2004 doi: 10.1093/jn/134.12.3215.
    1. Busse R., Fleming I. Regulation and functional consequences of endothelial nitric oxide formation. Ann. Med. 1995 doi: 10.3109/07853899509002586.
    1. Schiffrin E.L. A critical review of the role of endothelial factors in the pathogenesis of hypertension. J. Cardiovasc. Pharmacol. 2002;38:S3–S5. doi: 10.1097/00005344-200111002-00002.
    1. Umans J. Nitric Oxide in the Regulation of Blood Flow and Arterial Pressure. Annu. Rev. Physiol. 1995 doi: 10.1146/annurev.ph.57.030195.004011.
    1. Vazquez G., De Boland A.R. Involvement of protein kinase C in the modulation of 1α,25-dihydroxy-vitainin D3-induced 45Ca2+ uptake in rat and chick cultured myoblasts. Biochim. Biophys. Acta Mol. Cell Res. 1996;1310:157–162. doi: 10.1016/0167-4889(95)00158-1.
    1. Busse R., Mülsch A. Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. FEBS Lett. 1990 doi: 10.1016/0014-5793(90)80902-U.
    1. Buitrago C., Pardo V.G., Boland R. Role of VDR in 1α,25-dihydroxyvitamin D3-dependent non-genomic activation of MAPKs, Src and Akt in skeletal muscle cells. J. Steroid Biochem. Mol. Biol. 2013;136:125–130. doi: 10.1016/j.jsbmb.2013.02.013.
    1. Molinari C., Rizzi M., Squarzanti D.F., Pittarella P., Vacca G., Renò F. 1α,25-dihydroxycholecalciferol (vitamin D3) induces NO-dependent endothelial cell proliferation and migration in a three-dimensional matrix. Cell. Physiol. Biochem. 2013;31:815–822. doi: 10.1159/000350099.
    1. Mazidi M., Karimi E., Rezaie P., Vatanparast H. The impact of vitamin D supplement intake on vascular endothelial function; a systematic review and meta-analysis of randomized controlled trials. Food Nutr. Res. 2016;61:1273574. doi: 10.1080/16546628.2016.1273574.
    1. Griendling K.K., Sorescu D., Lassègue B., Ushio-Fukai M. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler. Thromb. Vasc. Biol. 2000;20:2175–2183. doi: 10.1161/01.ATV.20.10.2175.
    1. Michell B.J., Griffiths J.E., Mitchelhill K.I., Rodriguez-Crespo I., Tiganis T., Bozinovski S., de Montellano P.R.O., Kemp B.E., Pearson R.B. The Akt kinase signals directly to endothelial nitric oxide synthase. Curr. Biol. 1999 doi: 10.1016/S0960-9822(99)80371-6.
    1. Pietsch E.C., Chan J.Y., Torti F.M., Torti S.V. Nrf2 mediates the induction of ferritin H in response to xenobiotics and cancer chemopreventive dithiolethiones. J. Biol. Chem. 2003 doi: 10.1074/jbc.M210664200.
    1. Babaei S., Teichert-Kuliszewska K., Monge J.C., Mohamed F., Bendeck M.P., Stewart D.J. Role of nitric oxide in the angiogenic response in vitro to basic fibroblast growth factor. Circ. Res. 1998 doi: 10.1161/01.RES.82.9.1007.
    1. Chen C.H., Henry P.D. Atherosclerosis as a microvascular disease: Impaired angiogenesis mediated by suppressed basic fibroblast growth factor expression. Proc. Assoc. Am. Physicians. 1997;109:351–361.
    1. Palmer R.M.J., Ashton D.S., Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988 doi: 10.1038/333664a0.
    1. Ziche M., Morbidelli L., Masini E., Amerini S., Granger H.J., Maggi C.A., Geppetti P., Ledda F. Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J. Clin. Investig. 1994 doi: 10.1172/JCI117557.
    1. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7:405–410. doi: 10.1016/S1360-1385(02)02312-9.
    1. Doroudi M., Schwartz Z., Boyan B.D. Membrane-mediated actions of 1,25-dihydroxy vitamin D3: A review of the roles of phospholipase A2 activating protein and Ca2+/calmodulin-dependent protein kinase II. J. Steroid Biochem. Mol. Biol. 2015;147:81–84. doi: 10.1016/j.jsbmb.2014.11.002.
    1. Lundwall K., Jacobson S.H., Jörneskog G., Spaak J. Treating endothelial dysfunction with vitamin D in chronic kidney disease: A meta-analysis. BMC Nephrol. 2018;19:1–7. doi: 10.1186/s12882-018-1042-y.
    1. Ziche M., Parenti A., Ledda F., DelL’Era P., Granger H.J., Maggi C.A., Presta M. Nitric oxide promotes proliferation and plasminogen activator production by coronary venular endothelium through endogenous bFGF. Circ. Res. 1997 doi: 10.1161/01.RES.80.6.845.
    1. Meier B., Radeke H.H., Selle S., Younes M., Sies H., Resch K., Habermehl G.G. Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumour necrosis factor-α. Biochem. J. 1989 doi: 10.1042/bj2630539.
    1. Hernández-Presa M., Bustos C., Ortego M., Tuñon J., Renedo G., Ruiz-Ortega M., Egido J. Angiotensin-converting enzyme inhibition prevents arterial nuclear factor-κB activation, monocyte chemoattractant protein-1 expression, and macrophage infiltration in a rabbit model of early accelerated atherosclerosis. Circulation. 1997 doi: 10.1161/01.CIR.95.6.1532.
    1. Maulik N., Das D.K. Redox signaling in vascular angiogenesis. Free Radic. Biol. Med. 2002 doi: 10.1016/S0891-5849(02)01005-5.
    1. Ning C., Liu L., Lv G., Yang Y., Zhang Y., Yu R., Wang Y., Zhu J. Lipid metabolism and inflammation modulated by Vitamin D in liver of diabetic rats. Lipids Health Dis. 2015;14:31. doi: 10.1186/s12944-015-0030-5.
    1. Kwak M.K., Egner P.A., Dolan P.M., Ramos-Gomez M., Groopman J.D., Itoh K., Yamamoto M., Kensler T.W. Role of phase 2 enzyme induction in chemoprotection by dithiolethiones. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2001 doi: 10.1016/S0027-5107(01)00190-7.
    1. Grandi N.C., Breitling L.P., Brenner H. Vitamin D and cardiovascular disease: Systematic review and meta-analysis of prospective studies. Prev. Med. 2010;51:228–233. doi: 10.1016/j.ypmed.2010.06.013.
    1. Martínez-Miguel P., Valdivielso J.M., Medrano-Andrés D., Román-García P., Cano-Peñalver J.L., Rodríguez-Puyol M., Rodríguez-Puyol D., López-Ongil S. The active form of vitamin D, calcitriol, induces a complex dual upregulation of endothelin and nitric oxide in cultured endothelial cells. Am. J. Physiol. Endocrinol. Metab. 2014 doi: 10.1152/ajpendo.00156.2014.
    1. Suzuki Y., Ichiyama T., Ohsaki A., Hasegawa S., Shiraishi M., Furukawa S. Anti-inflammatory effect of 1α,25-dihydroxyvitamin D3 in human coronary arterial endothelial cells: Implication for the treatment of Kawasaki disease. J. Steroid Biochem. Mol. Biol. 2009 doi: 10.1016/j.jsbmb.2008.12.004.
    1. Cosentino F., Christopher Sill J., Katušić Z.S. Role of superoxide anions in the mediation of endothelium-dependent contractions. Hypertension. 1994 doi: 10.1161/01.HYP.23.2.229.
    1. Kendrick J., Andrews E., You Z., Moreau K., Nowak K.L., Farmer-Bailey H., Seals D.R., Chonchol M. Cholecalciferol, calcitriol, and vascular function in CKD a randomized, double-blind trial. Clin. J. Am. Soc. Nephrol. 2017 doi: 10.2215/CJN.01870217.
    1. Zalba G., José G.S., Moreno M.U., Fortuño M.A., Fortuño A., Beaumont F.J., Díez J. Oxidative stress in arterial hypertension role of NAD(P)H oxidase. Hypertension. 2001;38:1395–1399. doi: 10.1161/hy1201.099611.
    1. Verma S., Anderson T.J. Fundamentals of Endothelial Function for the Clinical Cardiologist. Circulation. 2002;105:546–549. doi: 10.1161/hc0502.104540.
    1. Beckman J.S., Koppenol W.H. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and the ugly. Am. J. Physiol. Cell Physiol. 1996;271:C1424–C1437. doi: 10.1152/ajpcell.1996.271.5.C1424.
    1. Khafaji H.A.H., Al Suwaidi J. Endothelial dysfunction in diabetes mellitus. Vasc. Heal. Risk Manag. 2007;3:853–876.
    1. Zou M.-H., Shi C., Cohen R.A. Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J. Clin. Investig. 2013;109:817–826. doi: 10.1172/JCI0214442.
    1. Hewitt N.A., O’Connor A.A., O’Shaughnessy D.V., Elder G.J. Effects of cholecalciferol on functional, biochemical, vascular, and quality of life outcomes in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2013;8:1143–1149. doi: 10.2215/CJN.02840312.
    1. Codoñer-Franch P., Tavárez-Alonso S., Simó-Jordá R., Laporta-Martín P., Carratalá-Calvo A., Alonso-Iglesias E. Vitamin D status is linked to biomarkers of oxidative stress, inflammation, and endothelial activation in obese children. J. Pediatr. 2012;161:848–854. doi: 10.1016/j.jpeds.2012.04.046.
    1. Victor V.M., Rocha M., Solá E., Bañuls C., Garcia-Malpartida K., Hernandez-Mijares A. Oxidative stress, endothelial dysfunction and atherosclerosis. Curr. Pharm. Des. 2009;15:2988–3002. doi: 10.2174/138161209789058093.
    1. Kim Y.C., Masutani H., Yamaguchi Y., Itoh K., Yamamoto M., Yodoi J. Hemin-induced activation of the thioredoxin gene by Nrf2: A differential regulation of the antioxidant responsive element by a switch of its binding factors. J. Biol. Chem. 2001 doi: 10.1074/jbc.M100103200.
    1. Kono K., Fujii H., Nakai K., Goto S., Kitazawa R., Kitazawa S., Shinohara M., Hirata M., Fukagawa M., Nishi S. Anti-oxidative effect of vitamin d analog on incipient vascular lesion in non-obese type 2 diabetic rats. Am. J. Nephrol. 2013;37:167–174. doi: 10.1159/000346808.
    1. Pittarella P., Squarzanti D.F., Molinari C., Invernizzi M., Uberti F., Renò F. NO-dependent proliferation and migration induced by Vitamin D in HUVEC. J. Steroid Biochem. Mol. Biol. 2015;149:35–42. doi: 10.1016/j.jsbmb.2014.12.012.
    1. Jain S.K., Micinski D., Huning L., Kahlon G., Bass P.F., Levine S.N. Vitamin D and L-cysteine levels correlate positively with GSH and negatively with insulin resistance levels in the blood of type 2 diabetic patients. Eur. J. Clin. Nutr. 2014 doi: 10.1038/ejcn.2014.114.
    1. Jablonski K.L., Chonchol M., Pierce G.L., Walker A.E., Seals D.R. 25-Hydroxyvitamin D deficiency is associated with inflammation-linked vascular endothelial dysfunction in middle-aged and older adults. Hypertension. 2011;57:63–69. doi: 10.1161/HYPERTENSIONAHA.110.160929.
    1. Montenegro K.R., Cruzat V., Carlessi R., Newsholme P. Mechanisms of vitamin D action in skeletal muscle. Nutr. Res. Rev. 2019 doi: 10.1017/S0954422419000064.
    1. Chan K., Kan Y.W. Nrf2 is essential for protection against acute pulmonary injury in mice. Proc. Natl. Acad. Sci. USA. 1999;96:12731–12736. doi: 10.1073/pnas.96.22.12731.
    1. Cho H.Y., Jedlicka A.E., Reddy S.P.M., Kensler T.W., Yamamoto M., Zhang L.Y., Kleeberger S.R. Role of NRF2 in protection against hyperoxic lung injury in mice. Am. J. Respir. Cell Mol. Biol. 2002;26:175–182. doi: 10.1165/ajrcmb.26.2.4501.
    1. Ignarro L.J. Nitric oxide. A novel signal transduction mechanism for transcellular communication. Hypertension. 1990;16:477–483. doi: 10.1161/01.HYP.16.5.477.
    1. Kerr S., Brosnan M.J., McIntyre M., Reid J.L., Dominiczak A.F., Hamilton C.A. Superoxide anion production is increased in a model of genetic hypertension: Role of the endothelium. Hypertension. 1999 doi: 10.1161/01.HYP.33.6.1353.
    1. Kissner R., Nauser T., Bugnon P., Lye P.G., Koppenol W.H. Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, pulse radiolysis. Chem. Res. Toxicol. 1997 doi: 10.1021/tx970160x.
    1. Pierce G.L., Lesniewski L.A., Lawson B.R., Beske S.D., Seals D.R. Nuclear factor-κB activation contributes to vascular endothelial dysfunction via oxidative stress in overweight/obese middle-aged and older humans. Circulation. 2009 doi: 10.1161/CIRCULATIONAHA.108.804294.
    1. Tesarik J., Mendoza C. Direct non-genomic effects of follicular steroids on maturing human oocytes: Oestrogen versus androgen antagonism. Hum. Reprod. Update. 1997;3:95–100. doi: 10.1093/humupd/3.2.95.
    1. Zhang H., Zhuang X.-D., Meng F.-H., Chen L., Dong X.-B., Liu G.-H., Li J.-H., Dong Q., Xu J.-D., Yang C.-T. Calcitriol prevents peripheral RSC96 Schwann neural cells from high glucose & methylglyoxal-induced injury through restoration of CBS/H 2 S expression. Neurochem. Int. 2016;92:49–57.
    1. Antuna-Puente B., Feve B., Fellahi S., Bastard J.-P. Adipokines: The missing link between insulin resistance and obesity. Diabetes Metab. 2008;34:2–11. doi: 10.1016/j.diabet.2007.09.004.
    1. Ertek S., Akgül E., Cicero A.F., Kütük U., Demirtaş S., Çehreli S., Erdoǧan G. 25-hydroxy vitamin D levels and endothelial vasodilator function in normotensive women. Arch. Med. Sci. 2012 doi: 10.5114/aoms.2012.27280.
    1. Song Y., Wang L., Pittas A.G., Del Gobbo L.C., Zhang C., Manson J.E., Hu F.B. Blood 25-hydroxy vitamin D levels and incident type 2 diabetes: A meta-analysis of prospective studies. Diabetes Care. 2013;36:1422–1428. doi: 10.2337/dc12-0962.
    1. Brezinski E., Follansbee M., Armstrong E., Armstrong A. Endothelial Dysfunction and the Effects of TNF Inhibitors on the Endothelium in Psoriasis and Psoriatic Arthritis: A Systematic Review. Curr. Pharm. Des. 2014 doi: 10.2174/138161282004140213123852.
    1. Bergholm R., Leirisalo-Repo M., Vehkavaara S., Mäkimattila S., Taskinen M.R., Yki-Järvinen H. Impaired responsiveness to NO in newly diagnosed patients with rheumatoid arthritis. Arterioscler. Thromb. Vasc. Biol. 2002 doi: 10.1161/01.ATV.0000033516.73864.4E.
    1. Ishii T., Itoh K., Takahashi S., Sato H., Yanagawa T., Katoh Y., Bannai S., Yamamoto M. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J. Biol. Chem. 2000 doi: 10.1074/jbc.275.21.16023.
    1. Csiszar A., Wang M., Lakatta E.G., Ungvari Z. Inflammation and endothelial dysfunction during aging: Role of NF-κB. J. Appl. Physiol. 2008;105:1333–1341. doi: 10.1152/japplphysiol.90470.2008.
    1. De Winther M.P.J., Kanters E., Kraal G., Hofker M.H. Nuclear factor κB signaling in atherogenesis. Arterioscler. Thromb. Vasc. Biol. 2005;25:904–914. doi: 10.1161/01.ATV.0000160340.72641.87.
    1. Papapetropoulos A., García-Cardeña G., Madri J.A., Sessa W.C. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J. Clin. Investig. 1997 doi: 10.1172/JCI119868.
    1. Donato A.J., Black A.D., Jablonski K.L., Gano L.B., Seals D.R. Aging is associated with greater nuclear NFκB, reduced IκBα, and increased expression of proinflammatory cytokines in vascular endothelial cells of healthy humans. Aging Cell. 2008;7:805–812. doi: 10.1111/j.1474-9726.2008.00438.x.
    1. Grundmann M., Haidar M., Placzko S., Niendorf R., Darashchonak N., Hubel C.A., Von Versen-Höynck F. Vitamin D improves the angiogenic properties of endothelial progenitor cells. Am. J. Physiol. Cell Physiol. 2012 doi: 10.1152/ajpcell.00030.2012.
    1. Wang G.P., Deng Z.D., Ni J., Qu Z.L. Oxidized low density lipoprotein and very low density lipoprotein enhance expression of monocyte chemoattractant protein-1 in rabbit peritoneal exudate macrophages. Atherosclerosis. 1997 doi: 10.1016/S0021-9150(97)00109-3.
    1. Zhang C., Hein T.W., Wang W., Ren Y., Shipley R.D., Kuo L. Activation of JNK and xanthine oxidase by TNF-α impairs nitric oxide-mediated dilation of coronary arterioles. J. Mol. Cell. Cardiol. 2006 doi: 10.1016/j.yjmcc.2005.11.010.
    1. Yang J., Park Y., Zhang H., Gao X., Wilson E., Zimmer W., Abbott L., Zhang C. Role of MCP-1 in tumor necrosis factor-α-induced endothelial dysfunction in type 2 diabetic mice. Am. J. Physiol. Hear. Circ. Physiol. 2009 doi: 10.1152/ajpheart.00396.2009.
    1. Wang E.W., Siu P., Pang M.Y.C., Woo J., Collins A.R., Benzie I. Vitamin D deficiency, oxidative stress and antioxidant status: Only weak association seen in the absence of advanced age, obesity or pre-existing disease. Br. J. Nutr. 2017;118:11–16. doi: 10.1017/S000711451700188X.
    1. Giulietti A., Van Etten E., Overbergh L., Stoffels K., Bouillon R., Mathieu C. Monocytes from type 2 diabetic patients have a pro-inflammatory profile. 1,25-Dihydroxyvitamin D3 works as anti-inflammatory. Diabetes Res. Clin. Pract. 2007;77:47–57. doi: 10.1016/j.diabres.2006.10.007.
    1. Holick M.F. Vitamin D deficiency. N. Engl. J. Med. 2007;357:266–281. doi: 10.1056/NEJMra070553.
    1. Zhang Y., Leung N.Y.M., Richers B.N., Liu Y., Remigio L.K., Riches D.W., Goleva E. Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J. Immunol. 2012;188:2127–2135. doi: 10.4049/jimmunol.1102412.
    1. Ebihara K., Masuhiro Y., Kitamoto T., Suzawa M., Uematsu Y., Yoshizawa T., Ono T., Harada H., Matsuda K., Hasegawa T., et al. Intron retention generates a novel isoform of the murine vitamin D receptor that acts in a dominant negative way on the vitamin D signaling pathway. Mol. Cell. Biol. 1996;16:3393–3400. doi: 10.1128/MCB.16.7.3393.
    1. Sugden J.A., Davies J.I., Witham M.D., Morris A.D., Struthers A.D. Vitamin D improves endothelial function in patients with Type 2 diabetes mellitus and low vitamin D levels. Diabet. Med. 2008 doi: 10.1111/j.1464-5491.2007.02360.x.
    1. Cohen-Lahav M., Shany S., Tobvin D., Chaimovitz C., Douvdevani A. Vitamin D decreases NFkappaB activity by increasing IkappaBalpha levels. Nephrol. Dial. Transpl. 2006;21:889–897. doi: 10.1093/ndt/gfi254.
    1. Revelli A., Massobrio M., Tesarik J. Nongenomic actions of steroid hormones in reproductive tissues. Endocr. Rev. 1998;19:3–17.
    1. Gepner A.D., Ramamurthy R., Krueger D.C., Korcarz C.E., Binkley N., Stein J.H. A prospective randomized controlled trial of the effects of Vitamin D supplementation on cardiovascular disease risk. PLoS ONE. 2012;7:e36617. doi: 10.1371/journal.pone.0036617.
    1. Ni W., Watts S.W., Ng M., Chen S., Glenn D.J., Gardner D.G. Elimination of vitamin D receptor in vascular endothelial cells alters vascular function. Hypertension. 2014 doi: 10.1161/HYPERTENSIONAHA.114.03971.
    1. Breslavsky A., Frand J., Matas Z., Boaz M., Barnea Z., Shargorodsky M. Effect of high doses of vitamin D on arterial properties, adiponectin, leptin and glucose homeostasis in type 2 diabetic patients. Clin. Nutr. 2013;32:970–975. doi: 10.1016/j.clnu.2013.01.020.
    1. Garg A., Grundy S.M., Unger R.H. Comparison of effects of high and low carbohydrate diets on plasma lipoproteins and insulin sensitivity in patients with mild NIDDM. Diabetes. 1992;41:1278–1285. doi: 10.2337/diab.41.10.1278.
    1. Schwartz Z., Shaked D., Hardin R.R., Gruwell S., Dean D.D., Sylvia V.L., Boyan B.D. 1α,25(OH)2D3 causes a rapid increase in phosphatidylinositol-specific PLC-β activity via phospholipase A2-dependent production of lysophospholipid. Steroids. 2003 doi: 10.1016/S0039-128X(03)00044-8.
    1. Steyers C.M., Miller F.J. Endothelial dysfunction in chronic inflammatory diseases. Int. J. Mol. Sci. 2014;15:11324–11349. doi: 10.3390/ijms150711324.
    1. Witham M.D., Dove F.J., Khan F., Lang C.C., Belch J.J.F., Struthers A.D. Effects of Vitamin D supplementation on markers of vascular function after myocardial infarction—A randomised controlled trial. Int. J. Cardiol. 2013 doi: 10.1016/j.ijcard.2012.03.054.
    1. Hossein-Nezhad A., Mirzaei K., Keshavarz S.A., Ansar H., Saboori S., Tootee A. Evidences of dual role of vitamin D through cellular energy homeostasis and inflammation pathway in risk of cancer in obese subjects. Minerva Med. 2013;104:295–307.
    1. Lerman A., Burnett J.C. Intact and altered endothelium in regulation of vasomotion. Circulation. 1992;86(Suppl. 6):III12-19.
    1. Matsunaga T., Weihrauch D.W., Moniz M.C., Tessmer J., Warltier D.C., Chilian W.M. Angiostatin inhibits coronary angiogenesis during impaired production of nitric oxide. Circulation. 2002 doi: 10.1161/01.CIR.0000015856.84385.E9.
    1. Stricker H., Tosi Bianda F., Guidicelli-Nicolosi S., Limoni C., Colucci G. Effect of a single, oral, high-dose vitamin D supplementation on endothelial function in patients with peripheral arterial disease: A randomised controlled pilot study. Eur. J. Vasc. Endovasc. Surg. 2012 doi: 10.1016/j.ejvs.2012.06.023.
    1. Chitalia N., Ismail T., Tooth L., Boa F., Hampson G., Goldsmith D., Kaski J.C., Banerjee D. Impact of vitamin D supplementation on arterial vasomotion, stiffness and endothelial biomarkers in chronic kidney disease patients. PLoS ONE. 2014;9:e91363. doi: 10.1371/journal.pone.0091363.
    1. Zhang Q., Zhang M., Wang H., Sun C., Feng Y., Zhu W., Cao D., Shao Q., Li N., Xia Y., et al. Vitamin D supplementation improves endothelial dysfunction in patients with non-dialysis chronic kidney disease. Int. Urol. Nephrol. 2018;50:923–927. doi: 10.1007/s11255-018-1829-6.
    1. Kato S. The function of vitamin D receptor in vitamin D action. J. Biochem. :2000. doi: 10.1093/oxfordjournals.jbchem.a022662.
    1. Yiu Y.F., Yiu K.H., Siu C.W., Chan Y.H., Li S.W., Wong L.Y., Lee S.W.L., Tam S., Wong E.W.K., Lau C.P., et al. Randomized controlled trial of vitamin D supplement on endothelial function in patients with type 2 diabetes. Atherosclerosis. 2013 doi: 10.1016/j.atherosclerosis.2012.12.013.

Source: PubMed

3
구독하다