The Mutual Contribution of 3-NT, IL-18, Albumin, and Phosphate Foreshadows Death of Hemodialyzed Patients in a 2-Year Follow-Up

Łukasz Kasprzak, Mateusz Twardawa, Piotr Formanowicz, Dorota Formanowicz, Łukasz Kasprzak, Mateusz Twardawa, Piotr Formanowicz, Dorota Formanowicz

Abstract

Patients with chronic kidney disease (CKD), especially those who are hemodialyzed (HD), are at significantly high risk of contracting cardiovascular disease and having increased mortality. This study aimed to find potential death predictors, the measurement of which may reflect increased mortality in HD patients, and then combine the most promising ones in frames of a simple death risk assessment model. For this purpose, HD patients (n=71) with acute myocardial infarction in the last year (HD group) and healthy people (control group) as a comparative group (n=32) were included in the study. Various laboratory determinations and non-invasive cardiovascular tests were performed. Next, patients were followed for two years, and data on cardiovascular (CV) deaths were collected. On this basis, two HD groups were formed: patients who survived (HD-A, n=51) and patients who died (HD-D, n=20). To model HD mortality, 21 out of 90 potential variables collected or calculated from the raw data were selected. The best explanatory power (95.5%) was reached by a general linear model with four variables: interleukin 18, 3-nitrotyrosine, albumin, and phosphate. The interplay between immuno-inflammatory processes, nitrosative and oxidative stress, malnutrition, and calcium-phosphate disorders has been indicated to be essential in predicting CV-related mortality in studied HD patients. ClinicalTrials.gov Identifier: NCT05214872.

Keywords: IL-18; hemodialysis; inflammation; mortality; nitrosative stress; phosphate; predictive model.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Stages of variable selection for the creation of the final model. We have distinguished 10 categories of variables: blood morphology, lipids, metalloproteinases, iron, cardiovascular, metabolism, oxidative stress, calcium and phosphates, inflammation, and general metrics. Four categories ware completely rejected based on the Kruskal–Wallis test results. Spearman correlation and experimental model fitting helped to find the best combination of variables that differentiate the HD-A and HD-D groups (4 out of 21).
Figure 2
Figure 2
Boxplot depicting differences between HD-D (red), HD-A (blue), and Control (green) for the chosen variables: age (A), albumin (B), 3-Nitrotyrosine (C), alkaline phosphatase (D), Interleukin-18 (E), and phosphates (F). Additional swarmplot was overlaid onto the original plot in order to mark the obtained measurements for each of the patients (dots). Outlier values are represented by diamons.
Figure 3
Figure 3
Boxplot depicting differences between HD-D (red), HD-A (blue), and Control (green) for the chosen variables: intima media thickness (A), NT-pro-brain natriuretic peptide (B), central end systolic pressure (C), advanced oxidation protein products (D), peripheral end systolic pressure (E), and central pressure at T2 (F). Additional swarmplot was overlaid onto the original plot in order to mark the obtained measurements for each of the patients (dots). Outlier values are represented by diamons.
Figure 4
Figure 4
Boxplot depicting differences between HD-D (red), HD-A (blue), and Control (green) for the chosen variables: peripheral systolic pressure (A), peripheral P2 (B), central augmented pressure (C), peripheral mean pressure (D), central mean pressure of systole (E), and central mean pressure of diastole (F). Additional swarmplot was overlaid onto the original plot in order to mark the obtained measurements for each of the patients (dots). Outlier values are represented by diamons.
Figure 5
Figure 5
Boxplot depicting differences between HD-D (red), HD-A (blue), and Control (green) for the chosen variables: central pulse height (A), central systolic pressure (B), and peripheral pulse pressure (C). Additional swarmplot was overlaid onto the original plot in order to mark the obtained measurements for each of the patients (dots). Outlier values are represented by diamons.
Figure 6
Figure 6
Three-dimensional visualization of spacious relationships between the predictor variables. The HD-A and HD-D groups are marked with blue and red colors, respectively. For the sole purpose of creating a better perception of distances between positions, a color transparency gradient, which highlights depth of the images, has been added.
Figure 7
Figure 7
Visualization of the model results with respect to all the four chosen predictors. The HD-A and HD-D groups are marked with blue and red colors, respectively. The vertical dashed line represents a change in the predicted fate of patients (the negative value of the model prediction can be treated as predicting that a patient will survive in the next 2 years, but a positive value foreshadows the patient’s death).
Figure 8
Figure 8
Residual diagnostic plots for the models with and without the outlier patient. Outliers can be spotted as outfits in residual vs. fitted plots. The significance of outliers can be analyzed by residuals vs. leverage plots. Sole observations at the end of the blue line may have a significant impact on the model if they cross the dashed lines drawn for Cook’s distance. In the presented case, the outlier has not fallen outside the Cook’s boundaries, and as it is presented in the subplots on the right, its deletion does not change the model in any significant manner.

References

    1. Jankowski J., Floege J., Fliser D., Böhm M., Marx N. Cardiovascular Disease in Chronic Kidney Disease. Circulation. 2021;143:1157–1172. doi: 10.1161/CIRCULATIONAHA.120.050686.
    1. Herzog C.A., Asinger R.W., Berger A.K., DeLoach S.S., Pun P.H., Ritz E. Cardiovascular disease in chronic kidney disease. A clinical update from Kidney Disease: Improving Global Outcomes (KDIGO) Kidney Int. 2011;80:572–586. doi: 10.1038/ki.2011.223.
    1. Bikbov B., Purcell C.A., Levey A.S., Smith M., Abdoli A., Abebe M., Adebayo O.M., Afarideh M., Agarwal S.K., Agudelo-Botero M., et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020;395:709–733. doi: 10.1016/S0140-6736(20)30045-3.
    1. deFilippi C., Wasserman S., Rosanio S., Tiblier E., Sperger H., Tocchi M., Christenson R., Uretsky B., Smiley M., Gold J., et al. Cardiac Troponin T and C-Reactive Protein for Predicting Prognosis, Coronary Atherosclerosis, and Cardiomyopathy in Patients Undergoing Long-term Hemodialysis. JAMA. 2003;290:353–359. doi: 10.1001/jama.290.3.353.
    1. Podkowińska A., Formanowicz D. Chronic Kidney Disease as Oxidative Stress- and Inflammatory-Mediated Cardiovascular Disease. Antioxidants. 2020;9:752. doi: 10.3390/antiox9080752.
    1. Cortese F., Cecere A., Maria Cortese A., Andriani A., Truncellito L., Valente F., Giordano P., Ciccone M. Vascular, cardiac and renal target organ damage associated to arterial hypertension: Which noninvasive tools for detection? J. Hum. Hypertens. 2020;34:420–431. doi: 10.1038/s41371-020-0307-7.
    1. Major R.W., Cheng M.R.I., Grant R.A., Shantikumar S., Xu G., Oozeerally I., Brunskill N.J., Gray L.J. Cardiovascular disease risk factors in chronic kidney disease: A systematic review and meta-analysis. PLoS ONE. 2018;13:e0192895. doi: 10.1371/journal.pone.0192895.
    1. Ku E., Lee B., Wei J., Weir M. Hypertension in CKD: Core Curriculum 2019. Am. J. Kidney Dis. 2019;74:120–131. doi: 10.1053/j.ajkd.2018.12.044.
    1. Stevens P.E., O’Donoghue D.J., de Lusignan S., Van Vlymen J., Klebe B., Middleton R., Hague N., New J., Farmer C.K. Chronic kidney disease management in the United Kingdom: NEOERICA project results. Kidney Int. 2007;72:92–99. doi: 10.1038/sj.ki.5002273.
    1. Valdivielso J.M., Rodríguez-Puyol D., Pascual J., Barrios C., Bermúdez-López M., Sánchez-Niño M.D., Pérez-Fernández M., Ortiz A. Atherosclerosis in Chronic Kidney Disease. Arterioscler. Thromb. Vasc. Biol. 2019;39:1938–1966. doi: 10.1161/ATVBAHA.119.312705.
    1. Marczak L., Idkowiak J., Tracz J., Stobiecki M., Perek B., Kostka-Jeziorny K., Tykarski A., Wanic-Kossowska M., Borowski M., Osuch M., et al. Mass Spectrometry-Based Lipidomics Reveals Differential Changes in the Accumulated Lipid Classes in Chronic Kidney Disease. Metabolites. 2021;11:275. doi: 10.3390/metabo11050275.
    1. Tracz J., Handschuh L., Lalowski M., Marczak Ł., Kostka-Jeziorny K., Perek B., Wanic-Kossowska M., Podkowińska A., Tykarski A., Formanowicz D., et al. Proteomic Profiling of Leukocytes Reveals Dysregulation of Adhesion and Integrin Proteins in Chronic Kidney Disease-Related Atherosclerosis. J. Proteome Res. 2021;20:3053–3067. doi: 10.1021/acs.jproteome.0c00883.
    1. Luczak M., Formanowicz D., Marczak L., Suszyńska-Zajczyk J., Pawliczak E., Wanic-Kossowska M., Stobiecki M. iTRAQ-based proteomic analysis of plasma reveals abnormalities in lipid metabolism proteins in chronic kidney disease-related atherosclerosis. Sci. Rep. 2016;6:32511. doi: 10.1038/srep32511.
    1. Kalantar-Zadeh K., Block G., Humphreys M.H., Kopple J.D. Reverse epidemiology of cardiovascular risk factors in maintenance dialysis patients. Kidney Int. 2003;63:793–808. doi: 10.1046/j.1523-1755.2003.00803.x.
    1. Baigent C., Landray M.J., Wheeler D.C. Misleading associations between cholesterol and vascular outcomes in dialysis patients: The need for randomized trials. Semin. Dial. 2007;20:498–503. doi: 10.1111/j.1525-139X.2007.00340.x.
    1. Basile D.P., Anderson M.D., Sutton T.A. Pathophysiology of Acute Kidney Injury. Compr. Physiol. 2012;2:1303–1353. doi: 10.1002/cphy.c110041.
    1. Hansrivijit P., Chen Y., Lnu K., Trongtorsak A., Puthenpura M.M., Thongprayoon C., Bathini T., Mao M.A., Cheungpasitporn W. Prediction of mortality among patients with chronic kidney disease: A systematic review. Blood Purif. 2021;10:59–75. doi: 10.5527/wjn.v10.i4.59.
    1. Vijayakumar A. Stepwise Regression a Python Package Which Executes Linear Regression Forward and Backward. [(accessed on 7 December 2021)]. Available online: .
    1. Kim Y.M., Talanian R.V., Li J., Billiar T.R. Nitric Oxide Prevents IL-1β and IFN-γ-Inducing Factor (IL-18) Release from Macrophages by Inhibiting Caspase-1 (IL-1β-Converting Enzyme) J. Immunol. 1998;161:4122–4128.
    1. Hirooka Y., Nozaki Y. Interleukin-18 in Inflammatory Kidney Disease. Front. Med. 2021;8:193. doi: 10.3389/fmed.2021.639103.
    1. Paik S., Kim J., Silwal P., Sasakawa C., Jo E. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell. Mol. Immunol. 2021;18:1141–1160. doi: 10.1038/s41423-021-00670-3.
    1. Singh L. The NLRP3 Inflammasome and Diabetic Cardiomyopathy. Cardiovasc. Drugs Ther. 2014;28:5–6. doi: 10.1007/s10557-013-6501-x.
    1. Liu D., Xu M., Ding L.H., Lv L.L., Liu H., Ma K.L., Zhang A.H., Crowley S.D., Liu B.C. Activation of the Nlrp3 inflammasome by mitochondrial reactive oxygen species: A novel mechanism of albumin-induced tubulointerstitial inflammation. Int. J. Biochem. Cell Biol. 2014;57:7–19. doi: 10.1016/j.biocel.2014.09.018.
    1. Hutton H.L., Ooi J.D., Holdsworth S.R., Kitching A.R. The NLRP3 inflammasome in kidney disease and autoimmunity. Nephrology. 2016;21:736–744. doi: 10.1111/nep.12785.
    1. Bai R., Lang Y., Shao J., Deng Y., Refuhati R., Cui L. The Role of NLRP3 Inflammasome in Cerebrovascular Diseases Pathology and Possible Therapeutic Targets. ASN Neuro. 2021;13:17590914211018100. doi: 10.1177/17590914211018100.
    1. Blankenberg S., Tiret L., Bickel C., Peetz D., Cambien F., Meyer J., Rupprecht H.J. Interleukin-18 Is a Strong Predictor of Cardiovascular Death in Stable and Unstable Angina. Circulation. 2002;106:24–30. doi: 10.1161/01.CIR.0000020546.30940.92.
    1. Boraschi D., Dinarello C. IL-18 in autoimmunity: Review. Eur. Cytokine Netw. 2006;17:224–252.
    1. Trøseid M., Seljeflot I., Hjerkinn E.M., Arnesen H. Interleukin-18 Is a Strong Predictor of Cardiovascular Events in Elderly Men With the Metabolic Syndrome. Diabetes Care. 2009;32:486–492. doi: 10.2337/dc08-1710.
    1. Koenig W., Khuseyinova N., Baumert J., Thorand B., Loewel H., Chambless L., Meisinger C., Schneider A., Martin S., Kolb H., et al. Increased Concentrations of C-Reactive Protein and IL-6 but not IL-18 Are Independently Associated With Incident Coronary Events in Middle-Aged Men and Women. Arterioscler. Thromb. Vasc. Biol. 2006;26:2745–2751. doi: 10.1161/01.ATV.0000248096.62495.73.
    1. Fan S., He P., Guan J., Song W., Zhi H., Wang L. No association between interleukin-18 levels and risk of cardiovascular disease: A Mendelian randomization study. Hereditas. 2020;157:12. doi: 10.1186/s41065-020-00121-5.
    1. Jefferis B., Papacosta O., Owen C., Wannamethee S., Humphries S., Woodward M., Lennon L., Thomson A., Welsh P., Rumley A., et al. Interleukin 18 and coronary heart disease: Prospective study and systematic review. Atherosclerosis. 2011;217:227–233. doi: 10.1016/j.atherosclerosis.2011.03.015.
    1. Xiao H., Li H., Wang J.J., Zhang J.S., Shen J., An X.B., Zhang C.C., Wu J.M., Song Y., Wang X.Y., et al. IL-18 cleavage triggers cardiac inflammation and fibrosis upon β-adrenergic insult. Eur. Heart J. 2017;39:60–69. doi: 10.1093/eurheartj/ehx261.
    1. Formanowicz D., Wanic-Kossowska M., Pawliczak E., Radom M., Formanowicz P. Usefulness of serum interleukin-18 in predicting cardiovascular mortality in patients with chronic kidney disease—Systems and clinical approach. Sci. Rep. 2015;38:18332. doi: 10.1038/srep18332.
    1. Formanowicz D., Rybarczyk A., Radom M., Tanaś K., Formanowicz P. A Stochastic Petri Net-Based Model of the Involvement of Interleukin 18 in Atherosclerosis. Int. J. Mol. Sci. 2020;21:8574. doi: 10.3390/ijms21228574.
    1. Formanowicz D., Gutowska K., Formanowicz P. Theoretical Studies on the Engagement of Interleukin 18 in the Immuno-Inflammatory Processes Underlying Atherosclerosis. Int. J. Mol. Sci. 2018;19:3476. doi: 10.3390/ijms19113476.
    1. Pérez-Torres I., Manzano-Pech L., Rubio-Ruíz M.E., Soto M.E., Guarner-Lans V. Nitrosative Stress and Its Association with Cardiometabolic Disorders. Molecules. 2020;25:2555. doi: 10.3390/molecules25112555.
    1. Mozos I., Luca C. Crosstalk between Oxidative and Nitrosative Stress and Arterial Stiffness. Curr. Vasc. Pharmacol. 2017;15:446–456. doi: 10.2174/1570161115666170201115428.
    1. Bartesaghi S., Radi R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol. 2018;14:618–625. doi: 10.1016/j.redox.2017.09.009.
    1. Massy Z.A., Borderie D., Nguyen-Khoa T., Drüeke T.B., Ekindjian O.G., Lacour B. Increased plasma S-nitrosothiol levels in chronic haemodialysis patients. Nephrol. Dial. Transplant. 2003;18:153–157. doi: 10.1093/ndt/18.1.153.
    1. Köse F., Seziş M., Akçiçek F., Pabuççuoğlu A. Oxidative and Nitrosative Stress Markers in Patients on Hemodialysis and Peritoneal Dialysis. Blood Purif. 2011;32:202–208. doi: 10.1159/000328030.
    1. Piroddi M., Palmese A., Pilolli F., Amoresano A., Pucci P., Ronco C., Galli F. Plasma nitroproteome of kidney disease patients. Amino Acids. 2011;40:653–667. doi: 10.1007/s00726-010-0693-1.
    1. Namiduru E.S., Tarakcioglu M., Tiryaki O., Usalan C. Evaluation of oxidative and nitrosative stress in hemodialysis patients. Minerva Med. 2010;101:305–310.
    1. Mitrogianni Z., Barbouti A., Galaris D., Siamopoulos K. Tyrosine nitration in plasma proteins from patients undergoing hemodialysis. Am. J. Kidney Dis. 2004;44:286–292. doi: 10.1053/j.ajkd.2004.04.034.
    1. Kisic B., Miric D., Dragojevic I., Rasic J., Popovic L. Role of Myeloperoxidase in Patients with Chronic Kidney Disease. Oxidative Med. Cell. Longev. 2016;2016:1069743. doi: 10.1155/2016/1069743.
    1. Vaziri N.D., Ni Z., Oveisi F., Liang K., Pandian R. Enhanced Nitric Oxide Inactivation and Protein Nitration by Reactive Oxygen Species in Renal Insufficiency. Hypertension. 2002;39:135–141. doi: 10.1161/hy0102.100540.
    1. Shishehbor M.H., Aviles R.J., Brennan M.L., Fu X., Goormastic M., Pearce G.L., Gokce N., Keaney J.F., Jr., Penn M.S., Sprecher D.L., et al. Association of Nitrotyrosine Levels With Cardiovascular Disease and Modulation by Statin Therapy. JAMA. 2003;289:1675–1680. doi: 10.1001/jama.289.13.1675.
    1. Daiber A., Hahad O., Andreadou I., Steven S., Daub S., Münzel T. Redox-related biomarkers in human cardiovascular disease—Classical footprints and beyond. Redox Biol. 2021;42:101875. doi: 10.1016/j.redox.2021.101875.
    1. Carrero J.J., Thomas F., Nagy K., Arogundade F., Avesani C.M., Chan M., Chmielewski M., Cordeiro A.C., Espinosa-Cuevas A., Fiaccadori E., et al. Global Prevalence of Protein-Energy Wasting in Kidney Disease: A Meta-analysis of Contemporary Observational Studies From the International Society of Renal Nutrition and Metabolism. J. Ren. Nutr. 2018;28:380–392. doi: 10.1053/j.jrn.2018.08.006.
    1. Takahashi H., Inoue K., Shimizu K., Hiraga K., Takahashi E., Otaki K., Yoshikawa T., Furuta K., Tokunaga C., Sakakibara T., et al. Comparison of Nutritional Risk Scores for Predicting Mortality in Japanese Chronic Hemodialysis Patients. J. Ren. Nutr. 2017;27:201–206. doi: 10.1053/j.jrn.2016.12.005.
    1. Toledo F., Antunes A., Vannini F., Silveira L.V., Martin L.C., Barretti P., Caramori J.C. Validity of malnutrition scores for predicting mortality in chronic hemodialysis patients. Int. Urol. Nephrol. 2013;45:1747–1752. doi: 10.1007/s11255-013-0482-3.
    1. Sahathevan S., Khor B.H., Ng H.M., Abdul Gafor A.H., Mat Daud Z.A., Mafra D., Karupaiah T. Understanding Development of Malnutrition in Hemodialysis Patients: A Narrative Review. Nutrients. 2020;12:3147. doi: 10.3390/nu12103147.
    1. Carrero J.J., Stenvinkel P., Cuppari L., Ikizler T., Alpand Kalantar-Zadeh K., Kaysen G., Mitch W.E., Price S.R., Wanner C., Wang A.Y., et al. Etiology of the Protein-Energy Wasting Syndrome in Chronic Kidney Disease: A Consensus Statement From the International Society of Renal Nutrition and Metabolism (ISRNM) J. Ren. Nutr. 2013;23:77–90. doi: 10.1053/j.jrn.2013.01.001.
    1. Kopple J.D. Pathophysiology of Protein-Energy Wasting in Chronic Renal Failure. J. Nutr. 1999;129:247S–251S. doi: 10.1093/jn/129.1.247S.
    1. Goldwasser P., Mittman N., Antignani A., Burrell D., Michel M.A., Collier J., Avram M.M. Predictors of mortality in hemodialysis patients. J. Am. Soc. Nephrol. 1993;3:1613–1622. doi: 10.1681/ASN.V391613.
    1. Sridhar N., Josyula S. Hypoalbuminemia in hemodialyzed end stage renal disease patients: Risk factors and relationships—A 2 year single center study. BMC Nephrol. 2013;14:242. doi: 10.1186/1471-2369-14-242.
    1. Lowrie E., Lew N. Death risk in hemodialysis patients: The predictive value of commonly measured variables and an evaluation of death rate differences between facilities. Am. J. Kidney Dis. 1990;15:458–482. doi: 10.1016/S0272-6386(12)70364-5.
    1. Owen W.F., Lew N.L., Liu Y., Lowrie E.G., Lazarus J.M. The Urea Reduction Ratio and Serum Albumin Concentration as Predictors of Mortality in Patients Undergoing Hemodialysis. N. Engl. J. Med. 1993;329:1001–1006. doi: 10.1056/NEJM199309303291404.
    1. Mukai H., Villafuerte H., Qureshi A.R., Lindholm B., Stenvinkel P. Serum albumin, inflammation, and nutrition in end-stage renal disease: C-reactive protein is needed for optimal assessment. Semin. Dial. 2018;31:435–439. doi: 10.1111/sdi.12731.
    1. de Mutsert R., Grootendorst D., Indemans F., Boeschoten E., Krediet R., Dekker F. Association between serum albumin and mortality in dialysis patients is partly explained by inflammation, and not by malnutrition. J. Ren. Nutr. 2009;19:127–135. doi: 10.1053/j.jrn.2008.08.003.
    1. Thijssen S., Wystrychowski G., Usvyat L., Kotanko P., Levin N. Determinants of serum albumin concentration analyzed in a large cohort of patients on maintenance hemodialysis. J. Ren. Nutr. 2007;17:70–74. doi: 10.1053/j.jrn.2006.10.011.
    1. Lu X., Hu M. Klotho/FGF23 Axis in Chronic Kidney Disease and Cardiovascular Disease. Kidney Dis. 2017;3:15–23. doi: 10.1159/000452880.
    1. Sarnak M.J., Amann K., Bangalore S., Cavalcante J.L., Charytan D.M., Craig J.C., Gill J.S., Hlatky M.A., Jardine A.G., Landmesser U., et al. Chronic Kidney Disease and Coronary Artery Disease: JACC State-of-the-Areviet Review. J. Am. Coll. Cardiol. 2019;74:1823–1838. doi: 10.1016/j.jacc.2019.08.1017.
    1. Kuhlmann M. Phosphate Elimination in Modalities of Hemodialysis and Peritoneal Dialysis. Blood Purif. 2010;29:137–144. doi: 10.1159/000245640.
    1. Zhou C., Shi Z., Ouyang N., Ruan X. Hyperphosphatemia and Cardiovascular Disease. Front. Cell Dev. Biol. 2021;9:370. doi: 10.3389/fcell.2021.644363.
    1. Patel R.K., Jeemon P., Stevens K.K., Mccallum L., Hastie C.E., Schneider A., Jardine A.G., Mark P.B., Padmanabhan S. Association between serum phosphate and calcium, long-term blood pressure, and mortality in treated hypertensive adults. J. Hypertens. 2015;33:2046–2053. doi: 10.1097/HJH.0000000000000659.
    1. Park K.S., Lee Y., Park G.M., Park J.H., Kim Y.G., Yang D.H., Kang J.W., Lim T.H., Kim H.K., Choe J., et al. Association between serum phosphorus and subclinical coronary atherosclerosis in asymptomatic Korean individuals without kidney dysfunction. Am. J. Clin. Nutr. 2020;112:66–73. doi: 10.1093/ajcn/nqaa091.
    1. Shin S., Kim K.J., Chang H.J., Cho I., Kim Y.J., Choi B.W., Rhee Y., Lim S.K., Yang W.I., Shim C.Y., et al. Impact of serum calcium and phosphate on coronary atherosclerosis detected by cardiac computed tomography. Eur. Heart J. 2012;33:2873–2881. doi: 10.1093/eurheartj/ehs152.
    1. Bundy J., Chen J., Yang W., Budoff M., Go A., Grunwald J., Kallem R., Post W., Reilly M., Ricardo A., et al. Risk factors for progression of coronary artery calcification in patients with chronic kidney disease: The CRIC study. Atherosclerosis. 2018;271:53–60. doi: 10.1016/j.atherosclerosis.2018.02.009.
    1. Gryszczyńska B., Formanowicz D., Budzyń M., Wanic-Kossowska M., Pawliczak E., Formanowicz P., Majewski W., Strzyżewski K.W., Kasprzak M.P., Iskra M. Advanced Oxidation Protein Products and Carbonylated Proteins as Biomarkers of Oxidative Stress in Selected Atherosclerosis-Mediated Diseases. BioMed Res. Int. 2017;2017:4975264. doi: 10.1155/2017/4975264.
    1. Zhou C., Zhang Y., Chen J., Mei C., Xiong F., Shi F., Zhou W., Liu X., Sun S., Tian J., et al. Association between serum advanced oxidation protein products and mortality risk in maintenance hemodialysis patients. J. Transl. Med. 2021;19:4975264. doi: 10.1186/s12967-021-02960-w.
    1. Pachaly M., do Nascimento M., Suliman M., Hayashi S., Riella M., Manfro R., Stenvinkel P., Lindholm B. Interleukin-6 is a better predictor of mortality as compared to C-reactive protein, homocysteine, pentosidine and advanced oxidation protein products in hemodialysis patients. Blood Purif. 2008;26:204–2010. doi: 10.1159/000117438.
    1. Wang A., Liu J., Li C., Gao J., Li X., Chen S., Wu S., Ding H., Fan H., Hou S. Cumulative Exposure to High-Sensitivity C-Reactive Protein Predicts the Risk of Cardiovascular Disease. J. Am. Heart Assoc. 2017;6:e005610. doi: 10.1161/JAHA.117.005610.
    1. Formanowicz D., Krawczyk J.B. Controlling the thickness of the atherosclerotic plaque by statin medication. PLoS ONE. 2020;15:e0239953. doi: 10.1371/journal.pone.0239953.
    1. Formanowicz D., Krawczyk J.B., Perek B., Formanowicz P. A Control-Theoretic Model of Atherosclerosis. Int. J. Mol. Sci. 2019;20:785. doi: 10.3390/ijms20030785.

Source: PubMed

3
구독하다