Improvement of Gait after 4 Weeks of Wearable Focal Muscle Vibration Therapy for Individuals with Diabetic Peripheral Neuropathy

Josiah Rippetoe, Hongwu Wang, Shirley A James, Carol Dionne, Bethany Block, Matthew Beckner, Josiah Rippetoe, Hongwu Wang, Shirley A James, Carol Dionne, Bethany Block, Matthew Beckner

Abstract

People with diabetic peripheral neuropathy (DPN) experience lower quality of life caused by associated balance, posture, and gait impairments. While focal muscle vibration (FMV) has been associated with improvements in gait performance in individuals with neurological disorders, little is known about its effectiveness in patients with DPN. The purpose of this study was to investigate the effect of FMV on gait outcomes in patients with DPN. The authors randomized 23 participants into three FMV intervention groups depending upon the delivery of vibration. Participants applied wearable FMV to the bilateral quadriceps, gastrocnemius, and tibialis anterior, 10 min per muscle, three times per week over a four-week period. Spatiotemporal, kinematic, and kinetic gait parameters at baseline and post-intervention were calculated and analyzed. Gait speed, cadence, stride time, left and right stance time, duration of double limb support, and left and right knee flexor moments significantly improved after four weeks of FMV. Trends toward significant improvements were noted in maximum left and right knee flexion. Results indicate that FMV therapy was associated with improvements in gait parameters in individuals with DPN, warranting expanded study of FMV therapy for long-term gait performance improvement in these individuals.

Keywords: diabetic peripheral neuropathy; gait; kinematics; kinetics; spatiotemporal; wearable focal muscles vibration.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
CONSORT Diagram. AT: Assistive Technology.
Figure 2
Figure 2
Attachment of MyoVolt™ focal muscle vibration device. (a) device attached using a strap to the right anterior tibialis muscle. (b) device attached using a strap to the right quadricep muscle. (c) device attached using a strap to the right gastrocnemius muscle.

References

    1. Sun J., Wang Y., Zhang X., Zhu S., He H. Prevalence of peripheral neuropathy in patients with diabetes: A systematic review and meta-analysis. Prim. Care Diabetes. 2020;14:435–444. doi: 10.1016/j.pcd.2019.12.005.
    1. Gordois A., Scuffham P., Shearer A., Oglesby A., Tobian J.A. The Health Care Costs of Diabetic Peripheral Neuropathy in the U.S. Diabetes Care. 2003;26:1790–1795. doi: 10.2337/diacare.26.6.1790.
    1. American Diabetes Association Economic costs of diabetes in the U.S. in 2017. Diabetes Care. 2018;41:917–928. doi: 10.2337/dci18-0007.
    1. Juster-Switlyk K., Smith A.G. Updates in diabetic peripheral neuropathy. F1000Research. 2016;5:738. doi: 10.12688/f1000research.7898.1.
    1. Harati Y. Diabetic Peripheral Neuropathies. Methodist Debakey Cardiovasc. J. 2010;6:15–19. doi: 10.14797/mdcj-6-2-15.
    1. Jernigan S.D., Pohl P.S., Mahnken J.D., Kluding P.M. Diagnostic Accuracy of Fall Risk Assessment Tools in People With Diabetic Peripheral Neuropathy. Phys. Ther. 2012;92:1461–1470. doi: 10.2522/ptj.20120070.
    1. Vinik A.I., Nevoret M.L., Casellini C., Parson H. Diabetic Neuropathy. Endocrinol. Metab. Clin. N. Am. 2013;42:747–787. doi: 10.1016/j.ecl.2013.06.001.
    1. Badr N.M.H., Fouad S.A., Hamdy B. Gait Analysis in Patients with Diabetic Peripheral Neuropathy. [(accessed on 22 July 2020)];Med. J. Cairo. Univ. 2010 78 Available online: .
    1. Sadosky A., Mardekian J., Parsons B., Hopps M., Bienen E.J., Markman J. Healthcare utilization and costs in diabetes relative to the clinical spectrum of painful diabetic peripheral neuropathy. J. Diabetes Complicat. 2015;29:212–217. doi: 10.1016/j.jdiacomp.2014.10.013.
    1. Alam U., Riley D.R., Jugdey R.S., Azmi S., Rajbhandari S., D’Août K., Malik R.A. Diabetic Neuropathy and Gait: A Review. Diabetes Ther. 2017;8:1253–1264. doi: 10.1007/s13300-017-0295-y.
    1. Gomes A.A., Onodera A.N., Otuzi M.E.I., Pripas D., Mezzarane R.A., NSacco I.C. Electromyography and kinematic changes of gait cycle at different cadences in diabetic neuropathic individuals. Muscle Nerve. 2011;44:258–268. doi: 10.1002/mus.22051.
    1. Hazari A., Maiya A.G., Shivashankara K.N., Agouris I., Monteiro A., Jadhav R., Kumar S., Shashi Kumar C.G., Mayya S.S. Kinetics and kinematics of diabetic foot in type 2 diabetes mellitus with and without peripheral neuropathy: A systematic review and meta-analysis. Springerplus. 2016;5:1819. doi: 10.1186/s40064-016-3405-9.
    1. Mustapa A., Justine M., Mohd Mustafah N., Jamil N., Manaf H. Postural Control and Gait Performance in the Diabetic Peripheral Neuropathy: A Systematic Review. BioMed Res. Int. 2016;2016:1–14. doi: 10.1155/2016/9305025.
    1. Martinelli A.R., Mantovani A.M., Nozabieli A.J.L., Ferreira D.M.A., Barela J.A., de Camargo M.R., Fregonesi C.E.P.T. Muscle strength and ankle mobility for the gait parameters in diabetic neuropathies. Foot. 2013;23:17–21. doi: 10.1016/j.foot.2012.11.001.
    1. Rao S., Saltzman C.L., Yack H.J. Relationships between segmental foot mobility and plantar loading in individuals with and without diabetes and neuropathy. Gait Posture. 2010;31:251–255. doi: 10.1016/j.gaitpost.2009.10.016.
    1. Rahman M.A., Aziz Z., Rajendra Acharya U., Ha T.P., Kannathal N., Ng E.Y., Law C., Subramaniam T., Shuen W.Y., Fang S.C. Analysis of plantar pressure in diabetic type 2 subjects with and without neuropathy. Itbm-Rbm. 2006;27:46–55. doi: 10.1016/j.rbmret.2006.03.001.
    1. Mueller M.J., Minor S.D., Sahrmann S.A., Schaaf J.A., Strube M.J. Differences in the gait characteristics of patients with diabetes and peripheral neuropathy compared with age-matched controls. Phys. Ther. 1994;74:299–313. doi: 10.1093/ptj/74.4.299.
    1. Winter D.A. Biomechanics and Motor Control of Human Movement. John Wiley & Sons; Hoboken, NJ, USA: 2009.
    1. Morrison S., Colberg S.R., Parson H.K., Vinik A.I. Exercise improves gait, reaction time and postural stability in older adults with type 2 diabetes and neuropathy. J. Diabetes Complicat. 2014;28:715–722. doi: 10.1016/j.jdiacomp.2014.04.007.
    1. Melese H., Alamer A., Hailu M., Kahsay G. Effectiveness of Exercise Therapy on Gait Function in Diabetic Peripheral Neuropathy Patients: A Systematic Review of Randomized Controlled Trials. Diabetes Metab. Syndr. Obes. Targets Ther. 2020;13:2753–2764. doi: 10.2147/DMSO.S261175.
    1. Hong J., Barnes M.J., Kessler N.J. Case study: Use of vibration therapy in the treatment of diabetic peripheral small fiber neuropathy. Int. J. Diabetes Mellit. 2015;3:72–75. doi: 10.1016/j.ijdm.2011.01.010.
    1. Kessler N.J., Hong J. Whole body vibration therapy for painful diabetic peripheral neuropathy: A pilot study. J. Bodyw. Mov. Ther. 2013;17:518–522. doi: 10.1016/j.jbmt.2013.03.001.
    1. Kessler N.J., Lockard M.M., Fischer J. Whole body vibration improves symptoms of diabetic peripheral neuropathy. J. Bodyw. Mov. Ther. 2020;24:1–3. doi: 10.1016/j.jbmt.2020.01.004.
    1. Hong J. Whole Body Vibration Therapy for Diabetic Peripheral Neuropathic Pain. Health Sci. J. 2011;5:66.
    1. Lee K. Effects of whole-body vibration therapy on perception thresholds of type 2 diabetic patients with peripheral neuropathy: A randomized controlled trial. J. Phys. Ther. Sci. 2017;29:1684–1688. doi: 10.1589/jpts.29.1684.
    1. Kordi Yoosefinejad A., Shadmehr A., Olyaei G., Talebian S., Bagheri H., Mohajeri-Tehrani M.R. Short-term effects of the whole-body vibration on the balance and muscle strength of type 2 diabetic patients with peripheral neuropathy: A quasi-randomized-controlled trial study. J. Diabetes Metab. Disord. 2015;14:1–8. doi: 10.1186/s40200-015-0173-y.
    1. Abercromby A.F.J., Amonette W.E., Layne C.S., Mcfarlin B.K., Hinman M.R., Paloski W.H. Vibration Exposure and Biodynamic Responses during Whole-Body Vibration Training. Med. Sci. Sport Exerc. 2007;39:1794–1800. doi: 10.1249/mss.0b013e3181238a0f.
    1. Win M.M.T.M., Fukai K., Nyunt H.H., Linn K.Z. Hand and foot exercises for diabetic peripheral neuropathy: A randomized controlled trial. Nurs. Health Sci. 2020;22:416–426. doi: 10.1111/nhs.12676.
    1. Murillo N., Valls-Sole J., Vidal J., Opisso E., Medina J., Kumru H. Focal vibration in neurorehabilitation. Eur. J Phys. Rehabil. Med. 2014;50:231–242.
    1. Li W., Li C., Xu Q., Ji L. Effects of Focal Vibration over Upper Limb Muscles on the Activation of Sensorimotor Cortex Network: An EEG Study. J. Healthc. Eng. 2019;2019:1–7. doi: 10.1155/2019/9167028.
    1. Pazzaglia C., Camerota F., Germanotta M., Di Sipio E., Celletti C., Padua L. Efficacy of focal mechanic vibration treatment on balance in Charcot-Marie-Tooth 1A disease: A pilot study. J. Neurol. 2016;263:1434–1441. doi: 10.1007/s00415-016-8157-5.
    1. McKinney Z., Heberer K., Fowler E., Greenberg M., Nowroozi B.N., Grundfest W.S. Initial biomechanical evaluation of wearable tactile feedback system for gait rehabilitation in peripheral neuropathy. MMVR. 2014;196:271–277.
    1. Ahmad I., Verma S., Noohu M.M., Shareef M.Y., Ejaz Hussain M. Sensorimotor and gait training improves proprioception, nerve function, and muscular activation in patients with diabetic peripheral neuropathy: A randomized control trial. J. Musculoskelet Neuronal Interact. 2020;20:234–248.
    1. Feng Y., Schlösser F.J., Sumpio B.E. The Semmes Weinstein monofilament examination as a screening tool for diabetic peripheral neuropathy. J. Vasc. Surg. 2009;50:675–682.e1. doi: 10.1016/j.jvs.2009.05.017.
    1. Temporal Distance Calculations for Gait—Visual3D Wiki Documentation. [(accessed on 6 October 2020)]; Available online: .
    1. Chiles N.S., Phillips C.L., Volpato S., Bandinelli S., Ferrucci L., Guralnik J.M., Patel K.V. Diabetes, peripheral neuropathy, and lower-extremity function. J. Diabetes Complicat. 2014;28:91–95. doi: 10.1016/j.jdiacomp.2013.08.007.
    1. Richardson J.K., Thies S.B., DeMott T.K., Ashton-Miller J.A. A Comparison of Gait Characteristics between Older Women with and Without Peripheral Neuropathy in Standard and Challenging Environments. J. Am. Geriatr. Soc. 2004;52:1532–1537. doi: 10.1111/j.1532-5415.2004.52418.x.
    1. Camerota F., Celletti C., Suppa A., Galli M., Cimolin V., Filippi G.M., La Torre G., Albertini G., Stocchi F., De Pandis M.F. Focal Muscle Vibration Improves Gait in Parkinson’s Disease: A Pilot Randomized, Controlled Trial. Mov. Disord. Clin. Pract. 2016;3:559–566. doi: 10.1002/mdc3.12323.
    1. Camerota F., Celletti C., Di Sipio E., De Fino C., Simbolotti C., Germanotta M., Mirabella M., Padua L., Nociti V. Focal muscle vibration, an effective rehabilitative approach in severe gait impairment due to multiple sclerosis. J. Neurol. Sci. 2017;372:33–39. doi: 10.1016/j.jns.2016.11.025.
    1. Melai T., Schaper N.C., IJzerman T.H., Willems P.J.B., de Lange T.L.H., Meijer K., Lieverse A.G., Savelberg H.H.C.M. Strength Training Affects Lower Extremity Gait Kinematics, Not Kinetics, in People With Diabetic Polyneuropathy. J. Appl. Biomech. 2014;30:221–230. doi: 10.1123/jab.2013-0186.
    1. Martínez-Amat A., Hita-Contreras F., Lomas-Vega R., Caballero-Martínez I., Alvarez P.J., Martínez-López E. Effects of 12-Week Proprioception Training Program on Postural Stability, Gait, and Balance in Older Adults. J. Strength Cond. Res. 2013;27:2180–2188. doi: 10.1519/JSC.0b013e31827da35f.
    1. Peppe A., Paravati S., Baldassarre M.G., Bakdounes L., Spolaor F., Guiotto A., Pavan D., Sawacha Z., Bottino S., Clerici D., et al. Proprioceptive Focal Stimulation (Equistasi®) May Improve the Quality of Gait in Middle-Moderate Parkinson’s Disease Patients. Double-Blind, Double-Dummy, Randomized, Crossover, Italian Multicentric Study. Front. Neurol. 2019;10:998. doi: 10.3389/fneur.2019.00998.
    1. Filippi G.M., Brunetti O., Botti F.M., Panichi R., Roscini M., Camerota F., Cesari M., Pettorossi V.E. Improvement of Stance Control and Muscle Performance Induced by Focal Muscle Vibration in Young-Elderly Women: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2009;90:2019–2025. doi: 10.1016/j.apmr.2009.08.139.
    1. Feltroni L., Monteleone S., Petrucci L., Carlisi E., Mazzacane B., Schieppati M., Dalla E.T. Potentiation of muscle strength by focal vibratory stimulation on quadriceps femoris. G. Ital. Med. Lav. Ergon. 2018;40:90–96.
    1. Gomes A.A., Ackermann M., Ferreira J.P., Orselli M.I.V., Sacco I.C.N. Muscle force distribution of the lower limbs during walking in diabetic individuals with and without polyneuropathy. J. Neuroeng. Rehabil. 2017;14:111. doi: 10.1186/s12984-017-0327-x.
    1. Menz H.B., Lord S.R., St George R., Fitzpatrick R.C. Walking stability and sensorimotor function in older people with diabetic peripheral neuropathy. Arch. Phys. Med. Rehabil. 2004;85:245–252. doi: 10.1016/j.apmr.2003.06.015.
    1. Suzuki K., Niitsu M., Kamo T., Otake S., Nishida Y. Effect of Exercise with Rhythmic Auditory Stimulation on Muscle Coordination and Gait Stability in Patients with Diabetic Peripheral Neuropathy: A Randomized Controlled Trial. Open J. Ther. Rehabil. 2019;7:79. doi: 10.4236/ojtr.2019.73005.
    1. Saleh M.S., Rehab N.I. Effect of ankle proprioceptive training on gait and risk of fall in patients with diabetic neuropathy: A randomized controlled trial. Int. J. Diabetes Res. 2019;2:40–45.
    1. El-Refay B.H., Ali O.I. Efficacy of Exercise Rehabilitation Program in Improving Gait of Diabetic Neuropathy Patients. Med. J. Cairo Univ. 2014;82:225–232.

Source: PubMed

3
구독하다