What is the evidence for the use of low-pressure pneumoperitoneum? A systematic review

Denise M D Özdemir-van Brunschot, Kees C J H M van Laarhoven, Gert-Jan Scheffer, Sjaak Pouwels, Kim E Wever, Michiel C Warlé, Denise M D Özdemir-van Brunschot, Kees C J H M van Laarhoven, Gert-Jan Scheffer, Sjaak Pouwels, Kim E Wever, Michiel C Warlé

Abstract

Background: Laparoscopic surgery has several advantages when compared to open surgery, including faster postoperative recovery and lower pain scores. However, for laparoscopy, a pneumoperitoneum is required to create workspace between the abdominal wall and intraabdominal organs. Increased intraabdominal pressure may also have negative implications on cardiovascular, pulmonary, and intraabdominal organ functionings. To overcome these negative consequences, several trials have been performed comparing low- versus standard-pressure pneumoperitoneum.

Methods: A systematic review of all randomized controlled clinical trials and observational studies comparing low- versus standard-pressure pneumoperitoneum.

Results and conclusions: Quality assessment showed that the overall quality of evidence was moderate to low. Postoperative pain scores were reduced by the use of low-pressure pneumoperitoneum. With appropriate perioperative measures, the use of low-pressure pneumoperitoneum does not seem to have clinical advantages as compared to standard pressure on cardiac and pulmonary function. Although there are indications that low-pressure pneumoperitoneum is associated with less liver and kidney injury when compared to standard-pressure pneumoperitoneum, this does not seem to have clinical implications for healthy individuals. The influence of low-pressure pneumoperitoneum on adhesion formation, anastomosis healing, tumor metastasis, intraocular and intracerebral pressure, and thromboembolic complications remains uncertain, as no human clinical trials have been performed. The influence of pressure on surgical conditions and safety has not been established to date. In conclusion, the most important benefit of low-pressure pneumoperitoneum is lower postoperative pain scores, supported by a moderate quality of evidence. However, the quality of surgical conditions and safety of the use of low-pressure pneumoperitoneum need to be established, as are the values and preferences of physicians and patients regarding the potential benefits and risks. Therefore, the recommendation to use low-pressure pneumoperitoneum during laparoscopy is weak, and more studies are required.

Keywords: Laparoscopy; Low pressure; Pain; Perioperative conditions; Pneumoperitoneum.

Figures

Fig. 1
Fig. 1
Flowchart of study search
Fig. 2
Fig. 2
A Meta-analysis of overall pain. B Shoulder pain
Fig. 2
Fig. 2
A Meta-analysis of overall pain. B Shoulder pain

References

    1. Hatzinger M, et al. Hans Christian Jacobaeus: inventor of human laparoscopy and thoracoscopy. J Endourol. 2006;20(11):848–850. doi: 10.1089/end.2006.20.848.
    1. Barczynski M, Herman RM. A prospective randomized trial on comparison of low-pressure (LP) and standard-pressure (SP) pneumoperitoneum for laparoscopic cholecystectomy. Surg Endosc. 2003;17(4):533–538. doi: 10.1007/s00464-002-9121-2.
    1. Litynski GS. Kurt Semm and an automatic insufflator. JSLS. 1998;2(2):197–200.
    1. Hypolito OH, et al. Creation of pneumoperitoneum: noninvasive monitoring of clinical effects of elevated intraperitoneal pressure for the insertion of the first trocar. Surg Endosc. 2010;24(7):1663–1669. doi: 10.1007/s00464-009-0827-2.
    1. Neudecker J, et al. The European Association for Endoscopic Surgery clinical practice guideline on the pneumoperitoneum for laparoscopic surgery. Surg Endosc. 2002;16(7):1121–1143. doi: 10.1007/s00464-001-9166-7.
    1. Eryilmaz HB, et al. The effects of different insufflation pressures on liver functions assessed with LiMON on patients undergoing laparoscopic cholecystectomy. Sci World J. 2012;2012:172575. doi: 10.1100/2012/172575.
    1. Ibraheim OA, et al. Lactate and acid base changes during laparoscopic cholecystectomy. Middle East J Anesthesiol. 2006;18(4):757–768.
    1. Schietroma M, et al. Changes in the blood coagulation, fibrinolysis, and cytokine profile during laparoscopic and open cholecystectomy. Surg Endosc. 2004;18(7):1090–1096. doi: 10.1007/s00464-003-8819-0.
    1. Esmat ME, et al. Combined low pressure pneumoperitoneum and intraperitoneal infusion of normal saline for reducing shoulder tip pain following laparoscopic cholecystectomy. World J Surg. 2006;30(11):1969–1973. doi: 10.1007/s00268-005-0752-z.
    1. Higgins JPT (ed) (2008) Chapter 8: assessing risk of bias in included studies. In: Cochrane handbook for systematic reviews of intervention. Version 5.0.1. Cochrane Collaboration
    1. Wells GA, O.C.D., Peterson J, Welch V, Losos M, Tugwell P, The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analysis
    1. Guyatt GH, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924–926. doi: 10.1136/.
    1. Basgul E, et al. Effects of low and high intra-abdominal pressure on immune response in laparoscopic cholecystectomy. Saudi Med J. 2004;25(12):1888–1891.
    1. Bogani G, et al. Low vs standard pneumoperitoneum pressure during laparoscopic hysterectomy: prospective randomized trial. J Minim Invasive Gynecol. 2014;21(3):466–471. doi: 10.1016/j.jmig.2013.12.091.
    1. Celik V, et al. Effect of intra-abdominal pressure level on gastric intramucosal pH during pneumoperitoneum. Surg Laparosc Endosc Percutan Tech. 2004;14(5):247–249. doi: 10.1097/00129689-200410000-00002.
    1. Celik AS, et al. Laparoscopic cholecystectomy and postoperative pain: is it affected by intra-abdominal pressure? Surg Laparosc Endosc Percutan Tech. 2010;20(4):220–222. doi: 10.1097/SLE.0b013e3181e21bd1.
    1. Chok KS, et al. Prospective randomized trial on low-pressure versus standard-pressure pneumoperitoneum in outpatient laparoscopic cholecystectomy. Surg Laparosc Endosc Percutan Tech. 2006;16(6):383–386. doi: 10.1097/01.sle.0000213748.00525.1e.
    1. Dexter SP, et al. Hemodynamic consequences of high- and low-pressure capnoperitoneum during laparoscopic cholecystectomy. Surg Endosc. 1999;13(4):376–381. doi: 10.1007/s004649900993.
    1. Ekici Y, et al. Effect of different intra-abdominal pressure levels on QT dispersion in patients undergoing laparoscopic cholecystectomy. Surg Endosc. 2009;23(11):2543–2549. doi: 10.1007/s00464-009-0388-4.
    1. Gupta R, et al. Effects of varying intraperitoneal pressure on liver function tests during laparoscopic cholecystectomy. J Laparoendosc Adv Surg Tech A. 2013;23(4):339–342. doi: 10.1089/lap.2012.0399.
    1. Hasukic S. Postoperative changes in liver function tests: randomized comparison of low- and high-pressure laparoscopic cholecystectomy. Surg Endosc. 2005;19(11):1451–1455. doi: 10.1007/s00464-005-0061-5.
    1. Joshipura VP, et al. A prospective randomized, controlled study comparing low pressure versus high pressure pneumoperitoneum during laparoscopic cholecystectomy. Surg Laparosc Endosc Percutan Tech. 2009;19(3):234–240. doi: 10.1097/SLE.0b013e3181a97012.
    1. Kandil TS, El Hefnawy E. Shoulder pain following laparoscopic cholecystectomy: factors affecting the incidence and severity. J Laparoendosc Adv Surg Tech A. 2010;20(8):677–682. doi: 10.1089/lap.2010.0112.
    1. Kanwer DB, et al. Comparative study of low pressure versus standard pressure pneumoperitoneum in laparoscopic cholecystectomy—a randomised controlled trial. Trop Gastroenterol. 2009;30(3):171–174.
    1. Karagulle E, et al. The effects of different abdominal pressures on pulmonary function test results in laparoscopic cholecystectomy. Surg Laparosc Endosc Percutan Tech. 2008;18(4):329–333. doi: 10.1097/SLE.0b013e31816feee9.
    1. Koc M, et al. Randomized, prospective comparison of postoperative pain in low-versus high-pressure pneumoperitoneum. ANZ J Surg. 2005;75(8):693–696. doi: 10.1111/j.1445-2197.2005.03496.x.
    1. Morino M, Giraudo G, Festa V. Alterations in hepatic function during laparoscopic surgery. An experimental clinical study. Surg Endosc. 1998;12(7):968–972. doi: 10.1007/s004649900758.
    1. Perrakis E, et al. Randomized comparison between different insufflation pressures for laparoscopic cholecystectomy. Surg Laparosc Endosc Percutan Tech. 2003;13(4):245–249. doi: 10.1097/00129689-200308000-00004.
    1. Polat C, et al. The effects of increased intraabdominal pressure on colonic anastomoses. Surg Endosc. 2002;16(9):1314–1319. doi: 10.1007/s00464-001-9193-4.
    1. Sandhu T, et al. Low-pressure pneumoperitoneum versus standard pneumoperitoneum in laparoscopic cholecystectomy, a prospective randomized clinical trial. Surg Endosc. 2009;23(5):1044–1047. doi: 10.1007/s00464-008-0119-2.
    1. Sarli L, et al. Prospective randomized trial of low-pressure pneumoperitoneum for reduction of shoulder-tip pain following laparoscopy. Br J Surg. 2000;87(9):1161–1165. doi: 10.1046/j.1365-2168.2000.01507.x.
    1. Sefr R, Puszkailer K, Jagos F. Randomized trial of different intraabdominal pressures and acid-base balance alterations during laparoscopic cholecystectomy. Surg Endosc. 2003;17(6):947–950. doi: 10.1007/s00464-002-9046-9.
    1. Singla S, et al. Pain management after laparoscopic cholecystectomy—a randomized prospective trial of low pressure and standard pressure pneumoperitoneum. J Clin Diagn Res. 2014;8(2):92–94.
    1. Sood J, et al. Laparoscopic approach to pheochromocytoma: is a lower intraabdominal pressure helpful? Anesth Analg. 2006;102(2):637–641. doi: 10.1213/01.ane.0000184816.00346.65.
    1. Topal A, et al. The effects of 3 different intra-abdominal pressures on the thromboelastographic profile during laparoscopic cholecystectomy. Surg Laparosc Endosc Percutan Tech. 2011;21(6):434–438. doi: 10.1097/SLE.0b013e3182397863.
    1. Torres K, et al. A comparative study of angiogenic and cytokine responses after laparoscopic cholecystectomy performed with standard- and low-pressure pneumoperitoneum. Surg Endosc. 2009;23(9):2117–2123. doi: 10.1007/s00464-008-0234-0.
    1. Umar A, Mehta KS, Mehta N. Evaluation of hemodynamic changes using different intra-abdominal pressures for laparoscopic cholecystectomy. Indian J Surg. 2013;75(4):284–289. doi: 10.1007/s12262-012-0484-x.
    1. Vijayaraghavan N, et al. Comparison of standard-pressure and low-pressure pneumoperitoneum in laparoscopic cholecystectomy: a double blinded randomized controlled study. Surg Laparosc Endosc Percutan Tech. 2014;24(2):127–133. doi: 10.1097/SLE.0b013e3182937980.
    1. Wallace DH, et al. Randomized trial of different insufflation pressures for laparoscopic cholecystectomy. Br J Surg. 1997;84(4):455–458. doi: 10.1002/bjs.1800840408.
    1. Warle MC, et al. Low-pressure pneumoperitoneum during laparoscopic donor nephrectomy to optimize live donors’ comfort. Clin Transplant. 2013;27(4):E478–E483. doi: 10.1111/ctr.12143.
    1. Yasir M, et al. Evaluation of post operative shoulder tip pain in low pressure versus standard pressure pneumoperitoneum during laparoscopic cholecystectomy. Surgeon. 2012;10(2):71–74. doi: 10.1016/j.surge.2011.02.003.
    1. Atila K, et al. What is the role of the abdominal perfusion pressure for subclinical hepatic dysfunction in laparoscopic cholecystectomy? J Laparoendosc Adv Surg Tech A. 2009;19(1):39–44. doi: 10.1089/lap.2008.0085.
    1. Davides D, et al. Routine low-pressure pneumoperitoneum during laparoscopic cholecystectomy. Surg Endosc. 1999;13(9):887–889. doi: 10.1007/s004649901126.
    1. Hawasli A, et al. The effect of pneumoperitoneum on kidney function in laparoscopic donor nephrectomy. Am Surg. 2003;69(4):300–303.
    1. Kamine TH, Papavassiliou E, Schneider BE. Effect of abdominal insufflation for laparoscopy on intracranial pressure. JAMA Surg. 2014;149(4):380–382. doi: 10.1001/jamasurg.2013.3024.
    1. Kovacs JB, et al. Deviceless low-pressure operation; a cost-effective way to reduce CO2-induced barotrauma during hand-assisted laparoscopic donor nephrectomy. Transplant Proc. 2012;44(7):2136–2138. doi: 10.1016/j.transproceed.2012.07.100.
    1. Matsuzaki S, et al. Impact of the surgical peritoneal environment on pre-implanted tumors on a molecular level: a syngeneic mouse model. J Surg Res. 2010;162(1):79–87. doi: 10.1016/j.jss.2008.12.026.
    1. Rist M, et al. Influence of pneumoperitoneum and patient positioning on preload and splanchnic blood volume in laparoscopic surgery of the lower abdomen. J Clin Anesth. 2001;13(4):244–249. doi: 10.1016/S0952-8180(01)00242-2.
    1. Matsuzaki S, et al. Impact of intraperitoneal pressure of a CO2 pneumoperitoneum on the surgical peritoneal environment. Hum Reprod. 2012;27(6):1613–1623. doi: 10.1093/humrep/des081.
    1. Park JS, et al. Effects of pneumoperitoneal pressure and position changes on respiratory mechanics during laparoscopic colectomy. Korean J Anesthesiol. 2012;63(5):419–424. doi: 10.4097/kjae.2012.63.5.419.
    1. Schwarte LA, et al. Moderate increase in intraabdominal pressure attenuates gastric mucosal oxygen saturation in patients undergoing laparoscopy. Anesthesiology. 2004;100(5):1081–1087. doi: 10.1097/00000542-200405000-00009.
    1. Gurusamy KS, Samraj K, Davidson K. Low pressure versus standard pressure pneumoperitoneum in laparoscopic cholecystectomy. Cochrane Database Syst Rev. 2009;2:CD006930.
    1. Gurusamy KS, Vaughan J, Davidson BR. Low pressure versus standard pressure pneumoperitoneum in laparoscopic cholecystectomy. Cochrane Database Syst Rev. 2014;3:CD006930.
    1. Kendrick DB, Strout TD. The minimum clinically significant difference in patient-assigned numeric scores for pain. Am J Emerg Med. 2005;23(7):828–832. doi: 10.1016/j.ajem.2005.07.009.
    1. Cepeda MS, et al. What decline in pain intensity is meaningful to patients with acute pain? Pain. 2003;105(1–2):151–157. doi: 10.1016/S0304-3959(03)00176-3.
    1. Kelly AM. The minimum clinically significant difference in visual analogue scale pain score does not differ with severity of pain. Emerg Med J. 2001;18(3):205–207. doi: 10.1136/emj.18.3.205.
    1. Farrar JT, et al. Defining the clinically important difference in pain outcome measures. Pain. 2000;88(3):287–294. doi: 10.1016/S0304-3959(00)00339-0.
    1. Donatsky AM, Bjerrum F, Gogenur I. Surgical techniques to minimize shoulder pain after laparoscopic cholecystectomy. A systematic review. Surg Endosc. 2013;27(7):2275–2282. doi: 10.1007/s00464-012-2759-5.
    1. Topcu HO, et al. A prospective randomized trial of postoperative pain following different insufflation pressures during gynecologic laparoscopy. Eur J Obstet Gynecol Reprod Biol. 2014;182:81–85. doi: 10.1016/j.ejogrb.2014.09.003.
    1. Koivusalo AM, et al. Laparoscopic cholecystectomy with carbon dioxide pneumoperitoneum is safe even for high-risk patients. Surg Endosc. 2008;22(1):61–67. doi: 10.1007/s00464-007-9300-2.
    1. Nguyen NT, et al. Comparison of postoperative hepatic function after laparoscopic versus open gastric bypass. Am J Surg. 2003;186(1):40–44. doi: 10.1016/S0002-9610(03)00106-5.
    1. Sakorafas G, et al. Elevation of serum liver enzymes after laparoscopic cholecystectomy. N Z Med J. 2005;118(1210):U1317.
    1. Andrei VE, et al. Liver enzymes are commonly elevated following laparoscopic cholecystectomy: is elevated intra-abdominal pressure the cause? Dig Surg. 1998;15(3):256–259. doi: 10.1159/000018624.
    1. Mertens zur Borg IR, et al. Beneficial effects of a new fluid regime on kidney function of donor and recipient during laparoscopic v open donor nephrectomy. J Endourol. 2007;21(12):1509–1515. doi: 10.1089/end.2007.0026.
    1. Ben-David B, Croitoru M, Gaitini L. Acute renal failure following laparoscopic cholecystectomy: a case report. J Clin Anesth. 1999;11(6):486–489. doi: 10.1016/S0952-8180(99)00079-3.
    1. Briscoe JH, Bahal V (2012) Acute renal failure following laparoscopic cholecystectomy. BMJ Case Rep 2012
    1. Apostolou T, et al. Severe acute renal failure in a 19-year-old woman following laparoscopic cholecystectomy. Clin Nephrol. 2004;61(6):444–447. doi: 10.5414/CNP61444.
    1. Ido K, et al. Femoral vein stasis during laparoscopic cholecystectomy: effects of graded elastic compression leg bandages in preventing thrombus formation. Gastrointest Endosc. 1995;42(2):151–155. doi: 10.1016/S0016-5107(95)70072-2.
    1. Hwang JW, et al. Does intraocular pressure increase during laparoscopic surgeries? It depends on anesthetic drugs and the surgical position. Surg Laparosc Endosc Percutan Tech. 2013;23(2):229–232. doi: 10.1097/SLE.0b013e31828a0bba.
    1. Mowafi HA, Al-Ghamdi A, Rushood A. Intraocular pressure changes during laparoscopy in patients anesthetized with propofol total intravenous anesthesia versus isoflurane inhaled anesthesia. Anesth Analg. 2003;97(2):471–474. doi: 10.1213/01.ANE.0000067532.56354.58.
    1. Yoo YC, et al. Increase in intraocular pressure is less with propofol than with sevoflurane during laparoscopic surgery in the steep Trendelenburg position. Can J Anaesth. 2014;61(4):322–329. doi: 10.1007/s12630-014-0112-2.
    1. Staehr-Rye AK, et al. Surgical space conditions during low-pressure laparoscopic cholecystectomy with deep versus moderate neuromuscular blockade: a randomized clinical study. Anesth Analg. 2014;119(5):1084–1092. doi: 10.1213/ANE.0000000000000316.
    1. Hua J, et al. Low-pressure versus standard-pressure pneumoperitoneum for laparoscopic cholecystectomy: a systematic review and meta-analysis. Am J Surg. 2014;208(1):143–150. doi: 10.1016/j.amjsurg.2013.09.027.
    1. Cravello L, et al. Laparoscopic surgery in gynecology: randomized prospective study comparing pneumoperitoneum and abdominal wall suspension. Eur J Obstet Gynecol Reprod Biol. 1999;83(1):9–14. doi: 10.1016/S0301-2115(98)00239-5.
    1. Karagulle E, et al. Effects of the application of intra-abdominal low pressure on laparoscopic cholecystectomy on acid-base equilibrium. Int Surg. 2009;94(3):205–211.
    1. Bisgaard T, et al. Characteristics and prediction of early pain after laparoscopic cholecystectomy. Pain. 2001;90(3):261–269. doi: 10.1016/S0304-3959(00)00406-1.
    1. Tsimoyiannis EC, et al. Intraperitoneal normal saline infusion for postoperative pain after laparoscopic cholecystectomy. World J Surg. 1998;22(8):824–828. doi: 10.1007/s002689900477.
    1. Todd KH, et al. Clinical significance of reported changes in pain severity. Ann Emerg Med. 1996;27(4):485–489. doi: 10.1016/S0196-0644(96)70238-X.
    1. Ibraheim OA, et al. Lactate and acid base changes during laparoscopic cholecystectomy. Middle East J Anaesthesiol. 2006;18(4):757–768.
    1. Barczynski M, Herman RM. Low-pressure pneumoperitoneum combined with intraperitoneal saline washout for reduction of pain after laparoscopic cholecystectomy: a prospective randomized study. Surg Endosc. 2004;18(9):1368–1373. doi: 10.1007/s00464-003-9299-y.
    1. Suh MK, et al. The effect of pneumoperitoneum and Trendelenburg position on respiratory mechanics during pelviscopic surgery. Korean J Anesthesiol. 2010;59(5):329–334. doi: 10.4097/kjae.2010.59.5.329.
    1. Alfonsi P, et al. Cardiac function during intraperitoneal CO2 insufflation for aortic surgery: a transesophageal echocardiographic study. Anesth Analg. 2006;102(5):1304–1310. doi: 10.1213/01.ane.0000202473.17453.79.
    1. Kelman GR, et al. Caridac output and arterial blood-gas tension during laparoscopy. Br J Anaesth. 1972;44(11):1155–1162. doi: 10.1093/bja/44.11.1155.
    1. O’Leary E, et al. Laparoscopic cholecystectomy: haemodynamic and neuroendocrine responses after pneumoperitoneum and changes in position. Br J Anaesth. 1996;76(5):640–644. doi: 10.1093/bja/76.5.640.
    1. Mann C, et al. The relationship among carbon dioxide pneumoperitoneum, vasopressin release, and hemodynamic changes. Anesth Analg. 1999;89(2):278–283.
    1. Stone J, et al. Hemodynamic and hormonal changes during pneumoperitoneum and trendelenburg positioning for operative gynecologic laparoscopy surgery. Prim Care Update Ob Gyns. 1998;5(4):155. doi: 10.1016/S1068-607X(98)00043-2.
    1. Arnolda L, McGrath BP, Johnston CI. Vasopressin and angiotensin II contribute equally to the increased afterload in rabbits with heart failure. Cardiovasc Res. 1991;25(1):68–72. doi: 10.1093/cvr/25.1.68.
    1. Arnolda L, et al. Vasoconstrictor role for vasopressin in experimental heart failure in the rabbit. J Clin Invest. 1986;78(3):674–679. doi: 10.1172/JCI112626.
    1. Feig BW, et al. Pharmacologic intervention can reestablish baseline hemodynamic parameters during laparoscopy. Surgery. 1994;116(4):733–739.
    1. Lindstrom P, et al. Effects of increased intra-abdominal pressure and volume expansion on renal function in the rat. Nephrol Dial Transplant. 2003;18(11):2269–2277. doi: 10.1093/ndt/gfg362.
    1. Perry Y, et al. Pressure-related hemodynamic effects of CO2 pneumoperitoneum in a model of acute cardiac failure. J Laparoendosc Adv Surg Tech A. 2003;13(6):341–347. doi: 10.1089/109264203322656388.
    1. Shuto K, et al. Hemodynamic and arterial blood gas changes during carbon dioxide and helium pneumoperitoneum in pigs. Surg Endosc. 1995;9(11):1173–1178. doi: 10.1007/BF00210922.
    1. Yokoyama Y, et al. Hepatic vascular response to elevated intraperitoneal pressure in the rat. J Surg Res. 2002;105(2):86–94. doi: 10.1006/jsre.2001.6260.
    1. Volz J, et al. Pathophysiologic features of a pneumoperitoneum at laparoscopy: a swine model. Am J Obstet Gynecol. 1996;174(1 Pt 1):132–140. doi: 10.1016/S0002-9378(96)70385-X.
    1. Guven HE, Oral S. Liver enzyme alterations after laparoscopic cholecystectomy. J Gastrointest Liver Dis. 2007;16(4):391–394.
    1. Jakimowicz J, Stultiens G, Smulders F. Laparoscopic insufflation of the abdomen reduces portal venous flow. Surg Endosc. 1998;12(2):129–132. doi: 10.1007/s004649900612.
    1. Sato K, Kawamura T, Wakusawa R. Hepatic blood flow and function in elderly patients undergoing laparoscopic cholecystectomy. Anesth Analg. 2000;90(5):1198–1202. doi: 10.1097/00000539-200005000-00037.
    1. Schilling MK, et al. Splanchnic microcirculatory changes during CO2 laparoscopy. J Am Coll Surg. 1997;184(4):378–382.
    1. Hashikura Y, et al. Effects of peritoneal insufflation on hepatic and renal blood flow. Surg Endosc. 1994;8(7):759–761. doi: 10.1007/BF00593435.
    1. Sanchez-Etayo G, et al. Effect of intra-abdominal pressure on hepatic microcirculation: implications of the endothelin-1 receptor. J Dig Dis. 2012;13(9):478–485. doi: 10.1111/j.1751-2980.2012.00613.x.
    1. Nesek-Adam V, et al. Aminotransferases after experimental pneumoperitoneum in dogs. Acta Anaesthesiol Scand. 2004;48(7):862–866. doi: 10.1111/j.0001-5172.2004.00431.x.
    1. Li J, et al. Two clinically relevant pressures of carbon dioxide pneumoperitoneum cause hepatic injury in a rabbit model. World J Gastroenterol. 2011;17(31):3652–3658. doi: 10.3748/wjg.v17.i31.3652.
    1. Viinamki O, Punnonen R. Vasopressin release during laparoscopy: role of increased intra-abdominal pressure. Lancet. 1982;1(8264):175–176.
    1. Rosin D, et al. Low-pressure laparoscopy may ameliorate intracranial hypertension and renal hypoperfusion. J Laparoendosc Adv Surg Tech A. 2002;12(1):15–19. doi: 10.1089/109264202753486876.
    1. Khoury W, et al. The hemodynamic effects of CO2-induced pressure on the kidney in an isolated perfused rat kidney model. Surg Laparosc Endosc Percutan Tech. 2008;18(6):573–578. doi: 10.1097/SLE.0b013e3181875ba4.
    1. Bishara B, et al. Impact of pneumoperitoneum on renal perfusion and excretory function: beneficial effects of nitroglycerine. Surg Endosc. 2009;23(3):568–576. doi: 10.1007/s00464-008-9881-4.
    1. Kirsch AJ, et al. Renal effects of CO2 insufflation: oliguria and acute renal dysfunction in a rat pneumoperitoneum model. Urology. 1994;43(4):453–459. doi: 10.1016/0090-4295(94)90230-5.
    1. Lindstrom P, et al. Blood flow distribution during elevated intraperitoneal pressure in the rat. Acta Physiol Scand. 2003;177(2):149–156. doi: 10.1046/j.1365-201X.2003.01056.x.
    1. Hejazi M, et al. Evaluation of effects of intraperitoneal CO2 pressure in laparoscopic operations on kidney, pancreas, liver and spleen in dogs. Iran Red Crescent Med J. 2013;15(9):809–812. doi: 10.5812/ircmj.7805.
    1. Garg PK, et al. Alteration in coagulation profile and incidence of DVT in laparoscopic cholecystectomy. Int J Surg. 2009;7(2):130–135. doi: 10.1016/j.ijsu.2008.12.036.
    1. Prisco D, et al. Videolaparoscopic cholecystectomy induces a hemostasis activation of lower grade than does open surgery. Surg Endosc. 2000;14(2):170–174. doi: 10.1007/s004649900093.
    1. Papaziogas B, et al. Modifications of coagulation and fibrinolysis mechanism in laparoscopic vs. open cholecystectomy. Hepatogastroenterology. 2007;54(77):1335–1338.
    1. Marakis G, et al. Changes in coagulation and fibrinolysis during laparoscopic cholecystectomy. J Laparoendosc Adv Surg Tech A. 2006;16(6):582–586. doi: 10.1089/lap.2006.16.582.
    1. Martinez-Ramos C, et al. Changes in hemostasis after laparoscopic cholecystectomy. Surg Endosc. 1999;13(5):476–479. doi: 10.1007/s004649901016.
    1. Diamantis T, et al. Alterations of hemostasis after laparoscopic and open surgery. Hematology. 2007;12(6):561–570. doi: 10.1080/10245330701554623.
    1. Andersson LE, et al. Are there changes in leg vascular resistance during laparoscopic cholecystectomy with CO2 pneumoperitoneum? Acta Anaesthesiol Scand. 2005;49(3):360–365. doi: 10.1111/j.1399-6576.2005.00623.x.
    1. Gulec B, et al. Lower extremity venous changes in pneumoperitoneum during laparoscopic surgery. ANZ J Surg. 2006;76(10):904–906. doi: 10.1111/j.1445-2197.2006.03906.x.
    1. Rodgers KE, diZerega GS. Function of peritoneal exudate cells after abdominal surgery. J Invest Surg. 1993;6(1):9–23. doi: 10.3109/08941939309141188.
    1. Drollette CM, Badawy SZ. Pathophysiology of pelvic adhesions. Modern trends in preventing infertility. J Reprod Med. 1992;37(2):107–121.
    1. Holmdahl L, et al. Depression of peritoneal fibrinolysis during operation is a local response to trauma. Surgery. 1998;123(5):539–544. doi: 10.1067/msy.1998.86984.
    1. Molinas CR, et al. Role of the plasminogen system in basal adhesion formation and carbon dioxide pneumoperitoneum-enhanced adhesion formation after laparoscopic surgery in transgenic mice. Fertil Steril. 2003;80(1):184–192. doi: 10.1016/S0015-0282(03)00496-5.
    1. Wiczyk HP, et al. Pelvic adhesions contain sex steroid receptors and produce angiogenesis growth factors. Fertil Steril. 1998;69(3):511–516. doi: 10.1016/S0015-0282(97)00529-3.
    1. Zeyneloglu HB, et al. The role of monocyte chemotactic protein-1 in intraperitoneal adhesion formation. Hum Reprod. 1998;13(5):1194–1199. doi: 10.1093/humrep/13.5.1194.
    1. Molinas CR, Koninckx PR. Hypoxaemia induced by CO(2) or helium pneumoperitoneum is a co-factor in adhesion formation in rabbits. Hum Reprod. 2000;15(8):1758–1763. doi: 10.1093/humrep/15.8.1758.
    1. Molinas CR, et al. Peritoneal mesothelial hypoxia during pneumoperitoneum is a cofactor in adhesion formation in a laparoscopic mouse model. Fertil Steril. 2001;76(3):560–567. doi: 10.1016/S0015-0282(01)01964-1.
    1. Taskin O, et al. The effects of duration of CO2 insufflation and irrigation on peritoneal microcirculation assessed by free radical scavengers and total glutathion levels during operative laparoscopy. J Am Assoc Gynecol Laparosc. 1998;5(2):129–133. doi: 10.1016/S1074-3804(98)80078-9.
    1. Taskin O, et al. Adhesion formation after microlaparoscopic and laparoscopic ovarian coagulation for polycystic ovary disease. J Am Assoc Gynecol Laparosc. 1999;6(2):159–163. doi: 10.1016/S1074-3804(99)80095-4.
    1. Rosch R, et al. Impact of pressure and gas type on adhesion formation and biomaterial integration in laparoscopy. Surg Endosc. 2011;25(11):3605–3612. doi: 10.1007/s00464-011-1766-2.
    1. Yesildaglar N, Koninckx PR. Adhesion formation in intubated rabbits increases with high insufflation pressure during endoscopic surgery. Hum Reprod. 2000;15(3):687–691. doi: 10.1093/humrep/15.3.687.
    1. Khoury W, et al. Renal apoptosis following carbon dioxide pneumoperitoneum in a rat model. J Urol. 2008;180(4):1554–1558. doi: 10.1016/j.juro.2008.06.008.
    1. Chiu AW, et al. The impact of pneumoperitoneum, pneumoretroperitoneum, and gasless laparoscopy on the systemic and renal hemodynamics. J Am Coll Surg. 1995;181(5):397–406.
    1. Bongard F, et al. Adverse consequences of increased intra-abdominal pressure on bowel tissue oxygen. J Trauma. 1995;39(3):519–524. doi: 10.1097/00005373-199509000-00020.
    1. Tytgat SH, Rijkers GT, van der Zee DC. The influence of the CO(2) pneumoperitoneum on a rat model of intestinal anastomosis healing. Surg Endosc. 2012;26(6):1642–1647. doi: 10.1007/s00464-011-2086-2.
    1. Polat C, et al. The effect of NG-nitro l-arginine methyl ester on colonic anastomosis after increased intra-abdominal pressure. Langenbecks Arch Surg. 2007;392(2):197–202. doi: 10.1007/s00423-006-0088-7.
    1. Schob OM, et al. A comparison of the pathophysiologic effects of carbon dioxide, nitrous oxide, and helium pneumoperitoneum on intracranial pressure. Am J Surg. 1996;172(3):248–253. doi: 10.1016/S0002-9610(96)00101-8.
    1. Rosenthal RJ, et al. Intracranial pressure. Effects of pneumoperitoneum in a large-animal model. Surg Endosc. 1997;11(4):376–380. doi: 10.1007/s004649900367.
    1. Rosenthal RJ, et al. Effects of hyperventilation and hypoventilation on PaCO2 and intracranial pressure during acute elevations of intraabdominal pressure with CO2 pneumoperitoneum: large animal observations. J Am Coll Surg. 1998;187(1):32–38. doi: 10.1016/S1072-7515(98)00126-4.
    1. Hanel F, et al. Effects of carbon dioxide pneumoperitoneum on cerebral hemodynamics in pigs. J Neurosurg Anesthesiol. 2001;13(3):222–226. doi: 10.1097/00008506-200107000-00007.
    1. Josephs LG, et al. Diagnostic laparoscopy increases intracranial pressure. J Trauma. 1994;36(6):815–818. doi: 10.1097/00005373-199406000-00011.
    1. Hvidberg A, Kessing SV, Fernandes A. Effect of changes in PCO2 and body positions on intraocular pressure during general anaesthesia. Acta Ophthalmol (Copenh) 1981;59(4):465–475. doi: 10.1111/j.1755-3768.1981.tb08331.x.
    1. Baraka A, et al. End-tidal carbon dioxide tension during laparoscopic cholecystectomy. Correlation with the baseline value prior to carbon dioxide insufflation. Anaesthesia. 1994;49(4):304–306. doi: 10.1111/j.1365-2044.1994.tb14178.x.
    1. Hofer CK, et al. Changes in intrathoracic blood volume associated with pneumoperitoneum and positioning. Acta Anaesthesiol Scand. 2002;46(3):303–308. doi: 10.1034/j.1399-6576.2002.t01-1-460313.x.
    1. Lentschener C, et al. The effect of pneumoperitoneum on intraocular pressure in rabbits with alpha-chymotrypsin-induced glaucoma. Anesth Analg. 1998;86(6):1283–1288.
    1. Lentschener C, et al. Effect of CO(2) pneumoperitoneum on early cellular markers of retinal ischemia in rabbits with alpha-chymotrypsin-induced glaucoma. Surg Endosc. 2000;14(11):1057–1061. doi: 10.1007/s004640000257.
    1. Yang CK, et al. Effect of CO(2) pneumoperitoneum on the expression of the chemokine receptors CXCR4 and CCR7 in colorectal carcinoma cells in vitro. Chin Med J (Engl) 2013;126(24):4747–4751.
    1. Krause P, et al. The plasminogen activator inhibitor system in colon cancer cell lines is influenced by the CO2 pneumoperitoneum. Int J Colorectal Dis. 2011;26(1):37–43. doi: 10.1007/s00384-010-1062-y.
    1. Yu Y, et al. Carbon dioxide modifies the morphology and function of mesothelial cells and facilitates transepithelial neuroblastoma cell migration. Pediatr Surg Int. 2010;26(1):29–36. doi: 10.1007/s00383-009-2503-y.
    1. Wang N, et al. Elevated CO2 selectively inhibits interleukin-6 and tumor necrosis factor expression and decreases phagocytosis in the macrophage. FASEB J. 2010;24(7):2178–2190. doi: 10.1096/fj.09-136895.
    1. Redmond HP, et al. Immune function in patients undergoing open vs laparoscopic cholecystectomy. Arch Surg. 1994;129(12):1240–1246. doi: 10.1001/archsurg.1994.01420360030003.
    1. Matsuzaki S, et al. Molecular mechanisms underlying postoperative peritoneal tumor dissemination may differ between a laparotomy and carbon dioxide pneumoperitoneum: a syngeneic mouse model with controlled respiratory support. Surg Endosc. 2009;23(4):705–714. doi: 10.1007/s00464-008-0041-7.
    1. Ishida H, Murata N, Idezuki Y. Increased insufflation pressure enhances the development of liver metastasis in a mouse laparoscopy model. World J Surg. 2001;25(12):1537–1541. doi: 10.1007/s00268-001-0165-6.
    1. Ishida H, et al. Liver metastases are less established after gasless laparoscopy than after carbon dioxide pneumoperitoneum and laparotomy in a mouse model. Surg Endosc. 2002;16(1):193–196. doi: 10.1007/s004640080173.
    1. Wittich P, et al. Increased tumor growth after high pressure pneumoperitoneum with helium and air. J Laparoendosc Adv Surg Tech A. 2004;14(4):205–208. doi: 10.1089/lap.2004.14.205.
    1. Mathew G, et al. The role of peritoneal immunity and the tumour-bearing state on the development of wound and peritoneal metastases after laparoscopy. Aust N Z J Surg. 1999;69(1):14–18. doi: 10.1046/j.1440-1622.1999.01484.x.
    1. Agostini A, et al. Impact of different gases and pneumoperitoneum pressures on tumor growth during laparoscopy in a rat model. Surg Endosc. 2002;16(3):529–532. doi: 10.1007/s004640090081.
    1. Azuar AS, et al. Impact of surgical peritoneal environment on postoperative tumor growth and dissemination in a preimplanted tumor model. Surg Endosc. 2009;23(8):1733–1739. doi: 10.1007/s00464-008-0174-8.
    1. Tomita H, et al. CO2 pneumoperitoneum does not enhance tumor growth and metastasis: study of a rat cecal wall inoculation model. Dis Colon Rectum. 2001;44(9):1297–1301. doi: 10.1007/BF02234787.
    1. Lindekaer AL, Halvor Springborg H, Istre O (2013) Deep neuromuscular blockade leads to a larger intraabdominal volume during laparoscopy. J Vis Exp 76
    1. Madsen MV, et al. Neuromuscular blockade for optimising surgical conditions during abdominal and gynaecological surgery: a systematic review. Acta Anaesthesiol Scand. 2015;59(1):1–16. doi: 10.1111/aas.12419.
    1. Guyatt GH, et al. Going from evidence to recommendations. BMJ. 2008;336(7652):1049–1051. doi: 10.1136/.

Source: PubMed

3
구독하다