Chronic hepatitis B: dynamic change in Traditional Chinese Medicine syndrome by dynamic network biomarkers

Yiyu Lu, Zhaoyuan Fang, Tao Zeng, Meiyi Li, Qilong Chen, Hui Zhang, Qianmei Zhou, Yiyang Hu, Luonan Chen, Shibing Su, Yiyu Lu, Zhaoyuan Fang, Tao Zeng, Meiyi Li, Qilong Chen, Hui Zhang, Qianmei Zhou, Yiyang Hu, Luonan Chen, Shibing Su

Abstract

Background: In traditional Chinese medicine (TCM) clinical practice, TCM syndromes help to understand human homeostasis and guide individualized treatment. However, the TCM syndrome changes with disease progression, of which the scientific basis and mechanism remain unclear.

Methods: To demonstrate the underlying mechanism of dynamic changes in the TCM syndrome, we applied a dynamic network biomarker (DNB) algorithm to obtain the DNBs of changes in the TCM syndrome, based on the transcriptomic data of patients with chronic hepatitis B and typical TCM syndromes, including healthy controls and patients with liver-gallbladder dampness-heat syndrome (LGDHS), liver-depression spleen-deficiency syndrome (LDSDS), and liver-kidney yin-deficiency syndrome (LKYDS). The DNB model exploits collective fluctuations and correlations of the observed genes, then diagnoses the critical state.

Results: Our results showed that the DNBs of TCM syndromes were comprised of 52 genes and the tipping point occurred at the LDSDS stage. Meanwhile, there were numerous differentially expressed genes between LGDHS and LKYDS, which highlighted the drastic changes before and after the tipping point, implying the 52 DNBs could serve as early-warning signals of the upcoming change in the TCM syndrome. Next, we validated DNBs by cytokine profiling and isobaric tags for relative and absolute quantitation (iTRAQ). The results showed that PLG (plasminogen) and coagulation factor XII (F12) were significantly expressed during the progression of TCM syndrome from LGDHS to LKYDS.

Conclusions: This study provides a scientific understanding of changes in the TCM syndrome. During this process, the cytokine system was involved all the time. The DNBs PLG and F12 were confirmed to significantly change during TCM-syndrome progression and indicated a potential value of DNBs in auxiliary diagnosis of TCM syndrome in CHB.Trial registration Identifier: NCT03189992. Registered on June 4, 2017. Retrospectively registered (http://www.clinicaltrials.gov).

Keywords: Chronic hepatitis B; Disease progression; Dynamic network biomarkers; Systems biology; Traditional Chinese Medicine syndrome.

Conflict of interest statement

Competing interestsThe authors declare that they have no competing interests.

© The Author(s) 2019.

Figures

Fig. 1
Fig. 1
The progression of traditional Chinese medicine (TCM) syndrome in chronic hepatitis B (CHB) and gene expression analyses. a A schematic diagram illustrates the progression of TCM syndromes, each typical TCM syndrome has a different clinical manifestation. b Three-dimensional principal component analysis (PCA) shows clustering of 60 samples with TCM-syndrome progression. Each small spot represents the principal component score of the top three principle components for each sample. c Unsupervised hierarchical clustering of 60 samples based on 4252 differentially expressed genes (DEGs). Similar to (b), the healthy and LGDHS groups were clustered together, while the LDSDS were mingled with LKYDS. b, c Green, healthy; purple, LGDHS; blue, LDSDS; orange, LKYDS
Fig. 2
Fig. 2
A brief model of dynamic network biomarkers (DNB) theory and DNB analysis results. a Liver-gallbladder dampness-heat syndrome (LGDHS) (excess TCM syndrome) usually happens at disease onset or TCM-syndrome change. After the tipping point, the system drastically deteriorates to weakness, for instance, liver-kidney yin-deficiency syndrome (LKYDS) (deficiency TCM syndrome). The DNB method can identify the dramatic changing state by analyzing molecular fluctuations at each stage. b These four diagrams visually show the three key criteria of DNBs over four different stages during TCM-syndrome progression. CV is the average coefficient of variance of the DNBs, PCCin is the average Pearson correlation coefficient (PCC) of the cluster of molecules in absolute values, and PCCout is the average PCC between the cluster of molecules and other molecules in absolute values, after comparing with the corresponding controls. CIs were calculated according to the DNB formula (method) to seek the system tipping point. After calculation, LDSDS was recognized as the critical stage of TCM-syndrome progression. c Series of illustrations of dynamic changes in the network structure. Node color reflects the CV of the corresponding molecule. Clearly, DNBs are strongly correlated and fluctuated at the LDSDS stage
Fig. 3
Fig. 3
Dynamic network biomarker–differentially expressed gene (DNB–DEG) network, before and after the critical stage. a Illustrations of dynamic change in the expressions of the DNB-associated network before and after the critical stage (LDSDS). bc Functional analyses of the flipped DEGs
Fig. 4
Fig. 4
Functional phenotyping of dynamic network biomarkers (DNBs) and differentially expressed genes (DEGs) in a DNB-associated network. a Four dynamic expression patterns of DNBs and DNB-related DEGs were identified by the Mfuzz clustering method. b The bar graph shows related Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, which were enriched according to corresponding DNBs and DNB-related DEGs in different dynamic patterns
Fig. 5
Fig. 5
Expression of seven cytokines changed significantly from liver-gallbladder dampness-heat syndrome (LGDHS) to liver-kidney yin-deficiency syndrome (LKYDS). ag Cytokine expression of CCL3, IL17, IL15, CCL27, LIF, CLEC11A, and CSF2. These cytokines were significantly expressed between LGHDS and LKYDS. The vertical axis represents absolute quantification of cytokines measured by enzyme-linked immunosorbent assay (ELISA). h, i Validation of DNBs plasminogen (PLG) and coagulation factor XII (F12) in the proteomic data. The vertical axis represents signal ratio compared to the healthy group. ai The p values were measured by Mann–Whitney U tests
Fig. 6
Fig. 6
Diagnostic ability assessment for PLG, F12, and liver function indexes. a Receiver operating characteristic (ROC) ROC curve analysis of PLG and F12. AUC of PLG = 0.795 (95% CI 0.644 to 0.938), AUC of F12 = 0.795 (95% CI 0.520 to 0.862). b PCA of 57 samples including 20 LGDHS, 20 LDSDS and 17 LKYDS in an independent cohort by PLG and F12. c PCA of samples by liver function indexes (i.e. GGT, ALB, TBIL, DBIL, GLO, AST, ALT, TP, and ALP). Purple, LGDHS; orange, LKYDS

References

    1. Cheung FTCM. Made in China. Nature. 2011;480(7378):S82. doi: 10.1038/480S82a.
    1. Hao P, Jiang F, Cheng J, Ma L, Zhang Y, Zhao Y. Traditional Chinese Medicine for cardiovascular disease: evidence and potential mechanisms. J Am Coll Cardiol. 2017;69(24):2952–2966. doi: 10.1016/j.jacc.2017.04.041.
    1. Gao YQ, Zhang X, Li M, Zhou ZH, Sun XH, Zhu XJ, Jin SG. Bushenjianpi formula combined with entecavir for HBeAg-negative chronic hepatitis B patients: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet. 2016;388(Suppl 1):S33. doi: 10.1016/S0140-6736(16)31960-2.
    1. Yin LM, Xu YD, Peng LL, Duan TT, Liu JY, Xu Z, Wang WQ, Guan N, Han XJ, Li HY, Pang Y, Wang Y, Chen Z, Zhu W, Deng L, Wu YL, Ge GB, Huang S, Ulloa L, Yang YQ. Transgelin-2 as a therapeutic target for asthmatic pulmonary resistance. Sci Transl Med. 2018;10(427):eaam8604. doi: 10.1126/scitranslmed.aam8604.
    1. Tang CM, Yau TO, Yu J. Management of chronic hepatitis B infection: current treatment guidelines, challenges, and new developments. World J Gastroenterol. 2014;20(20):6262–6278. doi: 10.3748/wjg.v20.i20.6262.
    1. Cui X, Wang Y, Kokudo N, Fang D, Tang W. Traditional Chinese medicine and related active compounds against hepatitis B virus infection. Biosci Trends. 2010;4(2):39–47.
    1. Li J. Clinical research progress in integrated traditional Chinese and Western medicine therapy for HBV-related liver failure. J Clinic Hepatol. 2015;31(1):42–47.
    1. Sun S, Dai J, Wang W, Cao H, Fang J, Hu YY, Su S, Zhang Y. Metabonomic evaluation of ZHENG differentiation and treatment by Fuzhenghuayu tablet in hepatitis-B-caused cirrhosis. Evid Based Complement Altern Med. 2012;2012(16):453503.
    1. Wei H, Pasman W, Rubingh C, Wopereis S, Tienstra M, Schroen J, Wang M, Verheij E, van der Greef J. Urine metabolomics combined with the personalized diagnosis guided by Chinese medicine reveals subtypes of pre-diabetes. Mol Biosyst. 2012;8(5):1482–1491. doi: 10.1039/c2mb05445k.
    1. Awashima Y. The truth of the accident-some patients died from side effects of Xiao Chai Hu Tang. J Tianjin Univ Tradit Chin Med. 2002;21(1):47–48.
    1. Jiang WY. Therapeutic wisdom in traditional Chinese medicine: a perspective from modern science. Discov Med. 2005;26(11):558–563.
    1. Ma Y, Sun S, Peng CK. Applications of dynamical complexity theory in traditional Chinese medicine. Front Med. 2014;8(3):279. doi: 10.1007/s11684-014-0367-6.
    1. Zhang A, Sun H, Wang Z, Sun W, Wang P, Wang X. Metabolomics: towards understanding traditional Chinese medicine. Planta Med. 2010;76(17):2026–2035. doi: 10.1055/s-0030-1250542.
    1. Kang H, Zhao Y, Li C, Chen Y, Tang K, Yang L, Ma C, Peng J, Zhu R, Liu Q, Hu Y, Cao Z. Integrating clinical indexes into four-diagnostic information contributes to the Traditional Chinese Medicine (TCM) syndrome diagnosis of chronic hepatitis B. Sci Rep. 2015;5:9395. doi: 10.1038/srep09395.
    1. Guo Z, Yu S, Guan Y, Li YY, Lu YY, Zhang H, Su SB. Molecular mechanisms of same TCM syndrome for different diseases and different TCM syndrome for same disease in chronic hepatitis B and liver cirrhosis. Evid Based Complement Altern Med. 2012;2012:120350. doi: 10.1155/2012/120350.
    1. Ma L, Zheng X, Yang Y, Wang J, Xu Y, Wang B. Epigenetic differences of chronic hepatitis B in different TCM syndromes: protocol for a case-control, non-interventional, observational clinical study. Medicine (Baltimore) 2018;97(39):e12452. doi: 10.1097/MD.0000000000012452.
    1. Song YN, Zhang H, Guan Y, Peng JH, Lu YY, Hu YY, Su SB. Classification of Traditional Chinese Medicine syndromes in patients with chronic hepatitis B by SELDI-Based ProteinChip analysis. Evid Based Complement Altern Med. 2012;2012:626320.
    1. Liu Y, Liu P, Dai R, Wang J, Zheng Y, Shen J, Guo F, Wang L, Li H, Wei M. Analysis of plasma proteome from cases of the different traditional Chinese medicine syndromes in patients with chronic hepatitis B. J Pharm Biomed Anal. 2012;59:173–178. doi: 10.1016/j.jpba.2011.10.002.
    1. Zhao Y, Mao YF, Tang YS, Ni MZ, Liu QH, Wang Y, Feng Q, Peng JH, Hu YY. Altered oral microbiota in chronic hepatitis B patients with different tongue coatings. World J Gastroenterol. 2018;24(30):3448–3461. doi: 10.3748/wjg.v24.i30.3448.
    1. Yu Z, Gou XJ, Dai JY, Peng JH, Feng Q, Sun SJ, Cao HJ, Zheng NN, Fang JW, Jian J. Differences in metabolites of different tongue coatings in patients with chronic hepatitis B. Evid Based Complement Alternat Med. 2013;2013(2):204908.
    1. Yang J, Yang L, Li B, Zhou W, Zhong S, Zhuang Z, Yang B, Chen M, Feng Q. iTRAQ-based proteomics identification of serum biomarkers of two chronic hepatitis B subtypes diagnosed by Traditional Chinese Medicine. Biomed Res Int. 2016;2016:3290260.
    1. Song YN, Zhao Y, Peng JH, Zhang H, Lu YY, Dai JY, Hu YY, Zhang YY, Su SB. Study of deficiency and excess syndromes of chronic hepatitis B based on SELDI-TOF/MS technology. Chin J Tradit Chin Med Pharm. 2014;29(8):2575–2580.
    1. Yan G, Hui Z, Wei Z. Analysis of differential gene expression profile in peripheral blood of patients with chronic hepatitis B and syndromes of dual deficiency of liver and kidney yin and accumulation of dampness heat. Zhong XI Yi Jie He Xue Bao. 2012;10(7):751–756. doi: 10.3736/jcim20120705.
    1. Lu YY, Zhao Y, Song YN, Dong S, Wei B, Chen QL, Hu YY, Su SB. Serum cytokine profiling analysis for zheng differentiation in chronic hepatitis B. Chin Med. 2015;10(1):24. doi: 10.1186/s13020-015-0055-8.
    1. Chen QL, Lu YY, Zhang GB, Song YN, Zhou QM, Zhang H, Zhang W, Tang XS, Su SB. Characteristic analysis from excessive to deficient syndromes in hepatocarcinoma underlying miRNA array data. Evid Based Complement Altern Med. 2013;2013(10):324636.
    1. Lu YY, Chen QL, Guan Y, Guo ZZ, Zhang H, Zhang W, Hu YY, Su SB. Study of ZHENG differentiation in hepatitis B-caused cirrhosis: a transcriptional profiling analysis. BMC Complement Altern Med. 2014;14:371. doi: 10.1186/1472-6882-14-371.
    1. Tian JZ, Wang YY, Shi J. Concept and attributes of syndrome manifestations. J Beijing Univ of Tradit Chin Med. 2005;28(5):6–8.
    1. Wang X, Gulbahce N, Yu H. Network-based methods for human disease gene prediction. Brief Funct Genomics. 2011;10(5):280–293. doi: 10.1093/bfgp/elr024.
    1. Martin SBU, Nagarajan N, Ambuj T, Woods JO, Dhillon IS, Marcotte EM. Prediction and validation of gene-disease associations using methods inspired by social network analyses. PLoS ONE. 2013;8(9):e58977. doi: 10.1371/annotation/1c88ae20-07d1-4fda-8cd8-058d95af057d.
    1. Ashkenazy R. Using network-based expert engagement to advance pharmaceutical research and development. Drug Discov Today. 2018;23(4):755–757. doi: 10.1016/j.drudis.2018.01.001.
    1. Akram S, Mostafa RT, Afsaneh AO, Mona ZA, Reza MS, Rahim NA. Protein-protein interaction network analysis of cirrhosis liver disease. Gastroenterol Hepatol Bed Bench. 2016;9(2):114–123.
    1. Fedeles SV, Xin T, Anna-Rachel G, Michihiro M, Saori N, Seung Hun L, Yiqiang C, Lin G, Crews CM, Stefan S. A genetic interaction network of five genes for human polycystic kidney and liver diseases defines polycystin-1 as the central determinant of cyst formation. Nat Genet. 2011;43(7):639–647. doi: 10.1038/ng.860.
    1. Chen L, Liu R, Liu ZP, Li M, Aihara K. Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci Rep. 2012;2(7391):342. doi: 10.1038/srep00342.
    1. Li M, Li C, Liu WX, Liu C, Cui J, Li Q, Ni H, Yang Y, Wu C, Chen C. Dysfunction of PLA2G6 and CYP2C44-associated network signals imminent carcinogenesis from chronic inflammation to hepatocellular carcinoma. J Mol Cell Biol. 2017;9(6):1–15. doi: 10.1093/jmcb/mjx021.
    1. Lu YY, Fang ZY, Li MY, Chen QL, Zeng T, Lu LN, Chen QL, Zhang H, Zhou QM, Sun Y, Xue XF, Hu YY, Chen LN, Su SB. Dynamic edge-based biomarker non-invasively predicts hepatocellular carcinoma with hepatitis B virus infection for individual patients based on blood testing. J Mol Cell Biol. 2019;11(8):665–677. doi: 10.1093/jmcb/mjz025.
    1. Hepatobiliary disease branch of Chinese Association of Chinese Medicine TCM syndrome differentiation standard of viral hepatitis. Chin J Intergr Trait West Med Liver Dis. 2017 doi: 10.3969/j.issn.1005-0264.2017.03.024.
    1. Liu Y, Wang M, Luo Y, Chen C, Lu Y, Shi Y, Tang C, Zhou Q, Zhang H, Hu Y, Su S, Chen Q. MiRNA-target network analysis identifies potential biomarkers for Traditional Chinese Medicine (TCM) syndrome development evaluation in hepatitis B caused liver cirrhosis. Sci Rep. 2017;7(1):11054. doi: 10.1038/s41598-017-11351-5.
    1. Wu X, Chen L, Wang X. Network biomarkers, interaction networks and dynamical network biomarkers in respiratory diseases. Clin Transl Med. 2014;3:16. doi: 10.1186/2001-1326-3-16.
    1. Sa R, Zhang W, Ge J, Wei X, Zhou Y, Landzberg DR, Wang Z, Han X, Chen L, Yin H. Discovering a critical transition state from nonalcoholic hepatosteatosis to nonalcoholic steatohepatitis by lipidomics and dynamical network biomarkers. J Mol Cell Biol. 2016;8(3):195–206. doi: 10.1093/jmcb/mjw016.
    1. Lu LN, Jiang ZL, Dai YL, Chen LN. Low-grade dysplastic nodules revealed as the tipping point during multistep hepatocarcinogenesis by dynamic network biomarkers. Genes (Basel) 2017;8(10):268. doi: 10.3390/genes8100268.
    1. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–287. doi: 10.1089/omi.2011.0118.
    1. Tarca AL, Draghici S, Purvesh, Hassan S. A novel signaling pathway impact analysis. Bioinformatics. 2009;25(1):75–82. doi: 10.1093/bioinformatics/btn577.
    1. Capone F, Guerriero E, Colonna G, Maio P, Mangia A, Marfella R, Paolisso G, Izzo F, Potenza N, Tomeo L. The cytokinome profile in patients with hepatocellular carcinoma and type 2 diabetes. PLoS ONE. 2015;10(7):e0134594. doi: 10.1371/journal.pone.0134594.
    1. Steuerwald NM, Foureau DM, Norton HJ, Zhou J, Parsons JC, Chalasani N, Fontana RJ, Watkins PB, Lee WM, Reddy KR. Profiles of serum cytokines in acute drug-induced liver injury and their prognostic significance. PLoS ONE. 2013;8(12):e81974. doi: 10.1371/journal.pone.0081974.
    1. Codices V, Martins C, Novo C, Sousa BD, Lopes Â, Borrego M, Matos O. Dynamics of cytokines and immunoglobulins serum profiles in primary and secondary Cryptosporidium parvum infection: usefulness of Luminex®; xMAP technology. Exp Parasitol. 2013;133(1):106–113. doi: 10.1016/j.exppara.2012.11.003.
    1. Yeh CC, Hsu CH, Shao YY, Ho WC, Tsai MH, Feng WC, Chow LP. Integrated SILAC and iTRAQ quantitative proteomic analysis identifies galectin-1 as a potential biomarker for predicting sorafenib resistance in liver cancer. Mol Cell Proteom. 2015;14(6):1527–1545. doi: 10.1074/mcp.M114.046417.
    1. Xu DD, Li YY, Li X, Wei LL, Pan ZF, Jiang TT, Chen ZL, Wang C, Cao WM, Zhang X. Serum protein S100A9, SOD3, and MMP9 as new diagnostic biomarkers for pulmonary tuberculosis by iTRAQ-coupled two-dimensional LC-MS/MS. Proteomics. 2015;15(1):58–67. doi: 10.1002/pmic.201400366.
    1. Yang B, Li M, Tang W, Liu W, Zhang S, Chen L, Xia J. Dynamic network biomarker indicates pulmonary metastasis at the tipping point of hepatocellular carcinoma. Nat Commun. 2018;9(1):678. doi: 10.1038/s41467-018-03024-2.
    1. Del Campo JA, Gallego P, Grande L. Role of inflammatory response in liver diseases: therapeutic strategies. World J of Hepato. 2018;10(1):1–7. doi: 10.4254/wjh.v10.i1.1.
    1. Tilg H. Cytokines and liver diseases. Can J Gastroenterol Hepatol. 2001;15(10):661–668.
    1. Lafdil F, Miller AM, Ki SH, Gao B. Th17 cells and their associated cytokines in liver diseases. Cell Mol Immunol. 2010;7(4):250–254. doi: 10.1038/cmi.2010.5.
    1. Kumar L, Futschik ME. Mfuzz: a software package for soft clustering of microarray data. Bioinformation. 2007;2(1):5–7. doi: 10.6026/97320630002005.
    1. Chen QL, Lu YY, Zhang GB, Song YN, Zhou QM, Zhang H, Zhang W, Su SB. Progression from excessive to deficient syndromes in chronic hepatitis B: a dynamical network analysis of miRNA array data. Evid Based Complement Altern Med. 2013;2013:945245.
    1. Lee M, Lee M, Lee SK, Son M, Cho SW, Park S, Kim HI. Expression of Th1 and Th2 type cytokines responding to HBsAg and HBxAg in chronic hepatitis B patients. J Korean Med Sci. 1999;14(2):175–181. doi: 10.3346/jkms.1999.14.2.175.
    1. Chen J, Li XY, Cai FF, Hu XQ, Lu YY, Su SB. Analysis on ‘same disease but different syndromes’ and ‘same syndrome exist in different disease’ of post-operation of liver cancer and colorectal cancer based on multiplex biometric immunoassay technology. Chin J Tradit Chin Med Pharm. 2017;32(5):2098–2103.
    1. Lu YY, Su SB. Syndrome study on cirrhosis caused by chronic hepatitis B based on serum cytokine antibody microarray. Chin J Tradit Chin Med Pharm. 2015;30(5):1684–1688.
    1. Lu YY, Zhao Y, Song YN, Dong S, Wei B, Chen QL, Hu YY, Su SB. Serum cytokine profiling analysis for zheng differentiation in chronic hepatitis B. Chin Med. 2015;10:24. doi: 10.1186/s13020-015-0055-8.
    1. Nickel KF, Long AT, Fuchs TA, Butler LM, Renne T. Factor XII as a therapeutic target in thromboembolic and inflammatory diseases. Arterioscler Thromb Vasc Biol. 2017;37(1):13–20. doi: 10.1161/ATVBAHA.116.308595.
    1. Ahn HJ, Chen ZL, Zamolodchikov D, Norris EH, Strickland S. Interactions of β-amyloid peptide with fibrinogen and coagulation factor XII may contribute to Alzheimer’s disease. Curr Opin Hematol. 2017;24(5):427–431. doi: 10.1097/MOH.0000000000000368.
    1. Stefansson S, McMahon GA, Petitclerc E, Lawrence DA. Plasminogen activator inhibitor-1 in tumor growth, angiogenesis and vascular remodeling. Curr Pharm Des. 2003;9(19):1545–1564. doi: 10.2174/1381612033454621.
    1. Hu Z, Lausted C, Yoo H, Yan X, Brightman A, Chen J, Wang W, Bu X, Hood L. Quantitative liver-specific protein fingerprint in blood: a signature for hepatotoxicity. Theranostics. 2014;4(2):215–228. doi: 10.7150/thno.7868.

Source: PubMed

3
구독하다