Dietary Oat Bran Reduces Systemic Inflammation in Mice Subjected to Pelvic Irradiation

Piyush Patel, Dilip Kumar Malipatlolla, Sravani Devarakonda, Cecilia Bull, Ana Rascón, Margareta Nyman, Andrea Stringer, Valentina Tremaroli, Gunnar Steineck, Fei Sjöberg, Piyush Patel, Dilip Kumar Malipatlolla, Sravani Devarakonda, Cecilia Bull, Ana Rascón, Margareta Nyman, Andrea Stringer, Valentina Tremaroli, Gunnar Steineck, Fei Sjöberg

Abstract

Patients undergoing radiotherapy to treat pelvic-organ cancer are commonly advised to follow a restricted fiber diet. However, reducing dietary fiber may promote gastrointestinal inflammation, eventually leading to deteriorated intestinal health. The goal of this study was to evaluate the influence of dietary fiber on radiation-induced inflammation. C57BL/6J male mice were fed a High-oat bran diet (15% fiber) or a No-fiber diet (0% fiber) and were either irradiated (32 Gy delivered in four fractions) to the colorectal region or only sedated (controls). The dietary intervention started at 2 weeks before irradiation and lasted for 1, 6, and 18 weeks after irradiation, at which time points mice were sacrificed and their serum samples were assayed for 23 cytokines and chemokines. Our analyses show that irradiation increased the serum cytokine levels at all the time points analyzed. The No-fiber irradiated mice had significantly higher levels of pro-inflammatory cytokines than the High-oat irradiated mice at all time points. The results indicate that a fiber-rich oat bran diet reduces the intensity of radiation-induced inflammation, both at an early and late stage. Based on the results, it seems that the advice to follow a low-fiber diet during radiotherapy may increase the risk of decreased intestinal health in cancer survivors.

Keywords: dietary fiber; oat bran; pelvic radiotherapy; radiation-induced inflammation; serum cytokines.

Conflict of interest statement

Ana Rascón is a part-time employee of Glucanova, the provider of the bioprocessed oat bran. She is also the author of the patent for its preparation.

Figures

Figure 1
Figure 1
Experimental design. (A) Mice were fed the High-oat or No-fiber diet starting at 2 weeks before irradiation until 1, 6, and 18, weeks post-irradiation. Mice were sacrificed at 1, 6, and 18 weeks post-irradiation followed by blood sample collection. (B) Compositions of the High-oat and the No-fiber diets.
Figure 2
Figure 2
Serum cytokine and chemokine levels in mice at 1 week post-irradiation. A two-tailed Mann–Whitney test was used to compare the cytokine and chemokine levels in High-oat irr vs. High-oat cntl, No-fiber irr vs. No-fiber cntl, High-oat irr vs. No-fiber irr, and High-oat cntl vs. No-fiber cntl groups. Data shown are average concentrations and the error bars represent SEM. * p ≤ 0.05; and ** p ≤ 0.01.
Figure 2
Figure 2
Serum cytokine and chemokine levels in mice at 1 week post-irradiation. A two-tailed Mann–Whitney test was used to compare the cytokine and chemokine levels in High-oat irr vs. High-oat cntl, No-fiber irr vs. No-fiber cntl, High-oat irr vs. No-fiber irr, and High-oat cntl vs. No-fiber cntl groups. Data shown are average concentrations and the error bars represent SEM. * p ≤ 0.05; and ** p ≤ 0.01.
Figure 3
Figure 3
Principal component analysis (PCA), a multivariate dimensionality reduction analysis was performed on serum cytokines and chemokines levels in mice at 1 week post-irradiation. (A) PCA score scatter plot of cytokine profiles, showing discrimination between the groups. (B) PCA loading scatter plot showing the associations between the cytokines and different groups.
Figure 3
Figure 3
Principal component analysis (PCA), a multivariate dimensionality reduction analysis was performed on serum cytokines and chemokines levels in mice at 1 week post-irradiation. (A) PCA score scatter plot of cytokine profiles, showing discrimination between the groups. (B) PCA loading scatter plot showing the associations between the cytokines and different groups.
Figure 4
Figure 4
Serum cytokine and chemokine levels in mice at 6 weeks post-irradiation. A two-tailed Student’s t-test was used to compare the cytokine levels in the High-oat irr vs. High-oat cntl, No-fiber irr vs. No-fiber cntl, High-oat irr vs. No-fiber irr, and High-oat cntl vs. No-fiber cntl groups. Data shown are average concentrations and the error bars represent SEM. * p ≤ 0.05.
Figure 5
Figure 5
PCA analysis of serum cytokines and chemokines levels in mice at 6 weeks post-irradiation. (A) PCA score scatter plot of cytokine profiles, showing discrimination between the groups. (B) PCA loading scatter plot showing the associations between the cytokines and different groups.
Figure 6
Figure 6
Serum cytokine and chemokine levels in mice at 18 weeks post-irradiation. A two-tailed Mann–Whitney test was used to compare the cytokine and chemokine levels in High-oat irr vs. High-oat cntl, No-fiber irr vs. No-fiber cntl, High-oat irr vs. No-fiber irr, and High-oat cntl vs. No-fiber cntl groups. Data shown are average concentrations and the error bars represent SEM. * p ≤ 0.05; and ** p ≤ 0.01.
Figure 6
Figure 6
Serum cytokine and chemokine levels in mice at 18 weeks post-irradiation. A two-tailed Mann–Whitney test was used to compare the cytokine and chemokine levels in High-oat irr vs. High-oat cntl, No-fiber irr vs. No-fiber cntl, High-oat irr vs. No-fiber irr, and High-oat cntl vs. No-fiber cntl groups. Data shown are average concentrations and the error bars represent SEM. * p ≤ 0.05; and ** p ≤ 0.01.
Figure 7
Figure 7
PCA analysis of serum cytokines and chemokines levels in mice at 18 weeks post-irradiation. (A) PCA score scatter plot of cytokine profiles, showing discrimination between the groups. (B) PCA loading scatter plot showing the associations between the cytokines and different groups.
Figure 8
Figure 8
Pathway enrichment analysis. The comparison analysis was used to compare the High-oat irr vs. High-oat cntl, No-fiber irr vs. No-fiber cntl, High-oat irr vs. No-fiber irr, and High-oat cntl vs. No-fiber cntl groups, to observe the top 15 canonical pathways associated with the cytokine profiles at (A) 1, (B) 6, and (C) 18 weeks post-irradiation, ordered according to the highest activation z-score. The orange colorations indicate upregulation of the pathway and the blue colorations indicate downregulation of the pathway.
Figure 8
Figure 8
Pathway enrichment analysis. The comparison analysis was used to compare the High-oat irr vs. High-oat cntl, No-fiber irr vs. No-fiber cntl, High-oat irr vs. No-fiber irr, and High-oat cntl vs. No-fiber cntl groups, to observe the top 15 canonical pathways associated with the cytokine profiles at (A) 1, (B) 6, and (C) 18 weeks post-irradiation, ordered according to the highest activation z-score. The orange colorations indicate upregulation of the pathway and the blue colorations indicate downregulation of the pathway.
Figure 8
Figure 8
Pathway enrichment analysis. The comparison analysis was used to compare the High-oat irr vs. High-oat cntl, No-fiber irr vs. No-fiber cntl, High-oat irr vs. No-fiber irr, and High-oat cntl vs. No-fiber cntl groups, to observe the top 15 canonical pathways associated with the cytokine profiles at (A) 1, (B) 6, and (C) 18 weeks post-irradiation, ordered according to the highest activation z-score. The orange colorations indicate upregulation of the pathway and the blue colorations indicate downregulation of the pathway.
Figure 9
Figure 9
Biological function and disease enrichment analysis. The comparison analysis was used to compare the High-oat irr vs. High-oat cntl, No-fiber irr vs. No-fiber cntl, High-oat irr vs. No-fiber irr, and High-oat cntl vs. No-fiber cntl groups, to observe the top 15 biological functions or diseases associated with the cytokine profiles at (A) 1, (B) 6, and (C) 18 weeks post-irradiation, ordered according to the highest activation z-score. The orange colorations indicate activation of the functions or diseases and the blue colorations indicate inhibition of the functions or diseases.
Figure 9
Figure 9
Biological function and disease enrichment analysis. The comparison analysis was used to compare the High-oat irr vs. High-oat cntl, No-fiber irr vs. No-fiber cntl, High-oat irr vs. No-fiber irr, and High-oat cntl vs. No-fiber cntl groups, to observe the top 15 biological functions or diseases associated with the cytokine profiles at (A) 1, (B) 6, and (C) 18 weeks post-irradiation, ordered according to the highest activation z-score. The orange colorations indicate activation of the functions or diseases and the blue colorations indicate inhibition of the functions or diseases.
Figure 9
Figure 9
Biological function and disease enrichment analysis. The comparison analysis was used to compare the High-oat irr vs. High-oat cntl, No-fiber irr vs. No-fiber cntl, High-oat irr vs. No-fiber irr, and High-oat cntl vs. No-fiber cntl groups, to observe the top 15 biological functions or diseases associated with the cytokine profiles at (A) 1, (B) 6, and (C) 18 weeks post-irradiation, ordered according to the highest activation z-score. The orange colorations indicate activation of the functions or diseases and the blue colorations indicate inhibition of the functions or diseases.

References

    1. Ringborg U., Bergqvist D., Brorsson B., Cavallin-Stahl E., Ceberg J., Einhorn N., Frodin J.E., Jarhult J., Lamnevik G., Lindholm C., et al. The Swedish Council on Technology Assessment in Health Care (SBU) systematic overview of radiotherapy for cancer including a prospective survey of radiotherapy practice in Sweden 2001--summary and conclusions. Acta Oncol. 2003;42:357–365. doi: 10.1080/02841860310010826.
    1. Hauer-Jensen M., Denham J.W., Andreyev H.J. Radiation enteropathy--pathogenesis, treatment and prevention. Nat. Rev. Gastroenterol. Hepatol. 2014;11:470–479. doi: 10.1038/nrgastro.2014.46.
    1. Wedlake L.J., Thomas K., Lalji A., Blake P., Khoo V.S., Tait D., Andreyev H.J. Predicting late effects of pelvic radiotherapy: Is there a better approach? Int. J. Radiat. Oncol. Biol. Phys. 2010;78:1163–1170. doi: 10.1016/j.ijrobp.2009.09.011.
    1. Bismar M.M., Sinicrope F.A. Radiation enteritis. Curr. Gastroenterol. Rep. 2002;4:361–365. doi: 10.1007/s11894-002-0005-3.
    1. Miller R.C., Martenson J.A., Sargent D.J., Kahn M.J., Krook J.E. Acute treatment-related diarrhea during postoperative adjuvant therapy for high-risk rectal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 1998;41:593–598. doi: 10.1016/S0360-3016(98)00084-4.
    1. Visich K.L., Yeo T.P. The prophylactic use of probiotics in the prevention of radiation therapy-induced diarrhea. Clin. J. Oncol. Nurs. 2010;14:467–473. doi: 10.1188/10.CJON.467-473.
    1. Steineck G., Skokic V., Sjoberg F., Bull C., Alevronta E., Dunberger G., Bergmark K., Wilderang U., Oh J.H., Deasy J.O., et al. Identifying radiation-induced survivorship syndromes affecting bowel health in a cohort of gynecological cancer survivors. PLoS ONE. 2017;12:e0171461. doi: 10.1371/journal.pone.0171461.
    1. Andreyev H.J. Gastrointestinal problems after pelvic radiotherapy: The past, the present and the future. Clin. Oncol. 2007;19:790–799. doi: 10.1016/j.clon.2007.08.011.
    1. Richter K.K., Fagerhol M.K., Carr J.C., Winkler J.M., Sung C.C., Hauer-Jensen M. Association of granulocyte transmigration with structural and cellular parameters of injury in experimental radiation enteropathy. Radiat. Oncol. Investig. 1997;5:275–282. doi: 10.1002/(SICI)1520-6823(1997)5:6<275::AID-ROI3>;2-V.
    1. Wang J., Zheng H., Sung C.C., Hauer-Jensen M. The synthetic somatostatin analogue, octreotide, ameliorates acute and delayed intestinal radiation injury. Int. J. Radiat. Oncol. Biol. Phys. 1999;45:1289–1296. doi: 10.1016/S0360-3016(99)00293-X.
    1. Linard C., Marquette C., Mathieu J., Pennequin A., Clarencon D., Mathe D. Acute induction of inflammatory cytokine expression after gamma-irradiation in the rat: Effect of an NF-kappaB inhibitor. Int. J. Radiat. Oncol. Biol. Phys. 2004;58:427–434. doi: 10.1016/j.ijrobp.2003.09.039.
    1. Hallahan D.E., Haimovitz-Friedman A., Kufe D.W., Fuks Z., Weichselbaum R.R. The role of cytokines in radiation oncology. Important Adv. Oncol. 1993:71–80.
    1. Beetz A., Messer G., Oppel T., van Beuningen D., Peter R.U., Kind P. Induction of interleukin 6 by ionizing radiation in a human epithelial cell line: Control by corticosteroids. Int. J. Radiat. Biol. 1997;72:33–43. doi: 10.1080/095530097143518.
    1. Woloschak G.E., Chang-Liu C.M., Jones P.S., Jones C.A. Modulation of gene expression in Syrian hamster embryo cells following ionizing radiation. Cancer Res. 1990;50:339–344.
    1. Wang J., Robbins M.E. Radiation-induced alteration of rat mesangial cell transforming growth factor-beta and expression of the genes associated with the extracellular matrix. Radiat. Res. 1996;146:561–568. doi: 10.2307/3579557.
    1. Rubin P., Johnston C.J., Williams J.P., McDonald S., Finkelstein J.N. A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int. J. Radiat. Oncol. Biol. Phys. 1995;33:99–109. doi: 10.1016/0360-3016(95)00095-G.
    1. Sprung C.N., Forrester H.B., Siva S., Martin O.A. Immunological markers that predict radiation toxicity. Cancer Lett. 2015;368:191–197. doi: 10.1016/j.canlet.2015.01.045.
    1. Schaue D., Kachikwu E.L., McBride W.H. Cytokines in radiobiological responses: A review. Radiat. Res. 2012;178:505–523. doi: 10.1667/RR3031.1.
    1. Ding N.H., Li J.J., Sun L.Q. Molecular mechanisms and treatment of radiation-induced lung fibrosis. Curr. Drug Targets. 2013;14:1347–1356. doi: 10.2174/13894501113149990198.
    1. Provatopoulou X., Athanasiou E., Gounaris A. Predictive markers of radiation pneumonitis. Anticancer Res. 2008;28:2421–2432.
    1. Kovacs C.J., Daly B.M., Evans M.J., Johnke R.M., Lee T.K., Karlsson U.L., Allison R., Eaves G.S., Biggs L.M. Cytokine profiles in patients receiving wide-field + prostate boost radiotherapy (xRT) for adenocarcinoma of the prostate. Cytokine. 2003;23:151–163. doi: 10.1016/S1043-4666(03)00185-6.
    1. McBride W.H., Chiang C.S., Olson J.L., Wang C.C., Hong J.H., Pajonk F., Dougherty G.J., Iwamoto K.S., Pervan M., Liao Y.P. A sense of danger from radiation. Radiat. Res. 2004;162:1–19. doi: 10.1667/RR3196.
    1. Burkitt D.P., Walker A.R., Painter N.S. Effect of dietary fibre on stools and the transit-times, and its role in the causation of disease. Lancet. 1972;2:1408–1412. doi: 10.1016/S0140-6736(72)92974-1.
    1. Anderson J.W., Baird P., Davis R.H., Jr., Ferreri S., Knudtson M., Koraym A., Waters V., Williams C.L. Health benefits of dietary fiber. Nutr. Rev. 2009;67:188–205. doi: 10.1111/j.1753-4887.2009.00189.x.
    1. McCullogh J.S., Ratcliffe B., Mandir N., Carr K.E., Goodlad R.A. Dietary fibre and intestinal microflora: Effects on intestinal morphometry and crypt branching. Gut. 1998;42:799–806. doi: 10.1136/gut.42.6.799.
    1. Sanchez J.I., Marzorati M., Grootaert C., Baran M., Van Craeyveld V., Courtin C.M., Broekaert W.F., Delcour J.A., Verstraete W., Van de Wiele T. Arabinoxylan-oligosaccharides (AXOS) affect the protein/carbohydrate fermentation balance and microbial population dynamics of the Simulator of Human Intestinal Microbial Ecosystem. Microb. Biotechnol. 2009;2:101–113. doi: 10.1111/j.1751-7915.2008.00064.x.
    1. Mackie A.R., Macierzanka A., Aarak K., Rigby N.M., Parker R., Channell G.A., Harding S.E., Bajka B.H. Sodium alginate decreases the permeability of intestinal mucus. Food Hydrocoll. 2016;52:749–755. doi: 10.1016/j.foodhyd.2015.08.004.
    1. Pavadhgul P., Bumrungpert A., Harjani Y., Kurilich A. Oat porridge consumption alleviates markers of inflammation and oxidative stress in hypercholesterolemic adults. Asia Pac. J. Clin. Nutr. 2019;28:260–265.
    1. McGough C., Baldwin C., Frost G., Andreyev H.J. Role of nutritional intervention in patients treated with radiotherapy for pelvic malignancy. Br. J. Cancer. 2004;90:2278–2287. doi: 10.1038/sj.bjc.6601868.
    1. Hamad A., Fragkos K.C., Forbes A. A systematic review and meta-analysis of probiotics for the management of radiation induced bowel disease. Clin. Nutr. 2013;32:353–360. doi: 10.1016/j.clnu.2013.02.004.
    1. Volman J.J., Mensink R.P., Ramakers J.D., de Winther M.P., Carlsen H., Blomhoff R., Buurman W.A., Plat J. Dietary (1-->3), (1-->4)-beta-D-glucans from oat activate nuclear factor-kappaB in intestinal leukocytes and enterocytes from mice. Nutr. Res. 2010;30:40–48. doi: 10.1016/j.nutres.2009.10.023.
    1. Rascon A. Method for Preparing a Liquid Oat Base and Products Prepared by the Method. [(accessed on 10 October 2019)];2017 Available online: .
    1. Motulsky H.J., Brown R.E. Detecting outliers when fitting data with nonlinear regression-a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinform. 2006;7:123. doi: 10.1186/1471-2105-7-123.
    1. Jackson J.E. A User’s Guide to Principal Components. John Wiley & Sons; Hoboken, NJ, USA: 1991.
    1. Wold S., Esbensen K., Geladi P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987;2:37–52. doi: 10.1016/0169-7439(87)80084-9.
    1. Kettaneh N., Berglund A., Wold S. PCA and PLS with very large data sets. Comput. Stat. Data Anal. 2005;48:69–85. doi: 10.1016/j.csda.2003.11.027.
    1. Kramer A., Green J., Pollard J., Jr., Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics. 2014;30:523–530. doi: 10.1093/bioinformatics/btt703.
    1. Dirksen S.R., Kirschner K.F., Belyea M.J. Association of symptoms and cytokines in prostate cancer patients receiving radiation treatment. Biol. Res. Nurs. 2014;16:250–257. doi: 10.1177/1099800413490228.
    1. Okunieff P., Cornelison T., Mester M., Liu W., Ding I., Chen Y., Zhang H., Williams J.P., Finkelstein J. Mechanism and modification of gastrointestinal soft tissue response to radiation: Role of growth factors. Int. J. Radiat. Oncol. Biol. Phys. 2005;62:273–278. doi: 10.1016/j.ijrobp.2005.01.034.
    1. Zhang M., Yin L., Zhang K., Sun W., Yang S., Zhang B., Salzman P., Wang W., Liu C., Vidyasagar S., et al. Response patterns of cytokines/chemokines in two murine strains after irradiation. Cytokine. 2012;58:169–177. doi: 10.1016/j.cyto.2011.12.023.
    1. Bull C., Malipatlolla D., Kalm M., Sjoberg F., Alevronta E., Grander R., Sultanian P., Persson L., Bostrom M., Eriksson Y., et al. A novel mouse model of radiation-induced cancer survivorship diseases of the gut. Am. J. Physiol. Gastrointest. Liver Physiol. 2017;313:G456–G466. doi: 10.1152/ajpgi.00113.2017.
    1. Malipatlolla D.K., Patel P., Sjoberg F., Devarakonda S., Kalm M., Angenete E., Lindskog E.B., Grander R., Persson L., Stringer A., et al. Long-term mucosal injury and repair in a murine model of pelvic radiotherapy. Sci. Rep. 2019;9:13803. doi: 10.1038/s41598-019-50023-4.
    1. Andreyev J. Gastrointestinal symptoms after pelvic radiotherapy: A new understanding to improve management of symptomatic patients. Lancet Oncol. 2007;8:1007–1017. doi: 10.1016/S1470-2045(07)70341-8.
    1. Morris K.A., Haboubi N.Y. Pelvic radiation therapy: Between delight and disaster. World J. Gastrointest. Surg. 2015;7:279–288. doi: 10.4240/wjgs.v7.i11.279.
    1. Kovacs E.J. Fibrogenic cytokines: The role of immune mediators in the development of scar tissue. Immunol. Today. 1991;12:17–23. doi: 10.1016/0167-5699(91)90107-5.
    1. Indaram A.V., Visvalingam V., Locke M., Bank S. Mucosal cytokine production in radiation-induced proctosigmoiditis compared with inflammatory bowel disease. Am. J. Gastroenterol. 2000;95:1221–1225. doi: 10.1111/j.1572-0241.2000.02013.x.
    1. Schneider A., Kruger C., Steigleder T., Weber D., Pitzer C., Laage R., Aronowski J., Maurer M.H., Gassler N., Mier W., et al. The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J. Clin. Investig. 2005;115:2083–2098. doi: 10.1172/JCI23559.
    1. Nicola N.A., Metcalf D., Matsumoto M., Johnson G.R. Purification of a factor inducing differentiation in murine myelomonocytic leukemia cells. Identification as granulocyte colony-stimulating factor. J. Biol. Chem. 1983;258:9017–9023.
    1. Carulli G. Effects of recombinant human granulocyte colony-stimulating factor administration on neutrophil phenotype and functions. Haematologica. 1997;82:606–616.
    1. Yasuda H., Ajiki Y., Shimozato T., Kasahara M., Kawada H., Iwata M., Shimizu K. Therapeutic efficacy of granulocyte colony-stimulating factor alone and in combination with antibiotics against Pseudomonas aeruginosa infections in mice. Infect. Immun. 1990;58:2502–2509. doi: 10.1128/IAI.58.8.2502-2509.1990.
    1. Tanji N., Kikugawa T., Ochi T., Taguchi S., Sato H., Sato T., Sugahara T., Hamada H., Asai S., Matsumoto A. Circulating Cytokine Levels in Patients with Prostate Cancer: Effects of Neoadjuvant Hormonal Therapy and External-beam Radiotherapy. Anticancer Res. 2015;35:3379–3383.
    1. Suchecka D., Gromadzka-Ostrowska J., Żyła E., Harasym J.P., Oczkowski M. Selected physiological activities and health promoting properties of cereal β-glucans. A review. J. Anim. Feed Sci. 2017;26:183–191. doi: 10.22358/jafs/70066/2017.
    1. El Khoury D., Cuda C., Luhovyy B.L., Anderson G.H. Beta glucan: Health benefits in obesity and metabolic syndrome. J. Nutr. Metab. 2012;2012:851362. doi: 10.1155/2012/851362.
    1. Yun C.H., Estrada A., Van Kessel A., Park B.C., Laarveld B. Beta-glucan, extracted from oat, enhances disease resistance against bacterial and parasitic infections. FEMS Immunol. Med. Microbiol. 2003;35:67–75. doi: 10.1016/S0928-8244(02)00460-1.
    1. Davis J.M., Murphy E.A., Brown A.S., Carmichael M.D., Ghaffar A., Mayer E.P. Effects of oat beta-glucan on innate immunity and infection after exercise stress. Med. Sci. Sports Exerc. 2004;36:1321–1327. doi: 10.1249/01.MSS.0000135790.68893.6D.
    1. Inan M.S., Rasoulpour R.J., Yin L., Hubbard A.K., Rosenberg D.W., Giardina C. The luminal short-chain fatty acid butyrate modulates NF-kappaB activity in a human colonic epithelial cell line. Gastroenterology. 2000;118:724–734. doi: 10.1016/S0016-5085(00)70142-9.
    1. Liu B., Lin Q., Yang T., Zeng L., Shi L., Chen Y., Luo F. Oat beta-glucan ameliorates dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. Food Funct. 2015;6:3454–3463. doi: 10.1039/C5FO00563A.
    1. Trompette A., Gollwitzer E.S., Pattaroni C., Lopez-Mejia I.C., Riva E., Pernot J., Ubags N., Fajas L., Nicod L.P., Marsland B.J. Dietary Fiber Confers Protection against Flu by Shaping Ly6c(-) Patrolling Monocyte Hematopoiesis and CD8(+) T Cell Metabolism. Immunity. 2018;48:992–1005. doi: 10.1016/j.immuni.2018.04.022.
    1. Bermudez-Brito M., Sahasrabudhe N.M., Rosch C., Schols H.A., Faas M.M., de Vos P. The impact of dietary fibers on dendritic cell responses in vitro is dependent on the differential effects of the fibers on intestinal epithelial cells. Mol. Nutr. Food Res. 2015;59:698–710. doi: 10.1002/mnfr.201400811.
    1. Donatto F.F., Prestes J., Frollini A.B., Palanch A.C., Verlengia R., Cavaglieri C.R. Effect of oat bran on time to exhaustion, glycogen content and serum cytokine profile following exhaustive exercise. J. Int. Soc. Sports Nutr. 2010;7:32. doi: 10.1186/1550-2783-7-32.
    1. Wilczak J., Blaszczyk K., Kamola D., Gajewska M., Harasym J.P., Jalosinska M., Gudej S., Suchecka D., Oczkowski M., Gromadzka-Ostrowska J. The effect of low or high molecular weight oat beta-glucans on the inflammatory and oxidative stress status in the colon of rats with LPS-induced enteritis. Food Funct. 2015;6:590–603. doi: 10.1039/C4FO00638K.
    1. Zhang J.M., An J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin. 2007;45:27–37. doi: 10.1097/AIA.0b013e318034194e.
    1. Eastaff-Leung N., Mabarrack N., Barbour A., Cummins A., Barry S. Foxp3+ regulatory T cells, Th17 effector cells, and cytokine environment in inflammatory bowel disease. J. Clin. Immunol. 2010;30:80–89. doi: 10.1007/s10875-009-9345-1.
    1. Hu E.D., Chen D.Z., Wu J.L., Lu F.B., Chen L., Zheng M.H., Li H., Huang Y., Li J., Jin X.Y., et al. High fiber dietary and sodium butyrate attenuate experimental autoimmune hepatitis through regulation of immune regulatory cells and intestinal barrier. Cell Immunol. 2018;328:24–32. doi: 10.1016/j.cellimm.2018.03.003.
    1. Feng L.R., Wolff B.S., Lukkahatai N., Espina A., Saligan L.N. Exploratory Investigation of Early Biomarkers for Chronic Fatigue in Prostate Cancer Patients Following Radiation Therapy. Cancer Nurs. 2017;40:184–193. doi: 10.1097/NCC.0000000000000381.
    1. Kawashima R., Kawamura Y.I., Kato R., Mizutani N., Toyama-Sorimachi N., Dohi T. IL-13 receptor alpha2 promotes epithelial cell regeneration from radiation-induced small intestinal injury in mice. Gastroenterology. 2006;131:130–141. doi: 10.1053/j.gastro.2006.04.022.
    1. Chung S.I., Horton J.A., Ramalingam T.R., White A.O., Chung E.J., Hudak K.E., Scroggins B.T., Arron J.R., Wynn T.A., Citrin D.E. IL-13 is a therapeutic target in radiation lung injury. Sci. Rep. 2016;6:1–12. doi: 10.1038/srep39714.
    1. Gerassy-Vainberg S., Blatt A., Danin-Poleg Y., Gershovich K., Sabo E., Nevelsky A., Daniel S., Dahan A., Ziv O., Dheer R., et al. Radiation induces proinflammatory dysbiosis: Transmission of inflammatory susceptibility by host cytokine induction. Gut. 2018;67:97–107. doi: 10.1136/gutjnl-2017-313789.
    1. Symon Z., Goldshmidt Y., Picard O., Yavzori M., Ben-Horin S., Alezra D., Barshack I., Chowers Y. A murine model for the study of molecular pathogenesis of radiation proctitis. Int. J. Radiat. Oncol. Biol. Phys. 2010;76:242–250. doi: 10.1016/j.ijrobp.2009.07.1736.
    1. Kanarek N., Grivennikov S.I., Leshets M., Lasry A., Alkalay I., Horwitz E., Shaul Y.D., Stachler M., Voronov E., Apte R.N., et al. Critical role for IL-1beta in DNA damage-induced mucositis. Proc. Natl. Acad. Sci. USA. 2014;111:E702–E711. doi: 10.1073/pnas.1322691111.
    1. Li W., Wang G., Cui J., Xue L., Cai L. Low-dose radiation (LDR) induces hematopoietic hormesis: LDR-induced mobilization of hematopoietic progenitor cells into peripheral blood circulation. Exp. Hematol. 2004;32:1088–1096. doi: 10.1016/j.exphem.2004.07.015.
    1. Christensen E., Pintilie M., Evans K.R., Lenarduzzi M., Menard C., Catton C.N., Diamandis E.P., Bristow R.G. Longitudinal cytokine expression during IMRT for prostate cancer and acute treatment toxicity. Clin. Cancer Res. 2009;15:5576–5583. doi: 10.1158/1078-0432.CCR-09-0245.
    1. Chuang S.C., Vermeulen R., Sharabiani M.T., Sacerdote C., Fatemeh S.H., Berrino F., Krogh V., Palli D., Panico S., Tumino R., et al. The intake of grain fibers modulates cytokine levels in blood. Biomarkers. 2011;16:504–510. doi: 10.3109/1354750X.2011.599042.
    1. Takemura N., Kurashima Y., Mori Y., Okada K., Ogino T., Osawa H., Matsuno H., Aayam L., Kaneto S., Park E.J., et al. Eosinophil depletion suppresses radiation-induced small intestinal fibrosis. Sci. Transl. Med. 2018;10:eaan0333. doi: 10.1126/scitranslmed.aan0333.
    1. Abdel-Messeih P.L., Nosseir N.M., Bakhe O.H. Evaluation of inflammatory cytokines and oxidative stress markers in prostate cancer patients undergoing curative radiotherapy. Cent. Eur. J. Immunol. 2017;42:68–72. doi: 10.5114/ceji.2017.67319.
    1. Buttner C., Skupin A., Reimann T., Rieber E.P., Unteregger G., Geyer P., Frank K.H. Local production of interleukin-4 during radiation-induced pneumonitis and pulmonary fibrosis in rats: Macrophages as a prominent source of interleukin-4. Am. J. Respir. Cell Mol. Biol. 1997;17:315–325. doi: 10.1165/ajrcmb.17.3.2279.
    1. Hoshino Y., Hirashima N., Nakanishi M., Furuno T. Inhibition of degranulation and cytokine production in bone marrow-derived mast cells by hydrolyzed rice bran. Inflamm. Res. 2010;59:615–625. doi: 10.1007/s00011-010-0173-9.
    1. Gerlach K., Hwang Y., Nikolaev A., Atreya R., Dornhoff H., Steiner S., Lehr H.A., Wirtz S., Vieth M., Waisman A., et al. TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat. Immunol. 2014;15:676–686. doi: 10.1038/ni.2920.
    1. Willett C.G., Ooi C.J., Zietman A.L., Menon V., Goldberg S., Sands B.E., Podolsky D.K. Acute and late toxicity of patients with inflammatory bowel disease undergoing irradiation for abdominal and pelvic neoplasms. Int. J. Radiat. Oncol. Biol. Phys. 2000;46:995–998. doi: 10.1016/S0360-3016(99)00374-0.
    1. Lotze M.T., Tracey K.J. High-mobility group box 1 protein (HMGB1): Nuclear weapon in the immune arsenal. Nat. Rev. Immunol. 2005;5:331–342. doi: 10.1038/nri1594.
    1. Zhou J., Chai F., Lu G., Hang G., Chen C., Chen X., Shi J. TREM-1 inhibition attenuates inflammation and tumor within the colon. Int. Immunopharmacol. 2013;17:155–161. doi: 10.1016/j.intimp.2013.06.009.

Source: PubMed

3
구독하다