Effect of Immune-Enhancing Enteral Nutrition Enriched with or without Beta-Glucan on Immunomodulation in Critically Ill Patients

Jae Gil Lee, Young Sam Kim, Young Ju Lee, Hyeon Yeong Ahn, Minjoo Kim, Minkyung Kim, Min Jung Cho, Younsoo Cho, Jong Ho Lee, Jae Gil Lee, Young Sam Kim, Young Ju Lee, Hyeon Yeong Ahn, Minjoo Kim, Minkyung Kim, Min Jung Cho, Younsoo Cho, Jong Ho Lee

Abstract

We investigated whether high-protein enteral nutrition with immune-modulating nutrients (IMHP) enriched with β-glucan stimulates immune function in critically ill patients. In a randomized double-blind placebo-controlled study, 30 patients consumed one of three types of enteral nutrition: a control or IMHP with and without β-glucan. The IMHP with β-glucan group showed increases in natural killer (NK) cell activities relative to the baseline, and greater increases were observed in NK cell activities relative to the control group after adjusting for age and gender. The IMHP groups with and without β-glucan had greater increases in serum prealbumin and decreases in high-sensitivity C-reactive protein (hs-CRP) than the control group. The control group had a greater decrease in peripheral blood mononuclear cell (PBMC) interleukin (IL)-12 production than the IMHP with and without β-glucan groups. In all patients, the change (Δ) in hs-CRP was correlated with Δ prealbumin and Δ PBMC IL-12, which were correlated with ΔNK cell activity and Δ prealbumin. This study showed beneficial effects of a combination treatment of β-glucan and IMHP on NK cell activity. Additionally, strong correlations among changes in NK cell activity, PBMC IL-12, and hs-CRP suggested that β-glucan could be an attractive candidate for stimulating protective immunity without enhanced inflammation (ClinicalTrials.gov: NCT02569203).

Keywords: ICU; NK cell; beta-glucan; enteral nutrition; immune system; inflammation.

Figures

Figure 1
Figure 1
Matrix of correlations among changes in BMI, serum albumin, pre-albumin, cytokines, PBMC cytokine production, and NK cell activity. Correlations were obtained by deriving Spearman’s correlation coefficient. Red is a positive correlation and blue is a negative correlation.
Figure 2
Figure 2
Correlations among changes in NK cell activity E:T = 5:1, PBMC IL-12, serum hs-CRP, and serum pre-albumin in all subjects. Tested by Spearman’s correlation analysis, r: correlation coefficients.

References

    1. Kreymann K.G., Berger M.M., Deutz N.E., Hiesmayr M., Jolliet P., Kazandjiev G., Nitenberg G., van den Berghe G., Wernerman J., DGEM (German Society for Nutritional Medicine) et al. ESPEN guidelines on enteral nutrition: Intensive care. Clin. Nutr. 2006;25:210–223. doi: 10.1016/j.clnu.2006.01.021.
    1. McClave S.A., Martindale R.G., Vanek V.W., McCarthy M., Roberts P., Taylor B., Ochoa J.B., Napolitano L., Cresci G., A.S.P.E.N. Board of Directors et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N) JPEN J. Parenter. Enteral Nutr. 2009;33:277–316. doi: 10.1177/0148607109335234.
    1. Hegazi R.A., Wischmeyer P.E. Clinical review: Optimizing enteral nutrition for critically ill patients—A simple data-driven formula. Crit. Care. 2011;15:234. doi: 10.1186/cc10430.
    1. Calder P.C. n-3 Fatty acids, inflammation, and immunity—Relevance to postsurgical and critically ill patients. Lipids. 2004;39:1147–1161. doi: 10.1007/s11745-004-1342-z.
    1. Liu M., Li J., Kong F., Lin J., Gao Y. Induction of immunomodulating cytokines by a new polysaccharide-peptide complex from culture mycelia of Lentinus edodes. Immunopharmacology. 1998;40:187–198. doi: 10.1016/S0162-3109(98)00043-5.
    1. Ren L., Perera C., Hemar Y. Antitumor activity of mushroom polysaccharides: A review. Food Funct. 2012;3:1118–1130. doi: 10.1039/c2fo10279j.
    1. Vetvicka V., Vashishta A., Saraswat-Ohri S., Vetvickova J. Immunological effects of yeast- and mushroom-derived beta-glucans. J. Med Food. 2008;11:615–622. doi: 10.1089/jmf.2007.0588.
    1. Dai X., Stanilka J.M., Rowe C.A., Esteves E.A., Nieves C., Jr., Spaiser S.J., Christman M.C., Langkamp-Henken B., Percival S.S. Consuming Lentinula edodes (Shiitake) Mushrooms Daily Improves Human Immunity: A Randomized Dietary Intervention in Healthy Young Adults. J. Am. Coll. Nutr. 2015;34:478–487. doi: 10.1080/07315724.2014.950391.
    1. Ostadrahimi A., Ziaei J.E., Esfahani A., Jafarabadi M.A., Movassaghpourakbari A., Farrin N. Effect of beta glucan on white blood cell counts and serum levels of IL-4 and IL-12 in women with breast cancer undergoing chemotherapy: A randomized double-blind placebo-controlled clinical trial. Asian Pac. J. Cancer Prev. 2014;15:5733–5739. doi: 10.7314/APJCP.2014.15.14.5733.
    1. Kirmaz C., Bayrak P., Yilmaz O., Yuksel H. Effects of glucan treatment on the Th1/Th2 balance in patients with allergic rhinitis: A double-blind placebo-controlled study. Eur. Cytokine Netw. 2005;16:128–134.
    1. Bergendiova K., Tibenska E., Majtan J. Pleuran (β-glucan from Pleurotus ostreatus) supplementation, cellular immune response and respiratory tract infections in athletes. Eur. J. Appl. Physiol. 2011;111:2033–2040. doi: 10.1007/s00421-011-1837-z.
    1. Vetvicka V., Richter J., Svozil V., Rajnohová Dobiášová L., Král V. Placebo-driven clinical trials of yeast-derived β-(1–3) glucan in children with chronic respiratory problems. Ann. Transl. Med. 2013;1:26.
    1. Richter J., Svozil V., Král V., Rajnohová Dobiášová L., Stiborová I., Vetvicka V. Clinical trials of yeast-derived β-(1,3) glucan in children: Effects on innate immunity. Ann. Transl. Med. 2014;2:15.
    1. Mantovani M.S., Bellini M.F., Angeli J.P., Oliveira R.J., Silva A.F., Ribeiro L.R. beta-Glucans in promoting health: Prevention against mutation and cancer. Mutat. Res. 2008;658:154–161. doi: 10.1016/j.mrrev.2007.07.002.
    1. Murphy E.A., Davis J.M., Carmichael M.D. Immune modulating effects of β-glucan. Curr. Opin. Clin. Nutr. Metab. Care. 2010;13:656–661. doi: 10.1097/MCO.0b013e32833f1afb.
    1. Akramiene D., Kondrotas A., Didziapetriene J., Kevelaitis E. Effects of beta-glucans on the immune system. Medicina (Kaunas) 2007;43:597–606.
    1. Zeković D.B., Kwiatkowski S., Vrvić M.M., Jakovljević D., Moran C.A. Natural and modified (1→3)-beta-D-glucans in health promotion and disease alleviation. Natural and modified (1→3)-beta-D-glucans in health promotion and disease alleviation. Crit. Rev. Biotechnol. 2005;25:205–230. doi: 10.1080/07388550500376166.
    1. Knaus W.A., Draper E.A., Wagner D.P., Zimmerman J.E. APACHE II: A severity of disease classification system. Crit. Care Med. 1985;13:818–829. doi: 10.1097/00003246-198510000-00009.
    1. Dellinger R.P., Carlet J.M., Masur H., Gerlach H., Calandra T., Cohen J., Gea-Banacloche J., Keh D., Marshall J.C., Parker M.M., et al. Surviving Sepsis Campaign Management Guidelines Committee. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit. Care Med. 2004;32:858–873. doi: 10.1097/01.CCM.0000117317.18092.E4.
    1. Dellinger R.P., Levy M.M., Carlet J.M., Bion J., Parker M.M., Jaeschke R., Reinhart K., Angus D.C., Brun-Buisson C., Beale R., et al. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008. Crit. Care Med. 2008;36:296–327. doi: 10.1097/01.CCM.0000298158.12101.41.
    1. . [(accessed on 4 October 2015)]; Available online: .
    1. Donaldson-Andersen J., Fitzsimmons L. Metabolic requirements of the critically ill, mechanically ventilated trauma patient: Measured versus predicted energy expenditure. Nutr. Clin. Pract. 1998;13:25–31. doi: 10.1177/088453369801300104.
    1. Moretta A., Bottino C., Mingari M.C., Biassoni R., Moretta L. What is a natural killer cell? Nat. Immunol. 2002;3:6–8. doi: 10.1038/ni0102-6.
    1. Weiss G., Meyer F., Matthies B., Pross M., Koenig W., Lippert H. Immunomodulation by perioperative administration of n-3 fatty acids. Br. J. Nutr. 2002;87:S89–S94. doi: 10.1079/BJN2001461.
    1. Forel J.M., Chiche L., Thomas G., Mancini J., Farnarier C., Cognet C., Guervilly C., Daumas A., Vély F., Xéridat F., et al. Phenotype and functions of natural killer cells in critically-ill septic patients. PLoS ONE. 2012;7:336. doi: 10.1371/journal.pone.0050446.
    1. Kjaergaard A.G., Nielsen J.S., Tønnesen E., Krog J. Expression of NK cell and monocyte receptors in critically ill patients--potential biomarkers of sepsis. Scand. J. Immunol. 2015;81:249–258. doi: 10.1111/sji.12272.
    1. Pelizon A.C., Kaneno R., Soares A.M., Meira D.A., Sartori A. Immunomodulatory activities associated with beta-glucan derived from Saccharomyces cerevisiae. Physiol. Res. 2005;54:557–564.
    1. Yatawara L., Wickramasinghe S., Nagataki M., Takamoto M., Nomura H., Ikeue Y., Watanabe Y., Agatsuma T. Aureobasidium-derived soluble branched (1,3–1,6) beta-glucan (Sophy beta-glucan) enhances natural killer activity in Leishmania amazonensis-infected mice. Korean J. Parasitol. 2009;47:345–351. doi: 10.3347/kjp.2009.47.4.345.
    1. Souza-Fonseca-Guimaraes F., Adib-Conquy M., Cavaillon J.M. Natural killer (NK) cells in antibacterial innate immunity: Angels or devils? Mol. Med. 2012;18:270–285. doi: 10.2119/molmed.2011.00201.
    1. Narni-Mancinelli E., Jaeger B.N., Bernat C., Fenis A., Kung S., De Gassart A., Mahmood S., Gut M., Heath S.C., Estellé J., et al. Tuning of natural killer cell reactivity by NKp46 and Helios calibrates T cell responses. Science. 2012;335:344–348. doi: 10.1126/science.1215621.
    1. Wu H.P., Shih C.C., Chu C.M., Huang C.Y., Hua C.C., Liu Y.C., Chuang D.Y. Effect of interleukin-17 on in vitro cytokine production in healthy controls and patients with severe sepsis. J. Formos. Med. Assoc. 2015;114:1250–1257. doi: 10.1016/j.jfma.2014.09.009.
    1. Mukaro V.R., Costabile M., Murphy K.J., Hii C.S., Howe P.R., Ferrante A. Leukocyte numbers and function in subjects eating n-3 enriched foods: Selective depression of natural killer cell levels. Arthritis Res. Ther. 2008;10:R57. doi: 10.1186/ar2426.
    1. Calder P.C., Jensen G.L., Koletzko B.V., Singer P., Wanten G.J. Lipid emulsions in parenteral nutrition of intensive care patients: Current thinking and future directions. Intensive Care Med. 2010;36:735–749. doi: 10.1007/s00134-009-1744-5.
    1. Ott J., Hiesgen C., Mayer K. Lipids in critical care medicine. Prostaglandins Leukot. Essent. Fatty Acids. 2011;85:267–273. doi: 10.1016/j.plefa.2011.04.011.
    1. Barros K.V., Cassulino A.P., Schalch L., Della Valle Munhoz E., Manetta J.A., Calder P.C., Flor Silveira V.L. Pharmaconutrition: Acute fatty acid modulation of circulating cytokines in elderly patients in the ICU. JPEN J. Parenter. Enter. Nutr. 2014;38:467–474. doi: 10.1177/0148607113480183.
    1. Giger U., Büchler M., Farhadi J., Berger D., Hüsler J., Schneider H., Krähenbühl S., Krähenbühl L. Preoperative immunonutrition suppresses perioperative inflammatory response in patients with major abdominal surgery-a randomized controlled pilot study. Ann. Surg. Oncol. 2007;14:2798–2806. doi: 10.1245/s10434-007-9407-7.

Source: PubMed

3
구독하다