Effectiveness of targeted enhanced terminal room disinfection on hospital-wide acquisition and infection with multidrug-resistant organisms and Clostridium difficile: a secondary analysis of a multicentre cluster randomised controlled trial with crossover design (BETR Disinfection)

Deverick J Anderson, Rebekah W Moehring, David J Weber, Sarah S Lewis, Luke F Chen, J Conrad Schwab, Paul Becherer, Michael Blocker, Patricia F Triplett, Lauren P Knelson, Yuliya Lokhnygina, William A Rutala, Daniel J Sexton, CDC Prevention Epicenters Program, Deverick J Anderson, Rebekah W Moehring, David J Weber, Sarah S Lewis, Luke F Chen, J Conrad Schwab, Paul Becherer, Michael Blocker, Patricia F Triplett, Lauren P Knelson, Yuliya Lokhnygina, William A Rutala, Daniel J Sexton, CDC Prevention Epicenters Program

Abstract

Background: The hospital environment is a source of pathogen transmission. The effect of enhanced disinfection strategies on the hospital-wide incidence of infection has not been investigated in a multicentre, randomised controlled trial. We aimed to assess the effectiveness of four disinfection strategies on hospital-wide incidence of multidrug-resistant organisms and Clostridium difficile in the Benefits of Enhanced Terminal Room (BETR) Disinfection study.

Methods: We did a prespecified secondary analysis of the results from the BETR Disinfection study, a pragmatic, multicentre, crossover cluster-randomised trial that assessed four different strategies for terminal room disinfection in nine hospitals in the southeastern USA. Rooms from which a patient with a specific infection or colonisation (due to the target organisms C difficile, meticillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci (VRE), or multidrug-resistant Acinetobacter spp) was discharged were terminally disinfected with one of four strategies: standard disinfection (quaternary ammonium disinfectant, except for C difficile, for which 10% hypochlorite [bleach] was used; reference); standard disinfection and disinfecting ultraviolet light (UV-C), except for C difficile, for which bleach and UV-C was used (UV strategy); 10% hypochlorite (bleach strategy); and bleach and UV-C (bleach and UV strategy). We randomly assigned the sequence of strategies for each hospital (1:1:1:1), and each strategy was used for 7 months, including a 1-month wash-in period and 6 months of data collection. The prespecified secondary outcomes were hospital-wide, hospital-acquired incidence of all target organisms (calculated as number of patients with hospital-acquired infection with a target organism per 10 000 patient days), and hospital-wide, hospital-acquired incidence of each target organism separately. BETR Disinfection is registered with ClinicalTrials.gov, number NCT01579370.

Findings: Between April, 2012, and July, 2014, there were 271 740 unique patients with 375 918 admissions. 314 610 admissions met all inclusion criteria (n=73 071 in the reference study period, n=81 621 in the UV study period, n=78 760 in the bleach study period, and n=81 158 in the bleach and UV study period). 2681 incidenct cases of hospital-acquired infection or colonisation occurred during the study. There was no significant difference in the hospital-wide risk of target organism acquisition between standard disinfection and the three enhanced terminal disinfection strategies for all target multidrug-resistant organisms (UV study period relative risk [RR] 0·89, 95% CI 0·79-1·00; p=0·052; bleach study period 0·92, 0·79-1·08; p=0·32; bleach and UV study period 0·99, 0·89-1·11; p=0·89). The decrease in risk in the UV study period was driven by decreases in risk of acquisition of C difficile (RR 0·89, 95% CI 0·80-0·99; p=0·031) and VRE (0·56, 0·31-0·996; p=0·048).

Interpretation: Enhanced terminal room disinfection with UV in a targeted subset of high-risk rooms led to a decrease in hospital-wide incidence of C difficile and VRE. Enhanced disinfection overcomes limitations of standard disinfection strategies and is a potential strategy to reduce the risk of acquisition of multidrug-resistant organisms and C difficile.

Funding: US Centers for Disease Control and Prevention.

Conflict of interest statement

Declaration of interests

DJW and WAR report participation on advisory panels for Clorox, Inc. All other authors declare that we have no conflicts of interest.

Copyright © 2018 Elsevier Ltd. All rights reserved.

Figures

Figure 1:. Trial profile for hospital-wide analysis…
Figure 1:. Trial profile for hospital-wide analysis of Benefits of Enhanced Terminal Room Disinfection study
Figure 2:. Four categories of exposure for…
Figure 2:. Four categories of exposure for patients admitted during the BETR Disinfection study
(1) Room cleaned with chemical disinfectants only and patient did not enter a confirmed seed room. (2) Room cleaned with chemical disinfectants only and patient entered into a confirmed seed room. (3) Room cleaned with UV and patient did not enter a confirmed seed room. (4) Room cleaned with UV and patient entered into a confirmed seed room. All patients admitted to hospital are included within the dashed circle. The size of the circles approximates the relative proportions of each category. The orange circle represents confirmed seed rooms. The blue circle represents rooms in which ultraviolet light was used during terminal disinfection.

Source: PubMed

3
구독하다