Arterial Tortuosity and Its Correlation with White Matter Hyperintensities in Acute Ischemic Stroke

Ke Shang, Xiao Chen, Chang Cheng, Xiang Luo, Shabei Xu, Wei Wang, Chenchen Liu, Ke Shang, Xiao Chen, Chang Cheng, Xiang Luo, Shabei Xu, Wei Wang, Chenchen Liu

Abstract

Introduction: The association between arterial tortuosity and acute ischemic stroke (AIS) has been reported, but showing inconsistent results. We hypothesized that tortuosity of extra- and intracranial large arteries might be higher in AIS patients. Furthermore, we explored the correlation between artery tortuosity and white matter hyperintensity (WMH) severity in AIS patients.

Methods: 166 AIS patients identified as large artery atherosclerosis, and 83 control subjects were enrolled. All subjects received three-dimensional computed tomography angiography (CTA). Arterial tortuosity was evaluated using the tortuosity index. WMHs were evaluated using magnetic resonance imaging in all AIS patients.

Results: AIS patients showed significantly increased arterial tortuosity index relative to controls, including left carotid artery (CA) (p = 0.001), right CA (p < 0.001), left common carotid artery (CCA) (p < 0.001), right CCA (p < 0.001), left internal carotid artery (p = 0.001), right internal carotid artery (p = 0.01), left extracranial internal carotid artery (EICA) (p < 0.001), right EICA (p = 0.01), and vertebral artery dominance (VAD) (p = 0.001). The tortuosity of all above arteries was associated with the presence of AIS. AIS patients with moderate or severe WMHs had a higher tortuosity index in left CA (p = 0.005), left CCA (p = 0.003), left EICA (p = 0.07), and VAD (p = 0.001). In addition, the tortuosity of left EICA and VAD was associated with WMH severity in AIS patients.

Conclusions: Increased extra- and intracranial large arteries tortuosity is associated with AIS. The tortuosity of left carotid artery system and vertebral artery may be the independent risk factors for WMH severity in AIS patients. Clinical Trial Registration. This trial is registered with NCT03122002 (http://www.clinicaltrials.gov).

Conflict of interest statement

The authors declare that there is no conflict of interest.

Copyright © 2022 Ke Shang et al.

Figures

Figure 1
Figure 1
Measurement of arterial tortuosity computed tomography angiography (CTA), illustrated by the example of carotid artery (CA). (a) Left CA in multiplanar reformation. (b) The straight length (red line) and actual length (green line) are measured in three-dimensional reconstructed CTA. (c) The green line represents the actual length of left CA by using curved planar reformat.
Figure 2
Figure 2
Forest plots show correlation analysis of arterial tortuosity with WMH severity in AIS patients. The adjusted odd ratio and P value represent the results of multivariate logistic regression analysis. Variables entered into analysis includes age, male, and hypertension. ∗P < 0.05.
Figure 3
Figure 3
The arterial tortuosity by location in AIS patients and control subjects. AIS: acute ischemic stroke; BA: basilar artery; CA: carotid artery; CCA: common carotid artery; EICA: extracranial internal carotid artery; ICA: internal carotid artery; IICA: intracranial internal carotid artery; L: left; M1: first segment of middle cerebral artery; R: right; VAD, vertebral artery dominance. ∗P < 0.05 (AIS patients versus control); ∗∗P < 0.01; and ∗∗∗P < 0.001.
Figure 4
Figure 4
The arterial tortuosity by location in severity of WMHs in AIS patients. ∗P < 0.05 and ∗∗P < 0.01.

References

    1. Han H. C. Twisted blood vessels: symptoms, etiology and biomechanical mechanisms. Journal of Vascular Research . 2012;49(3):185–197. doi: 10.1159/000335123.
    1. Beyens A., Albuisson J., Boel A., et al. Arterial tortuosity syndrome: 40 new families and literature review. Genetics in Medicine . 2018;20(10):1236–1245. doi: 10.1038/gim.2017.253.
    1. Del Corso L., Moruzzo D., Conte B., et al. Tortuosity, kinking, and coiling of the carotid artery: expression of atherosclerosis or aging? Angiology . 1998;49(5):361–371. doi: 10.1177/000331979804900505.
    1. Hiroki M., Miyashita K., Oda M. Tortuosity of the white matter medullary arterioles is related to the severity of hypertension. Cerebrovascular Diseases . 2002;13(4):242–250. doi: 10.1159/000057850.
    1. Beigelman R., Izaguirre A. M., Robles M., Grana D. R., Ambrosio G., Milei J. Are kinking and coiling of carotid artery congenital or acquired? Angiology . 2010;61(1):107–112. doi: 10.1177/0003319709336417.
    1. Togay-Işikay C., Kim J., Betterman K., et al. Carotid artery tortuosity, kinking, coiling: stroke risk factor, marker, or curiosity? Acta Neurologica Belgica . 2005;105(2):68–72.
    1. Liu J., Jia X. J., Wang Y. J., Zhang M., Zhang T., Zhou H. D. Digital subtraction angiography imaging characteristics of patients with extra-intracranial atherosclerosis and its relationship to stroke. Cell Biochemistry and Biophysics . 2014;69(3):599–604. doi: 10.1007/s12013-014-9839-1.
    1. Saba L., Mallarini G. Correlation between kinking and coiling of the carotid arteries as assessed using MDCTA with symptoms and degree of stenosis. Clinical Radiology . 2010;65(9):729–734. doi: 10.1016/j.crad.2010.04.015.
    1. Kim B. J., Kim S. M., Kang D. W., Kwon S. U., Suh D. C., Kim J. S. Vascular tortuosity may be related to intracranial artery atherosclerosis. International Journal of Stroke . 2015;10(7):1081–1086. doi: 10.1111/ijs.12525.
    1. Jin G., Li Q., Zheng P., et al. Association between extracranial carotid artery tortuosity and clinical outcomes in anterior circulation acute ischemic stroke without undergoing endovascular treatment. Journal of Stroke and Cerebrovascular Diseases . 2020;29(2, article 104512) doi: 10.1016/j.jstrokecerebrovasdis.2019.104512.
    1. Wardlaw J. M., Smith E. E., Biessels G. J., et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. The Lancet Neurology . 2013;12(8):822–838. doi: 10.1016/S1474-4422(13)70124-8.
    1. Breteler M. M. B., van Swieten J. C., Bots M. L., et al. Cerebral white matter lesions, vascular risk factors, and cognitive function in a population-based study. The Rotterdam Study . 1994;44(7):p. 1246. doi: 10.1212/WNL.44.7.1246.
    1. Aribisala B. S., Morris Z., Eadie E., et al. Blood pressure, internal carotid artery flow parameters, and age-related white matter hyperintensities. Hypertension . 2014;63(5):1011–1018. doi: 10.1161/HYPERTENSIONAHA.113.02735.
    1. King K. S., Peshock R. M., Rossetti H. C., et al. Effect of normal aging versus hypertension, abnormal body mass index, and diabetes mellitus on white matter hyperintensity volume. Stroke . 2014;45(1):255–257. doi: 10.1161/STROKEAHA.113.003602.
    1. Lopez L. M., Hill W. D., Harris S. E., et al. Genes from a translational analysis support a multifactorial nature of white matter hyperintensities. Stroke . 2015;46(2):341–347. doi: 10.1161/STROKEAHA.114.007649.
    1. Wright C. B., Paik M. C., Brown T. R., et al. Total homocysteine is associated with white matter hyperintensity volume: the Northern Manhattan study. Stroke . 2005;36(6):1207–1211. doi: 10.1161/01.STR.0000165923.02318.22.
    1. Liu J., Ke X., Lai Q. Increased tortuosity of bilateral distal internal carotid artery is associated with white matter hyperintensities. Acta Radiologica . 2021;62(4):515–523.
    1. Yu K., Zhong T., Li L., Wang J., Chen Y., Zhou H. Significant association between carotid artery kinking and leukoaraiosis in middle-aged and elderly Chinese patients. Journal of Stroke and Cerebrovascular Diseases . 2015;24(5):1025–1031. doi: 10.1016/j.jstrokecerebrovasdis.2014.12.030.
    1. Williamson W., Lewandowski A. J., Forkert N. D., et al. Association of cardiovascular risk factors with MRI indices of cerebrovascular structure and function and white matter hyperintensities in young adults. Journal of the American Medical Association . 2018;320(7):665–673. doi: 10.1001/jama.2018.11498.
    1. Pantoni L., Basile A. M., Pracucci G., et al. Impact of age-related cerebral white matter changes on the transition to disability -- the LADIS study: rationale, design and methodology. Neuroepidemiology . 2004;24:51–62.
    1. DeVela G., Taylor J. M., Zhang B., et al. Quantitative arterial tortuosity suggests arteriopathy in children with cryptogenic stroke. Stroke . 2018;49(4):1011–1014. doi: 10.1161/STROKEAHA.117.020321.
    1. Choudhry F. A., Grantham J. T., Rai A. T., Hogg J. P. Vascular geometry of the extracranial carotid arteries: an analysis of length, diameter, and tortuosity. Journal of Neurointerventional Surgery . 2016;8(5):536–540. doi: 10.1136/neurintsurg-2015-011671.
    1. Callewaert B., De Paepe A., Coucke P. Arterial Tortuosity Syndrome . 1993
    1. Callewaert B. L., Willaert A., Kerstjens‐Frederikse W. S., et al. Arterial tortuosity syndrome: clinical and molecular findings in 12 newly identified families. Human Mutation . 2008;29(1):150–158. doi: 10.1002/humu.20623.
    1. Giossi A., Mardighian D., Caria F., et al. Arterial tortuosity in patients with spontaneous cervical artery dissection. Neuroradiology . 2017;59(6):571–575. doi: 10.1007/s00234-017-1836-9.
    1. Kim B. J., Yang E., Kim N. Y., et al. Vascular tortuosity may be associated with cervical artery dissection. Stroke . 2016;47(10):2548–2552. doi: 10.1161/STROKEAHA.116.013736.
    1. Saba L., Argiolas G. M., Sumer S., et al. Association between internal carotid artery dissection and arterial tortuosity. Neuroradiology . 2015;57(2):149–153. doi: 10.1007/s00234-014-1436-x.
    1. Weibel J., Fields W. S. Tortuosity, coiling, and kinking of the internal carotid artery. I Etiology and radiographic anatomy. . 1965;15:p. 7.
    1. Metz H., Bannister R. G., Murray-Leslie R. M., Bull J. W. D., Marshall J. Kinking of the internal carotid artery: in relation to cerebrovascular disease. The Lancet. . 1961;277(7174):424–426. doi: 10.1016/S0140-6736(61)90004-6.
    1. de Vries E. E., Pourier V. E. C., van Laarhoven C., Vonken E. J., van Herwaarden J. A., de Borst G. J. Comparability of semiautomatic tortuosity measurements in the carotid artery. Neuroradiology . 2019;61(2):147–153. doi: 10.1007/s00234-018-2112-3.
    1. Morris S. A., Orbach D. B., Geva T., Singh M. N., Gauvreau K., Lacro R. V. Increased vertebral artery tortuosity index is associated with adverse outcomes in children and young adults with connective tissue disorders. Circulation . 2011;124(4):388–396. doi: 10.1161/CIRCULATIONAHA.110.990549.
    1. Wang H. F., Wang D. M., Wang J. J., et al. Extracranial internal carotid artery tortuosity and body mass index. Frontiers in Neurology . 2017;8:p. 508. doi: 10.3389/fneur.2017.00508.
    1. Aleksic M., Schütz G., Gerth S., Mulch J. Surgical approach to kinking and coiling of the internal carotid artery. The Journal of Cardiovascular Surgery . 2004;45(1):43–48.
    1. Burulday V., Dogan A., Akgul M. H., Alpua M., Cankaya I. Is there a relationship between basilar artery tortuosity and vertigo? Clinical Neurology and Neurosurgery . 2019;178:97–100. doi: 10.1016/j.clineuro.2019.02.006.
    1. Benes V., Netuka D. Surgical correction of symptomatic vertebral artery kinking. British Journal of Neurosurgery . 2003;17(2):174–195. doi: 10.1080/0268869031000108927.
    1. Milic D. J., Jovanovic M. M., Zivic S. S., Jankovic R. J. Coiling of the left common carotid artery as a cause of transient ischemic attacks. Journal of Vascular Surgery . 2007;45(2):411–413. doi: 10.1016/j.jvs.2006.10.002.
    1. Wang L., Zhao F., Wang D., et al. Pressure drop in tortuosity/kinking of the internal carotid artery: simulation and clinical investigation. BioMed Research International . 2016;2016:2428978. doi: 10.1155/2016/2428970.
    1. O'Hara P. J., Hertzer N. R., Karafa M. T., Mascha E. J., Krajewski L. P., Beven E. G. Reoperation for recurrent carotid stenosis: early results and late outcome in 199 patients. Journal of Vascular Surgery . 2001;34(1):5–12. doi: 10.1067/mva.2001.115601.
    1. Brisset M., Boutouyrie P., Pico F., et al. Large-vessel correlates of cerebral small-vessel disease. Neurology . 2013;80(7):662–669. doi: 10.1212/WNL.0b013e318281ccc2.
    1. Pico F., Labreuche J., Seilhean D., Duyckaerts C., Hauw J. J., Amarenco P. Association of small-vessel disease with dilatative arteriopathy of the brain: neuropathologic evidence. Stroke . 2007;38(4):1197–1202. doi: 10.1161/01.STR.0000259708.05806.76.
    1. Pico F., Labreuche J., Touboul P. J., Leys D., Amarenco P., for the GENIC Investigators Intracranial arterial dolichoectasia and small-vessel disease in stroke patients. Annals of Neurology . 2005;57(4):472–479. doi: 10.1002/ana.20423.
    1. Thijs V., Grittner U., Fazekas F., et al. Dolichoectasia and small vessel disease in young patients with transient ischemic attack and stroke. Stroke . 2017;48(9):2361–2367. doi: 10.1161/STROKEAHA.117.017406.
    1. Yin L., Li Q., Zhang L., Qian W., Liu X. Correlation between cervical artery kinking and white matter lesions. Clinical Neurology and Neurosurgery . 2017;157:51–54. doi: 10.1016/j.clineuro.2017.04.003.
    1. Chen Y. C., Wei X. E., Lu J., Qiao R. H., Shen X. F., Li Y. H. Correlation between internal carotid artery tortuosity and imaging of cerebral small vessel disease. Frontiers in Neurology . 2020;11, article 567232 doi: 10.3389/fneur.2020.567232.
    1. Kumral E., Kisabay A., Ataç C., Kaya Ç., Çalli C. The mechanism of ischemic stroke in patients with dolichoectatic basilar artery. European Journal of Neurology . 2005;12(6):437–444. doi: 10.1111/j.1468-1331.2005.00993.x.
    1. Luo X., Yang Y., Cao T., Li Z. Differences in left and right carotid intima-media thickness and the associated risk factors. Clinical Radiology . 2011;66(5):393–398. doi: 10.1016/j.crad.2010.12.002.
    1. Welby J. P., Kim S. T., Carr C. M., et al. Carotid artery tortuosity is associated with connective tissue diseases. AJNR. American Journal of Neuroradiology . 2019;40(10):1738–1743. doi: 10.3174/ajnr.A6218.

Source: PubMed

3
구독하다