Imaging cerebral tryptophan metabolism in brain tumor-associated depression

Edit Bosnyák, David O Kamson, Michael E Behen, Geoffrey R Barger, Sandeep Mittal, Csaba Juhász, Edit Bosnyák, David O Kamson, Michael E Behen, Geoffrey R Barger, Sandeep Mittal, Csaba Juhász

Abstract

Background: Depression in patients with brain tumors is associated with impaired quality of life and shorter survival. Altered metabolism of tryptophan to serotonin and kynurenine metabolites may play a role in tumor-associated depression. Our recent studies with alpha[(11)C]methyl-L-tryptophan (AMT)-PET in brain tumor patients indicated abnormal tryptophan metabolism not only in the tumor mass but also in normal-appearing contralateral brain. In the present study, we explored if tryptophan metabolism in such brain regions is associated with depression.

Methods: Twenty-one patients (mean age: 57 years) with a brain tumor (10 meningiomas, 8 gliomas, and 3 brain metastases) underwent AMT-PET scanning. MRI and AMT-PET images were co-registered, and AMT kinetic parameters, including volume of distribution (VD', an estimate of net tryptophan transport) and K (unidirectional uptake, related to tryptophan metabolism), were measured in the tumor mass and in unaffected cortical and subcortical regions contralateral to the tumor. Depression scores (based on the Beck Depression Inventory-II [BDI-II]) were correlated with tumor size, grade, type, and AMT-PET variables.

Results: The mean BDI-II score was 12 ± 10 (range: 2-33); clinical levels of depression were identified in seven patients (33 %). High BDI-II scores were most strongly associated with high thalamic AMT K values both in the whole group (Spearman's rho = 0.63, p = 0.004) and in the subgroup of 18 primary brain tumors (r = 0.68, p = 0.004). Frontal and striatal VD' values were higher in the depressed subgroup than in non-depressed patients (p < 0.05); the group difference was even more robust when moderately/severely depressed patients were compared to patients with no/mild depression (frontal: p = 0.005; striatal: p < 0.001). Tumor size, grade, and tumor type were not related to depression scores.

Conclusions: Abnormalities of tryptophan transport and metabolism in the thalamus, striatum, and frontal cortex, measured by PET, are associated with depression in patients with brain tumor. These changes may indicate an imbalance between the serotonin and kynurenine pathways and serve as a molecular imaging marker of brain tumor-associated depression.

Trial registration: ClinicalTrials.gov NCT02367469.

Keywords: Brain tumor; Cortical; Depression; Kynurenine; Magnetic resonance imaging; Positron emission tomography; Serotonin; Striatum; Thalamus; Tryptophan.

Figures

Fig. 1
Fig. 1
AMT-PET/T1-Gad MRI fusion images of a patient (#10) with left frontal WHO grade 2 glioma. Contralateral frontal, parietal, and temporal cortical, as well as thalamic and striatal regions of interest used for analysis, are outlined in red
Fig. 2
Fig. 2
Positive correlation between thalamus AMT K values and BDI-II depression scores (Spearman’s rho = 0.63, p = 0.004)
Fig. 3
Fig. 3
Comparison of AMT-PET variables in patients with no/mild depression vs. moderate/severe depression. Frontal and striatal AMT volume of distribution (VD’) values were significantly higher in patients with moderate/severe depression (frontal VD’: 0.43 vs. 0.31, p = 0.005; striatal VD’: 0.61 vs. 0.35, p < 0.001)

References

    1. Wiemels J, Wrensch M, Claus EB. Epidemiology and etiology of meningioma. J Neurooncol. 2010;99:307–14. doi: 10.1007/s11060-010-0386-3.
    1. Ohgaki H, Kleihues P. Epidemiology and etiology of gliomas. Acta Neuropathol. 2005;109:93–108. doi: 10.1007/s00401-005-0991-y.
    1. Rooney AG, McNamara S, Mackinnon M, Fraser M, Rampling R, Carson A, et al. Frequency, clinical associations, and longitudinal course of major depressive disorder in adults with cerebral glioma. J Clin Oncol. 2011;29:4307–12. doi: 10.1200/JCO.2011.34.8466.
    1. Goebel S, Mehdorn HM. Development of anxiety and depression in patients with benign intracranial meningiomas: a prospective long-term study. Support Care Cancer. 2013;21:1365–72. doi: 10.1007/s00520-012-1675-5.
    1. Kessler RC, Nelson CB, McGonagle KA, Liu J, Swartz M, Blazer DG. Comorbidity of DSM-III-R major depressive disorder in the general population: results from the US National Comorbidity Survey. Br J Psychiatry Suppl. 1996;30(Suppl.):14–30.
    1. Rooney AG, Carson A, Grant R. Depression in cerebral glioma patients: a systematic review of observational studies. J Natl Cancer Inst. 2011;103:61–76. doi: 10.1093/jnci/djq458.
    1. Mainio A, Hakko H, Timonen M, Niemela A, Koivukangas J, Rasanen P. Depression in relation to survival among neurosurgical patients with a primary brain tumor: a 5-year follow-up study. Neurosurgery. 2005;56:1234–41. doi: 10.1227/01.NEU.0000159648.44507.7F.
    1. Pelletier G, Verhoef MJ, Khatri N, Hagen N. Quality of life in brain tumor patients: the relative contributions of depression, fatigue, emotional distress, and existential issues. J Neurooncol. 2002;57:41–9. doi: 10.1023/A:1015728825642.
    1. Caudill JS, Brown PD, Cerhan JH, Rummans TA. Selective serotonin reuptake inhibitors, glioblastoma multiforme, and impact on toxicities and overall survival: the Mayo clinic experience. Am J Clin Oncol. 2011;34:385–7. doi: 10.1097/COC.0b013e3181e8461a.
    1. Levkovitz Y, Gil-Ad I, Zeldich E, Dayag M, Weizman A. Differential induction of apoptosis by antidepressants in glioma and neuroblastoma cell lines: evidence for p-c-Jun, cytochrome c, and caspase-3 involvement. J Mol Neurosci. 2005;27:29–42. doi: 10.1385/JMN:27:1:029.
    1. Jeon SH, Kim SH, Kim Y, Kim YS, Lim Y, Lee YH, et al. The tricyclic antidepressant imipramine induces autophagic cell death in U-87MG glioma cells. Biochem Biophys Res Commun. 2011;413:311–7. doi: 10.1016/j.bbrc.2011.08.093.
    1. Pace A, Pompili A. Depression in patients with high-grade glioma: results of the Glioma Project. Neurosurgery. 2005;56 doi: 10.1227/.
    1. Mangoni A. The “kynurenine shunt” and depression. Adv Biochem Psychopharmacol. 1974;11:293–8.
    1. Lapin IP, Oxenkrug GF. Intensification of the central serotoninergic processes as a possible determinant of the thymoleptic effect. Lancet. 1969;1:132–6. doi: 10.1016/S0140-6736(69)91140-4.
    1. Miura H, Ozaki N, Sawada M, Isobe K, Ohta T, Nagatsu T. A link between stress and depression: shifts in the balance between the kynurenine and serotonin pathways of tryptophan metabolism and the etiology and pathophysiology of depression. Stress. 2008;11:198–209. doi: 10.1080/10253890701754068.
    1. Oxenkrug GF. Tryptophan kynurenine metabolism as a common mediator of genetic and environmental impacts in major depressive disorder: the serotonin hypothesis revisited 40 years later. Isr J Psychiatry Relat Sci. 2010;47:56–63.
    1. Jehn CF, Kuehnhardt D, Bartholomae A, Pfeiffer S, Krebs M, Regierer AC, et al. Biomarkers of depression in cancer patients. Cancer. 2006;107:2723–9. doi: 10.1002/cncr.22294.
    1. Seruga B, Zhang H, Bernstein LJ, Tannock IF. Cytokines and their relationship to the symptoms and outcome of cancer. Nat Rev Cancer. 2008;8:887–99. doi: 10.1038/nrc2507.
    1. Kurz K, Schroecksnadel S, Weiss G, Fuchs D. Association between increased tryptophan degradation and depression in cancer patients. Curr Opin Clin Nutr Metab Care. 2011;14:49–56. doi: 10.1097/MCO.0b013e328340d849.
    1. Diksic M, Nagahiro S, Sourkes TL, Yamamoto YL. A new method to measure brain serotonin synthesis in vivo. I. Theory and basic data for a biological model. J Cereb Blood Flow Metab. 1990;10:1–12. doi: 10.1038/jcbfm.1990.1.
    1. Muzik O, Chugani DC, Chakraborty P, Mangner T, Chugani HT. Analysis of [C11]alpha-methyl-tryptophan kinetics for the estimation of serotonin synthesis rate in vivo. J Cereb Blood Flow Metab. 1997;17:659–69. doi: 10.1097/00004647-199706000-00007.
    1. Chugani DC, Muzik O. Alpha[C11]methyl-L-tryptophan PET maps brain serotonin synthesis and kynurenine pathway metabolism. J Cereb Blood Flow Metab. 2000;20:2–9. doi: 10.1097/00004647-200001000-00002.
    1. Rosa-Neto P, Diksic M, Okazawa H, Leyton M, Ghadirian N, Mzengeza S, et al. Measurement of brain regional alpha-[11C]methyl-L-tryptophan trapping as a measure of serotonin synthesis in medication-free patients with major depression. Arch Gen Psychiatry. 2004;61:556–63. doi: 10.1001/archpsyc.61.6.556.
    1. Leyton M, Paquette V, Gravel P, Rosa-Neto P, Weston F, Diksic M, et al. alpha-[11C]Methyl-L-tryptophan trapping in the orbital and ventral medial prefrontal cortex of suicide attempters. Eur Neuropsychopharmacol. 2006;16:220–3. doi: 10.1016/j.euroneuro.2005.09.006.
    1. Frey BN, Skelin I, Sakai Y, Nishikawa M, Diksic M. Gender differences in alpha-[11C]MTrp brain trapping, an index of serotonin synthesis, in medication-free individuals with major depressive disorder: a positron emission tomography study. Psychiatry Res. 2010;183:157–66. doi: 10.1016/j.pscychresns.2010.05.005.
    1. Berney A, Nishikawa M, Benkelfat C, Debonnel G, Gobbi G, Diksic M. An index of 5-HT synthesis changes during early antidepressant treatment: alpha-[11C]methyl-L-tryptophan PET study. Neurochem Int. 2008;52:701–8. doi: 10.1016/j.neuint.2007.08.021.
    1. Juhasz C, Chugani DC, Muzik O, Wu D, Sloan AE, Barger G, et al. In vivo uptake and metabolism of alpha-[11C]methyl-L-tryptophan in human brain tumors. J Cereb Blood Flow Metab. 2006;26:345–57. doi: 10.1038/sj.jcbfm.9600199.
    1. Juhasz C, Muzik O, Chugani DC, Chugani HT, Sood S, Chakraborty PK, et al. Differential kinetics of alpha-[11C]methyl-L-tryptophan on PET in low-grade brain tumors. J Neurooncol. 2011;102:409–15. doi: 10.1007/s11060-010-0327-1.
    1. Kamson DO, Juhasz C, Buth A, Kupsky WJ, Barger GR, Chakraborty PK, et al. Tryptophan PET in pretreatment delineation of newly-diagnosed gliomas: MRI and histopathologic correlates. J Neurooncol. 2013;112:121–32. doi: 10.1007/s11060-013-1043-4.
    1. Juhasz C, Dwivedi S, Kamson DO, Michelhaugh SK, Mittal S. Comparison of amino acid positron emission tomographic radiotracers for molecular imaging of primary and metastatic brain tumors. Mol Imaging. 2014;13: doi:10.2310/7290.2014.00015.
    1. Batista CE, Juhasz C, Muzik O, Kupsky WJ, Barger G, Chugani HT, et al. Imaging correlates of differential expression of indoleamine 2,3-dioxygenase in human brain tumors. Mol Imaging Biol. 2009;11:460–6. doi: 10.1007/s11307-009-0225-0.
    1. Bosnyák E, Kamson DO, Guastella AR, Varadarajan K, Robinette NL, Kupsky WJ, et al. Molecular imaging correlates of tryptophan metabolism via the kynurenine pathway in human meningiomas. Neuro Oncol. 2015;17:1284–92.
    1. Juhasz C, Chugani DC, Barger GR, Kupsky WJ, Chakraborty PK, Muzik O, et al. Quantitative PET imaging of tryptophan accumulation in gliomas and remote cortex: correlation with tumor proliferative activity. Clin Nucl Med. 2012;37:838–42. doi: 10.1097/RLU.0b013e318251e458.
    1. Kamson DO, Lee TJ, Varadarajan K, Robinette NL, Muzik O, Chakraborty PK, et al. Clinical significance of tryptophan metabolism in the nontumoral hemisphere in patients with malignant glioma. J Nucl Med. 2014;55:1605–10. doi: 10.2967/jnumed.114.141002.
    1. Chakraborty PK, Mangner TJ, Chugani DC, Muzik O, Chugani HT. A high-yield and simplified procedure for the synthesis of alpha-[11C]methyl-L-tryptophan. Nucl Med Biol. 1996;23:1005–8. doi: 10.1016/S0969-8051(96)00127-8.
    1. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3:1–7. doi: 10.1038/jcbfm.1983.1.
    1. Juhasz C, Muzik O, Lu X, Jahania MS, Soubani AO, Khalaf M, et al. Quantification of tryptophan transport and metabolism in lung tumors using PET. J Nucl Med. 2009;50:356–63. doi: 10.2967/jnumed.108.058776.
    1. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012;30:1323–41. doi: 10.1016/j.mri.2012.05.001.
    1. Kamson DO, Mittal S, Robinette NL, Muzik O, Kupsky WJ, Barger GR, et al. Increased tryptophan uptake on PET has strong independent prognostic value in patients with a previously treated high-grade glioma. Neuro Oncol. 2014;16:1373–83. doi: 10.1093/neuonc/nou042.
    1. Beck ATS, Steer RA, Brown GK. Manual for The Beck Depression Inventory Second Edition (BDI-II) San Antonio: Psychological Corporation; 1996.
    1. Dozois DJA, Dobson KS, Ahnberg JL. A psychometric evaluation of the Beck Depression Inventory - II. Psychol Assessment. 1998;10:83–9. doi: 10.1037/1040-3590.10.2.83.
    1. Storch EA, Roberti JW, Roth DA. Factor structure, concurrent validity, and internal consistency of the Beck Depression Inventory-Second Edition in a sample of college students. Depress Anxiety. 2004;19:187–9. doi: 10.1002/da.20002.
    1. Furman DJ, Hamilton JP, Gotlib IH. Frontostriatal functional connectivity in major depressive disorder. Biol Mood Anxiety Disord. 2011;1:11. doi: 10.1186/2045-5380-1-11.
    1. Tashiro M, Juengling FD, Reinhardt MJ, Brink I, Hoegerle S, Mix M, et al. Reproducibility of PET brain mapping of cancer patients. Psycho-oncology. 2000;9:157–63. doi: 10.1002/(SICI)1099-1611(200003/04)9:2<157::AID-PON452>;2-Y.
    1. Tashiro M, Juengling FD, Reinhardt MJ, Mix M, Kumano H, Kubota K, et al. Depressive state and regional cerebral activity in cancer patients - a preliminary study. Med Sci Monit. 2001;7:687–95.
    1. Kumano H, Ida I, Oshima A, Takahashi K, Yuuki N, Amanuma M, et al. Brain metabolic changes associated with predispotion to onset of major depressive disorder and adjustment disorder in cancer patients--a preliminary PET study. J Psychiatr Res. 2007;41:591–9. doi: 10.1016/j.jpsychires.2006.03.006.
    1. Inagaki M, Yoshikawa E, Kobayakawa M, Matsuoka Y, Sugawara Y, Nakano T, et al. Regional cerebral glucose metabolism in patients with secondary depressive episodes after fatal pancreatic cancer diagnosis. J Affect Disord. 2007;99:231–6. doi: 10.1016/j.jad.2006.08.019.
    1. Kim LS, Hwang HS, Jon DI, Ham BJ, Seok JH. Dysfunction of the neural network associated with sustained attention in cancer patients with clinically significant depressive symptoms. Neurosci Lett. 2008;447:1–6. doi: 10.1016/j.neulet.2008.09.077.
    1. Baxter LR, Jr, Schwartz JM, Phelps ME, Mazziotta JC, Guze BH, Selin CE, et al. Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry. 1989;46:243–50. doi: 10.1001/archpsyc.1989.01810030049007.
    1. Drevets WC, Price JL, Simpson JR, Jr, Todd RD, Reich T, Vannier M, et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature. 1997;386:824–7. doi: 10.1038/386824a0.
    1. Price JL, Carmichael ST, Drevets WC. Networks related to the orbital and medial prefrontal cortex; a substrate for emotional behavior? Prog Brain Res. 1996;107:523–36. doi: 10.1016/S0079-6123(08)61885-3.
    1. Drevets WC, Price JL, Bardgett ME, Reich T, Todd RD, Raichle ME. Glucose metabolism in the amygdala in depression: relationship to diagnostic subtype and plasma cortisol levels. Pharmacol Biochem Behav. 2002;71:431–47. doi: 10.1016/S0091-3057(01)00687-6.
    1. Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry. 2007;62:429–37. doi: 10.1016/j.biopsych.2006.09.020.
    1. Young KA, Holcomb LA, Yazdani U, Hicks PB, German DC. Elevated neuron number in the limbic thalamus in major depression. Am J Psychiatry. 2004;161:1270–7. doi: 10.1176/appi.ajp.161.7.1270.
    1. Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C, et al. Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res. 2008;42:151–7. doi: 10.1016/j.jpsychires.2006.10.013.
    1. Wedding U, Koch A, Rohrig B, Pientka L, Sauer H, Hoffken K, et al. Requestioning depression in patients with cancer: contribution of somatic and affective symptoms to Beck’s Depression Inventory. Ann Oncol. 2007;18:1875–81. doi: 10.1093/annonc/mdm353.
    1. Bunevicius A, Tamasauskas S, Deltuva V, Tamasauskas A, Bunevicius R. Psychological distress symptoms’ clusters in brain tumor patients: factor analysis of depression and anxiety scales. Psycho-oncology. 2013;22:2860–3. doi: 10.1002/pon.3354.
    1. Trentini CM, Xavier FM, Chachamovich E, Rocha NS, Hirakata VN, Fleck MP. The influence of somatic symptoms on the performance of elders in the Beck Depression Inventory (BDI) Rev Bras Psiquiatr. 2005;27:119–23. doi: 10.1590/S1516-44462005000200009.
    1. Iwami K, Natsume A, Wakabayashi T. Cytokine networks in glioma. Neurosurg Rev. 2011;34:253–63. doi: 10.1007/s10143-011-0320-y.
    1. Reus GZ, Fries GR, Stertz L, Badawy M, Passos IC, Barichello T, et al. The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience. 2015;300:141–54. doi: 10.1016/j.neuroscience.2015.05.018.
    1. Schiepers OJ, Wichers MC, Maes M. Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29:201–17. doi: 10.1016/j.pnpbp.2004.11.003.
    1. Schaue D, Micewicz ED, Ratikan JA, Xie MW, Cheng G, McBride WH. Radiation and inflammation. Semin Radiat Oncol. 2015;25:4–10. doi: 10.1016/j.semradonc.2014.07.007.
    1. Henrottin J, Zervosen A, Lemaire C, Sapunaric F, Laurent S, Van den Eynde B, et al. N1-fluoroalkyltryptophan analogues: synthesis and in vitro study as potential substrates for indoleamine 2,3-dioxygenase. ACS Med Chem Lett. 2015;6:260–5. doi: 10.1021/ml500385d.
    1. Huang X, Gillies RJ, Tian H. Synthesis of [18F] 4-amino-N-(3-chloro-4-fluorophenyl)-N′-hydroxy-1,2,5-oxadiazole-3-carboximidamide (IDO5L): a novel potential PET probe for imaging of IDO1 expression. J Labelled Comp Radiopharm. 2015;58:156–62. doi: 10.1002/jlcr.3263.
    1. Van Camp N, Boisgard R, Kuhnast B, Theze B, Viel T, Gregoire MC, et al. In vivo imaging of neuroinflammation: a comparative study between [18F]PBR111, [11C]CLINME and [11C]PK11195 in an acute rodent model. Eur J Nucl Med Mol Imaging. 2010;37:962–72. doi: 10.1007/s00259-009-1353-0.
    1. Malykhin NV, Carter R, Hegadoren KM, Seres P, Coupland NJ. Fronto-limbic volumetric changes in major depressive disorder. J Affect Disord. 2012;136:1104–13. doi: 10.1016/j.jad.2011.10.038.
    1. Cai Y, Liu J, Zhang L, Liao M, Zhang Y, Wang L, et al. Grey matter volume abnormalities in patients with bipolar I depressive disorder and unipolar depressive disorder: a voxel-based morphometry study. Neurosci Bull. 2015;31:4–12. doi: 10.1007/s12264-014-1485-5.
    1. Lai CH. Gray matter volume in major depressive disorder: a meta-analysis of voxel-based morphometry studies. Psychiatry Res. 2013;211:37–46. doi: 10.1016/j.pscychresns.2012.06.006.
    1. Nugent AC, Davis RM, Zarate CA, Jr, Drevets WC. Reduced thalamic volumes in major depressive disorder. Psychiatry Res. 2013;213:179–85. doi: 10.1016/j.pscychresns.2013.05.004.
    1. Grieve SM, Korgaonkar MS, Koslow SH, Gordon E, Williams LM. Widespread reductions in gray matter volume in depression. Neuroimage Clin. 2013;3:332–9. doi: 10.1016/j.nicl.2013.08.016.
    1. Savitz J, Dantzer R, Meier TB, Wurfel BE, Victor TA, McIntosh SA, et al. Activation of the kynurenine pathway is associated with striatal volume in major depressive disorder. Psychoneuroendocrinology. 2015;62:54–8. doi: 10.1016/j.psyneuen.2015.07.609.

Source: PubMed

3
구독하다