Virtual and Augmented Reality Applications in Medicine: Analysis of the Scientific Literature

Andy Wai Kan Yeung, Anela Tosevska, Elisabeth Klager, Fabian Eibensteiner, Daniel Laxar, Jivko Stoyanov, Marija Glisic, Sebastian Zeiner, Stefan Tino Kulnik, Rik Crutzen, Oliver Kimberger, Maria Kletecka-Pulker, Atanas G Atanasov, Harald Willschke, Andy Wai Kan Yeung, Anela Tosevska, Elisabeth Klager, Fabian Eibensteiner, Daniel Laxar, Jivko Stoyanov, Marija Glisic, Sebastian Zeiner, Stefan Tino Kulnik, Rik Crutzen, Oliver Kimberger, Maria Kletecka-Pulker, Atanas G Atanasov, Harald Willschke

Abstract

Background: Virtual reality (VR) and augmented reality (AR) have recently become popular research themes. However, there are no published bibliometric reports that have analyzed the corresponding scientific literature in relation to the application of these technologies in medicine.

Objective: We used a bibliometric approach to identify and analyze the scientific literature on VR and AR research in medicine, revealing the popular research topics, key authors, scientific institutions, countries, and journals. We further aimed to capture and describe the themes and medical conditions most commonly investigated by VR and AR research.

Methods: The Web of Science electronic database was searched to identify relevant papers on VR research in medicine. Basic publication and citation data were acquired using the "Analyze" and "Create Citation Report" functions of the database. Complete bibliographic data were exported to VOSviewer and Bibliometrix, dedicated bibliometric software packages, for further analyses. Visualization maps were generated to illustrate the recurring keywords and words mentioned in the titles and abstracts.

Results: The analysis was based on data from 8399 papers. Major research themes were diagnostic and surgical procedures, as well as rehabilitation. Commonly studied medical conditions were pain, stroke, anxiety, depression, fear, cancer, and neurodegenerative disorders. Overall, contributions to the literature were globally distributed with heaviest contributions from the United States and United Kingdom. Studies from more clinically related research areas such as surgery, psychology, neurosciences, and rehabilitation had higher average numbers of citations than studies from computer sciences and engineering.

Conclusions: The conducted bibliometric analysis unequivocally reveals the versatile emerging applications of VR and AR in medicine. With the further maturation of the technology and improved accessibility in countries where VR and AR research is strong, we expect it to have a marked impact on clinical practice and in the life of patients.

Keywords: augmented reality; bibliometric; medicine; mixed reality; neurodegenerative disorder; pain; rehabilitation; stroke; surgical procedures; virtual reality.

Conflict of interest statement

Conflicts of Interest: None declared.

©Andy Wai Kan Yeung, Anela Tosevska, Elisabeth Klager, Fabian Eibensteiner, Daniel Laxar, Jivko Stoyanov, Marija Glisic, Sebastian Zeiner, Stefan Tino Kulnik, Rik Crutzen, Oliver Kimberger, Maria Kletecka-Pulker, Atanas G Atanasov, Harald Willschke. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 10.02.2021.

Figures

Figure 1
Figure 1
Annual publication and citation count of virtual reality research in medicine.
Figure 2
Figure 2
Term map showing phrases from publication titles and abstracts in virtual reality research in medicine. Phrases occurring in at least 0.5% (42/8399) of the publications were included. Multiple appearances in a single publication counted as one. Circle size represents the frequency of occurrence, color represents the citation per publication, and distance between 2 circles represent how 2 phrases co-occurred in the publications.
Figure 3
Figure 3
Trends in the abstract words, as determined using the Trend Topics function of Bibliometrix.
Figure 4
Figure 4
Density map showing author keywords of the publications in virtual reality research in medicine. Keywords occurring in at least 0.1% (9/8399) of the publications were included. The keywords “virtual reality,” “augmented reality,” and “mixed reality” are not shown as they were the major search terms. A keyword or cluster of keywords with higher frequency counts forms a red region, and those with lower frequency counts form a yellow region.

References

    1. Azuma RT. A Survey of Augmented Reality. Presence: Teleoperators & Virtual Environments. 1997 Aug;6(4):355–385. doi: 10.1162/pres.1997.6.4.355.
    1. Cipresso P, Giglioli IAC, Raya MA, Riva G. The Past, Present, and Future of Virtual and Augmented Reality Research: A Network and Cluster Analysis of the Literature. Front Psychol. 2018 Nov 6;9:2086. doi: 10.3389/fpsyg.2018.02086. doi: 10.3389/fpsyg.2018.02086.
    1. Slater M, Sanchez-Vives MV. Enhancing Our Lives with Immersive Virtual Reality. Front. Robot. AI. 2016 Dec 19;3:74. doi: 10.3389/frobt.2016.00074.
    1. Laver K, Lange B, George S, Deutsch J, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017 Nov 20;11:CD008349. doi: 10.1002/14651858.CD008349.pub4.
    1. Lewis T, Aggarwal R, Rajaretnam N, Grantcharov T, Darzi A. Training in surgical oncology - the role of VR simulation. Surg Oncol. 2011 Sep;20(3):134–9. doi: 10.1016/j.suronc.2011.04.005.
    1. Samadbeik M, Yaaghobi D, Bastani P, Abhari S, Rezaee R, Garavand A. The Applications of Virtual Reality Technology in Medical Groups Teaching. J Adv Med Educ Prof. 2018 Jul;6(3):123–129.
    1. Seymour NE. VR to OR: a review of the evidence that virtual reality simulation improves operating room performance. World J Surg. 2008 Feb 3;32(2):182–8. doi: 10.1007/s00268-007-9307-9.
    1. Piromchai P, Avery A, Laopaiboon M, Kennedy G, O'Leary S. Virtual reality training for improving the skills needed for performing surgery of the ear, nose or throat. Cochrane Database Syst Rev. 2015 Sep 09;9(9):CD010198. doi: 10.1002/14651858.CD010198.pub2.
    1. Fiani B, De Stefano F, Kondilis A, Covarrubias C, Reier L, Sarhadi K. Virtual Reality in Neurosurgery: "Can You See It?"-A Review of the Current Applications and Future Potential. World Neurosurg. 2020 Sep;141:291–298. doi: 10.1016/j.wneu.2020.06.066.
    1. Ahmadpour N, Randall H, Choksi H, Gao A, Vaughan C, Poronnik P. Virtual Reality interventions for acute and chronic pain management. Int J Biochem Cell Biol. 2019 Sep;114:105568. doi: 10.1016/j.biocel.2019.105568.
    1. Spiegel BM. Virtual medicine: how virtual reality is easing pain, calming nerves and improving health. Med J Aust. 2018 Sep 17;209(6):245–247. doi: 10.5694/mja17.00540.
    1. Gupta A, Scott K, Dukewich M. Innovative Technology Using Virtual Reality in the Treatment of Pain: Does It Reduce Pain via Distraction, or Is There More to It? Pain Med. 2018 Jan 01;19(1):151–159. doi: 10.1093/pm/pnx109.
    1. Pourmand A, Davis S, Marchak A, Whiteside T, Sikka N. Virtual Reality as a Clinical Tool for Pain Management. Curr Pain Headache Rep. 2018 Jun 15;22(8):53. doi: 10.1007/s11916-018-0708-2.
    1. Dunn J, Yeo E, Moghaddampour P, Chau B, Humbert S. Virtual and augmented reality in the treatment of phantom limb pain: A literature review. NRE. 2017 Jun 09;40(4):595–601. doi: 10.3233/nre-171447.
    1. Pozeg P, Palluel E, Ronchi R, Solcà M, Al-Khodairy A, Jordan X, Kassouha A, Blanke O. Virtual reality improves embodiment and neuropathic pain caused by spinal cord injury. Neurology. 2017 Oct 06;89(18):1894–1903. doi: 10.1212/wnl.0000000000004585.
    1. Maggio M, Latella D, Maresca G, Sciarrone F, Manuli A, Naro A, De Luca R, Calabrò RS. Virtual Reality and Cognitive Rehabilitation in People With Stroke: An Overview. J Neurosci Nurs. 2019 Apr;51(2):101–105. doi: 10.1097/JNN.0000000000000423.
    1. Freeman D, Reeve S, Robinson A, Ehlers A, Clark D, Spanlang B, Slater M. Virtual reality in the assessment, understanding, and treatment of mental health disorders. Psychol. Med. 2017 Mar 22;47(14):2393–2400. doi: 10.1017/s003329171700040x.
    1. Maples-Keller JL, Yasinski C, Manjin N, Rothbaum BO. Virtual Reality-Enhanced Extinction of Phobias and Post-Traumatic Stress. Neurotherapeutics. 2017 Jul 16;14(3):554–563. doi: 10.1007/s13311-017-0534-y.
    1. Tieri G, Morone G, Paolucci S, Iosa M. Virtual reality in cognitive and motor rehabilitation: facts, fiction and fallacies. Expert Rev Med Devices. 2018 Feb 10;15(2):107–117. doi: 10.1080/17434440.2018.1425613.
    1. Yeung AWK, Souto EB, Durazzo A, Lucarini M, Novellino E, Tewari D, Wang D, Atanasov AG, Santini A. Big impact of nanoparticles: analysis of the most cited nanopharmaceuticals and nanonutraceuticals research. Current Research in Biotechnology. 2020 Nov;2:53–63. doi: 10.1016/j.crbiot.2020.04.002.
    1. Yeung AWK, Tzvetkov NT, Georgieva MG, Ognyanov IV, Kordos K, Jóźwik A, Kühl T, Perry G, Petralia MC, Mazzon E, Atanasov AG. Reactive Oxygen Species and Their Impact in Neurodegenerative Diseases: Literature Landscape Analysis. Antioxid Redox Signal. 2021 Feb 10;34(5):402–420. doi: 10.1089/ars.2019.7952.
    1. Yeung AWK, Tzvetkov NT, Jóźwik A, Horbanczuk OK, Polgar T, Pieczynska MD, Sampino S, Nicoletti F, Berindan-Neagoe I, Battino M, Atanasov AG. Food toxicology: quantitative analysis of the research field literature. Int J Food Sci Nutr. 2020 Feb 29;71(1):13–21. doi: 10.1080/09637486.2019.1620184.
    1. Fernández-Herrero J, Lorenzo-Lledó G, Carreres A. A bibliometric study on the use of virtual reality (VR) as an educational tool for high-functioning Autism Spectrum Disorder (ASD) children. In: Çetinkaya S, editor. Contemporary Perspective on Child Psychology and Education. London, England: IntechOpen Limited; 2017.
    1. Sobral M, Pestana M. Virtual reality and dementia: A bibliometric analysis. The European Journal of Psychiatry. 2020 Jul;34(3):120–131. doi: 10.1016/j.ejpsy.2020.04.004.
    1. Vickery B. Bradford's Law of Scattering. Journal of Documentation. 1948 Apr;4(3):198–203. doi: 10.1108/eb026133.
    1. Patience GS, Patience CA, Blais B, Bertrand F. Citation analysis of scientific categories. Heliyon. 2017 May;3(5):e00300. doi: 10.1016/j.heliyon.2017.e00300.
    1. Vassiliou MC, Feldman LS, Andrew CG, Bergman S, Leffondré K, Stanbridge D, Fried GM. A global assessment tool for evaluation of intraoperative laparoscopic skills. Am J Surg. 2005 Jul;190(1):107–13. doi: 10.1016/j.amjsurg.2005.04.004.
    1. Ahlberg G, Enochsson L, Gallagher AG, Hedman L, Hogman C, McClusky DA, Ramel S, Smith CD, Arvidsson D. Proficiency-based virtual reality training significantly reduces the error rate for residents during their first 10 laparoscopic cholecystectomies. Am J Surg. 2007 Jun;193(6):797–804. doi: 10.1016/j.amjsurg.2006.06.050.
    1. Kneebone R. Simulation in surgical training: educational issues and practical implications. Med Educ. 2003 Mar;37(3):267–77. doi: 10.1046/j.1365-2923.2003.01440.x.
    1. Kneebone RL, Scott W, Darzi A, Horrocks M. Simulation and clinical practice: strengthening the relationship. Med Educ. 2004 Oct;38(10):1095–102. doi: 10.1111/j.1365-2929.2004.01959.x.
    1. Coles TR, Meglan D, John NW. The Role of Haptics in Medical Training Simulators: A Survey of the State of the Art. IEEE Trans Haptics. 2011;4(1):51–66. doi: 10.1109/TOH.2010.19.
    1. Rosen KR. The history of medical simulation. J Crit Care. 2008 Jun;23(2):157–66. doi: 10.1016/j.jcrc.2007.12.004.
    1. Basdogan C, Ho C, Srinivasan M. Virtual environments for medical training: graphical and haptic simulation of laparoscopic common bile duct exploration. IEEE/ASME Trans. Mechatron. 2011 Mar 15;6(3):269–285. doi: 10.1109/3516.951365.
    1. Hassfeld S, Mühling J. Computer assisted oral and maxillofacial surgery--a review and an assessment of technology. Int J Oral Maxillofac Surg. 2001 Feb;30(1):2–13. doi: 10.1054/ijom.2000.0024.
    1. Vozenilek J, Huff JS, Reznek M, Gordon JA. See one, do one, teach one: advanced technology in medical education. Acad Emerg Med. 2004 Nov;11(11):1149–54. doi: 10.1197/j.aem.2004.08.003.
    1. Zendejas B, Brydges R, Hamstra SJ, Cook DA. State of the evidence on simulation-based training for laparoscopic surgery: a systematic review. Ann Surg. 2013 Apr;257(4):586–93. doi: 10.1097/SLA.0b013e318288c40b.
    1. Yang T, Xie D, Li Z, Zhu H. Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance. Materials Science and Engineering: R: Reports. 2017 May;115:1–37. doi: 10.1016/j.mser.2017.02.001.
    1. Wang S, Xu J, Wang W, Wang GN, Rastak R, Molina-Lopez F, Chung JW, Niu S, Feig VR, Lopez J, Lei T, Kwon S, Kim Y, Foudeh AM, Ehrlich A, Gasperini A, Yun Y, Murmann B, Tok JB, Bao Z. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature. 2018 Mar 01;555(7694):83–88. doi: 10.1038/nature25494.
    1. Nicolau S, Soler L, Mutter D, Marescaux J. Augmented reality in laparoscopic surgical oncology. Surg Oncol. 2011 Sep;20(3):189–201. doi: 10.1016/j.suronc.2011.07.002.
    1. Estai M, Bunt S. Best teaching practices in anatomy education: A critical review. Ann Anat. 2016 Nov;208:151–157. doi: 10.1016/j.aanat.2016.02.010.
    1. O’Toole RV, Playter R, Krummel T, Blank W, Cornelius N, Roberts W, Bell WJ, Raibert M. Measuring and developing suturing technique with a virtual reality surgical simulator. Journal of the American College of Surgeons. 1999 Jul;189(1):114–127. doi: 10.1016/s1072-7515(99)00076-9.
    1. Gorman PJ, Meier AH, Krummel TM. Simulation and virtual reality in surgical education: real or unreal? Arch Surg. 1999 Nov 01;134(11):1203–8. doi: 10.1001/archsurg.134.11.1203.
    1. Corriveau Lecavalier N, Ouellet E, Boller B, Belleville S. Use of immersive virtual reality to assess episodic memory: A validation study in older adults. Neuropsychol Rehabil. 2020 Apr 29;30(3):462–480. doi: 10.1080/09602011.2018.1477684.
    1. Laver K, Schoene D, Crotty M, George S, Lannin NA, Sherrington C. Telerehabilitation services for stroke. Cochrane Database Syst Rev. 2013 Dec 16;1(12):CD010255. doi: 10.1002/14651858.CD010255.pub2.
    1. van der Kolk NM, de Vries NM, Kessels RPC, Joosten H, Zwinderman AH, Post B, Bloem BR. Effectiveness of home-based and remotely supervised aerobic exercise in Parkinson's disease: a double-blind, randomised controlled trial. The Lancet Neurology. 2019 Nov;18(11):998–1008. doi: 10.1016/s1474-4422(19)30285-6.
    1. Mirelman A, Rochester L, Maidan I, Del Din S, Alcock L, Nieuwhof F, Rikkert MO, Bloem BR, Pelosin E, Avanzino L, Abbruzzese G, Dockx K, Bekkers E, Giladi N, Nieuwboer A, Hausdorff JM. Addition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-TIME): a randomised controlled trial. The Lancet. 2016 Sep;388(10050):1170–1182. doi: 10.1016/s0140-6736(16)31325-3.
    1. Cicerone KD, Goldin Y, Ganci K, Rosenbaum A, Wethe JV, Langenbahn DM, Malec JF, Bergquist TF, Kingsley K, Nagele D, Trexler L, Fraas M, Bogdanova Y, Harley JP. Evidence-Based Cognitive Rehabilitation: Systematic Review of the Literature From 2009 Through 2014. Arch Phys Med Rehabil. 2019 Aug;100(8):1515–1533. doi: 10.1016/j.apmr.2019.02.011.
    1. Freeman D, Haselton P, Freeman J, Spanlang B, Kishore S, Albery E, Denne M, Brown P, Slater M, Nickless A. Automated psychological therapy using immersive virtual reality for treatment of fear of heights: a single-blind, parallel-group, randomised controlled trial. The Lancet Psychiatry. 2018 Aug;5(8):625–632. doi: 10.1016/s2215-0366(18)30226-8.
    1. Falconer CJ, Rovira A, King JA, Gilbert P, Antley A, Fearon P, Ralph N, Slater M, Brewin CR. Embodying self-compassion within virtual reality and its effects on patients with depression. BJPsych Open. 2016 Jan 02;2(1):74–80. doi: 10.1192/bjpo.bp.115.002147.
    1. Malinverni L, Mora-Guiard J, Padillo V, Valero L, Hervás A, Pares N. An inclusive design approach for developing video games for children with Autism Spectrum Disorder. Computers in Human Behavior. 2017 Jun;71:535–549. doi: 10.1016/j.chb.2016.01.018.
    1. Hoffman HG, Chambers GT, Meyer WJ, Arceneaux LL, Russell WJ, Seibel EJ, Richards TL, Sharar SR, Patterson DR. Virtual reality as an adjunctive non-pharmacologic analgesic for acute burn pain during medical procedures. Ann Behav Med. 2011 Apr 25;41(2):183–91. doi: 10.1007/s12160-010-9248-7.
    1. Gold JI, Kim SH, Kant AJ, Joseph MH, Rizzo A. Effectiveness of virtual reality for pediatric pain distraction during i.v. placement. Cyberpsychol Behav. 2006 Apr;9(2):207–12. doi: 10.1089/cpb.2006.9.207.
    1. Gershon J, Zimand E, Pickering M, Rothbaum BO, Hodges L. A pilot and feasibility study of virtual reality as a distraction for children with cancer. J Am Acad Child Adolesc Psychiatry. 2004 Oct;43(10):1243–9. doi: 10.1097/01.chi.0000135621.23145.05.
    1. Kenney MP, Milling LS. The effectiveness of virtual reality distraction for reducing pain: A meta-analysis. Psychology of Consciousness: Theory, Research, and Practice. 2016;3(3):199–210. doi: 10.1037/cns0000084.
    1. David D, Matu S, David OA. New Directions in Virtual Reality-Based Therapy for Anxiety Disorders. International Journal of Cognitive Therapy. 2013 Jun;6(2):114–137. doi: 10.1521/ijct.2013.6.2.114.
    1. Riva G, Mantovani F, Capideville CS, Preziosa A, Morganti F, Villani D, Gaggioli A, Botella C, Alcañiz M. Affective interactions using virtual reality: the link between presence and emotions. Cyberpsychol Behav. 2007 Feb;10(1):45–56. doi: 10.1089/cpb.2006.9993.
    1. Fernández-Herrero J, Lorenzo-Lledó G, Carreres A. A bibliometric study on the use of virtual reality (VR) as an educational tool for high-functioning Autism Spectrum Disorder (ASD) children. Contemporary Perspective on Child Psychology and Education. 2018:59–81. doi: 10.5772/intechopen.71000.
    1. Huang Y, Huang Q, Ali S, Zhai X, Bi X, Liu R. Rehabilitation using virtual reality technology: a bibliometric analysis, 1996–2015. Scientometrics. 2016 Oct 05;109(3):1547–1559. doi: 10.1007/s11192-016-2117-9.
    1. Tran B, Vu G, Ha G, Vuong Q, Ho M, Vuong T, La V, Ho M, Nghiem K, Nguyen H, Latkin C, Tam W, Cheung N, Nguyen H, Ho C, Ho R. Global Evolution of Research in Artificial Intelligence in Health and Medicine: A Bibliometric Study. J Clin Med. 2019 Mar 14;8(3):360. doi: 10.3390/jcm8030360.

Source: PubMed

3
구독하다