Pulmonary rehabilitation, physical activity and aortic stiffness in COPD

Yousef S Aldabayan, Heidi A Ridsdale, Ahmed M Alrajeh, Abdulelah M Aldhahir, Arthur Lemson, Jaber S Alqahtani, Jeremy S Brown, John R Hurst, Yousef S Aldabayan, Heidi A Ridsdale, Ahmed M Alrajeh, Abdulelah M Aldhahir, Arthur Lemson, Jaber S Alqahtani, Jeremy S Brown, John R Hurst

Abstract

Background: Patients with chronic obstructive pulmonary disease (COPD) have elevated cardiovascular risk, and cardiovascular disease is a major cause of death in COPD. The current literature indicates that changes in cardiovascular risk during pulmonary rehabilitation (assessed using aortic stiffness) are heterogeneous suggesting that there may be sub-groups of patients who do and do not benefit.

Objectives: To investigate the characteristics of COPD patients who do and do not experience aortic stiffness reduction during pulmonary rehabilitation, examine how changes relate to physical activity and exercise capacity, and assess whether changes in aortic stiffness are maintained at 6 weeks following rehabilitation.

Methods: We prospectively measured arterial stiffness (aortic pulse-wave velocity), exercise capacity (Incremental Shuttle Walk Test) and physical activity (daily step count) in 92 COPD patients who started a six week pulmonary rehabilitation programme, 54 of whom completed rehabilitation, and 29 of whom were re-assessed six weeks later.

Results: Whilst on average there was no influence of pulmonary rehabilitation on aortic stiffness (pre- vs. post pulse-wave velocity 11.3 vs. 11.1 m/s p = 0.34), 56% patients responded with a significant reduction in aortic stiffness. Change in aortic stiffness (absolute and/or percentage) during rehabilitation was associated with both increased physical activity (rho = - 0.30, p = 0.042) and change in exercise capacity (rho = - 0.32, p = 0.02), but in multivariable analysis most closely with physical activity. 92% of the responders who attended maintained this response six weeks later.

Conclusion: Elevated aortic stiffness in COPD is potentially modifiable in a subgroup of patients during pulmonary rehabilitation and is associated with increased physical activity.

Trial registration: ClinicalTrials.gov Identifier: NCT03003208. Registered 26/12/ 2016.

Keywords: And pulmonary rehabilitation; Aortic stiffness; COPD.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Consort diagram
Fig. 2
Fig. 2
Individual changes in aortic pulse wave velocity (aPWV) before and after pulmonary rehabilitation. Solid line and circles represent the mean
Fig. 3
Fig. 3
Scatter plots demonstrating correlations between absolute ∆aPWV and ∆ISWT after completing PR (a – rho = − 0.32, p = 0.020) and between ∆aPWV% and average PA during the six weeks PR (b – rho = − 0.30, p = 0.042)

References

    1. Halbert RJ, Natoli JL, Gano A, Badamgarav E, Buist AS, Mannino DM. Global burden of COPD: systematic review and meta-analysis. Eur Respir J. 2006;28:523–532. doi: 10.1183/09031936.06.00124605.
    1. Mills NL, Miller JJ, Anand A, Robinson SD, Frazer GA, Anderson D, Breen L, Wilkinson IB, McEniery CM, Donaldson K, et al. Increased arterial stiffness in patients with chronic obstructive pulmonary disease: a mechanism for increased cardiovascular risk. Thorax. 2008;63:306–311. doi: 10.1136/thx.2007.083493.
    1. Chen W, Thomas J, Sadatsafavi M, FitzGerald JM. Risk of cardiovascular comorbidity in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. Lancet Respir Med. 2015;3:631–639. doi: 10.1016/S2213-2600(15)00241-6.
    1. Celli BR, MacNee W. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J. 2004;23:932–946. doi: 10.1183/09031936.04.00014304.
    1. Chronic respiratory diseases [].
    1. Hickson SS, Butlin M, Broad J, Avolio AP, Wilkinson IB, McEniery CM. Validity and repeatability of the Vicorder apparatus: a comparison with the SphygmoCor device. Hypertens Res. 2009;32:1079–1085. doi: 10.1038/hr.2009.154.
    1. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: 'establishing normal and reference values'. Eur Heart J 2010, 31:2338–2350.
    1. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, Christiaens T, Cifkova R, De Backer G, Dominiczak A, et al. ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC) J Hypertens. 2013;31:1281–1357. doi: 10.1097/.
    1. Mozos I, Malainer C, Horbanczuk J, Gug C, Stoian D, Luca CT, Atanasov AG. Inflammatory markers for arterial stiffness in cardiovascular diseases. Front Immunol. 2017;8:1058. doi: 10.3389/fimmu.2017.01058.
    1. Vivodtzev I, Tamisier R, Baguet JP, Borel JC, Levy P, Pepin JL. Arterial stiffness in COPD. Chest. 2014;145:861–875. doi: 10.1378/chest.13-1809.
    1. Morgan AD, Zakeri R, Quint JK. Defining the relationship between COPD and CVD: what are the implications for clinical practice? Ther Adv Respir Dis. 2018;12:1753465817750524. doi: 10.1177/1753465817750524.
    1. Wang LY, Zhu YN, Cui JJ, Yin KQ, Liu SX, Gao YH. Subclinical atherosclerosis risk markers in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. Respir Med. 2017;123:18–27. doi: 10.1016/j.rmed.2016.12.004.
    1. Vanfleteren L, Spruit MA, Groenen MTJ, Bruijnzeel PLB, Taib Z, Rutten EPA, Op’t Roodt J, Akkermans MA, Wouters EFM, Franssen FME. Arterial stiffness in patients with COPD: the role of systemic inflammation and the effects of pulmonary rehabilitation. Eur Respir J. 2014;43:1306–1315. doi: 10.1183/09031936.00169313.
    1. Patel AR, Kowlessar BS, Donaldson GC, Mackay AJ, Singh R, George SN, Garcha DS, Wedzicha JA, Hurst JR. Cardiovascular risk, myocardial injury, and exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;188:1091–1099. doi: 10.1164/rccm.201306-1170OC.
    1. Oliveira NL, Ribeiro F, Alves AJ, Campos L, Oliveira J. The effects of exercise training on arterial stiffness in coronary artery disease patients: a state-of-the-art review. Clin Physiol Funct Imaging. 2014;34:254–262. doi: 10.1111/cpf.12093.
    1. Sievi NA, Franzen D, Kohler M, Clarenbach CF. Physical inactivity and arterial stiffness in COPD. Int J COPD. 2015;10:1891–1897.
    1. Gimeno-Santos E, Frei A, Steurer-Stey C, de Batlle J, Rabinovich RA, Raste Y, Hopkinson NS, Polkey MI, van Remoortel H, Troosters T, et al. Determinants and outcomes of physical activity in patients with COPD: a systematic review. Thorax. 2014;69:731–739. doi: 10.1136/thoraxjnl-2013-204763.
    1. Gibson GJ, Loddenkemper R, Sibille Y, Lundback B: The European lung white book: respiratory health and disease in Europe. European Respiratory Society; 2013.
    1. McCarthy B, Casey D, Devane D, Murphy K, Murphy E, Lacasse Y. Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2015;2:CD003793.
    1. Puhan MA, Gimeno-Santos E, Cates CJ, Troosters T. Pulmonary rehabilitation following exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2016;12:Cd005305.
    1. Global Initiative for Chronic Obstructive Lung Disease. The Global Strategy for the Diagnosis and Managment of COPD. 2019.
    1. Aldabayan YS, Alrajeh AM, Lemson A, Hurst JR. Pulmonary rehabilitation and cardiovascular risk in COPD: a systematic review. COPD Res Pract. 2017;3:7. doi: 10.1186/s40749-017-0026-9.
    1. Bolton CE, Bevan-Smith EF, Blakey JD, Crowe P, Elkin SL, Garrod R, Greening NJ, Heslop K, Hull JH, Man WD, et al. British Thoracic Society guideline on pulmonary rehabilitation in adults. Thorax. 2013;68(Suppl 2):ii1–i30. doi: 10.1136/thoraxjnl-2013-203808.
    1. Bermudo G, Pomares X, Monton C, Bare M, Monso E. Usefulness of the chronic obstructive pulmonary disease assessment test in chronic obstructive pulmonary disease with severe airflow limitation. Med Clin (Barc) 2014;143:349–351. doi: 10.1016/j.medcli.2013.08.006.
    1. Bestall JC, Paul EA, Garrod R, Garnham R, Jones PW, Wedzicha JA. Usefulness of the Medical Research Council (MRC) dyspnoea scale as a measure of disability in patients with chronic obstructive pulmonary disease. Thorax. 1999;54:581–586. doi: 10.1136/thx.54.7.581.
    1. Al-Gamal E. Testing of the hospital anxiety and depression scale in patients with chronic obstructive pulmonary disease. Int J Nurs Knowl. 2017;28:94–99. doi: 10.1111/2047-3095.12106.
    1. Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, May M, Brindle P. Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: prospective open cohort study. Bmj. 2007;335:136. doi: 10.1136/bmj.39261.471806.55.
    1. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CP, Gustafsson P, et al. Standardisation of spirometry. Eur Respir J. 2005;26:319–338. doi: 10.1183/09031936.05.00034805.
    1. Laszlo G. Standardisation of lung function testing: helpful guidance from the ATS/ERS task force. Thorax. 2006;61:744–746. doi: 10.1136/thx.2006.061648.
    1. Holland AE, Spruit MA, Troosters T, Puhan MA, Pepin V, Saey D, McCormack MC, Carlin BW, Sciurba FC, Pitta F, et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. Eur Respir J. 2014;44:1428–1446. doi: 10.1183/09031936.00150314.
    1. Schneider PL, Crouter SE, Lukajic O, Bassett DR., Jr Accuracy and reliability of 10 pedometers for measuring steps over a 400-m walk. Med Sci Sports Exerc. 2003;35:1779–1784. doi: 10.1249/01.MSS.0000089342.96098.C4.
    1. Crouter SE, Schneider PL, Karabulut M, Bassett DR., Jr Validity of 10 electronic pedometers for measuring steps, distance, and energy cost. Med Sci Sports Exerc. 2003;35:1455–1460. doi: 10.1249/01.MSS.0000078932.61440.A2.
    1. Schneider PL, Crouter S, Bassett DR. Pedometer measures of free-living physical activity: comparison of 13 models. Med Sci Sports Exerc. 2004;36:331–335. doi: 10.1249/01.MSS.0000113486.60548.E9.
    1. Vivodtzev I, Minet C, Wuyam B, Borel JC, Vottero G, Monneret D, Baguet JP, Levy P, Pepin JL. Significant improvement in arterial stiffness after endurance training in patients with COPD. Chest. 2010;137:585–592. doi: 10.1378/chest.09-1437.
    1. Gale NS, Duckers JM, Enright S, Cockcroft JR, Shale DJ, Bolton CE. Does pulmonary rehabilitation address cardiovascular risk factors in patients with COPD? BMC Pulmonary Med. 2011;11:20. doi: 10.1186/1471-2466-11-20.
    1. Moore LE, Byers BW, Fuhr DP, Wong E, Bhutani M, Stickland MK. Cardiovascular benefits from standard pulmonary rehabilitation are related to baseline exercise tolerance levels in chronic obstructive pulmonary disease. Respir Med. 2017;132:56–61. doi: 10.1016/j.rmed.2017.09.011.
    1. Stickland MK, Vogan N, Petersen SR, Wong EY, Bhutani M. Physical activity and arterial stiffness in chronic obstructive pulmonary disease. Respir Physiol Neurobiol. 2013;189:188–194. doi: 10.1016/j.resp.2013.08.001.
    1. Waschki B, Kirsten A, Holz O, Muller KC, Meyer T, Watz H, Magnussen H. Physical activity is the strongest predictor of all-cause mortality in patients with COPD: a prospective cohort study. Chest. 2011;140:331–342. doi: 10.1378/chest.10-2521.
    1. American Heart Association Recommendations for Physical Activity : How much physical activity do you need? [].
    1. Pepin JL, Cockcroft JR, Midwinter D, Sharma S, Rubin DB, Andreas S. Long-acting bronchodilators and arterial stiffness in patients with COPD: a comparison of fluticasone furoate/vilanterol with tiotropium. Chest. 2014;146:1521–1530. doi: 10.1378/chest.13-2859.
    1. Steiner MMV, Lowe D, Holzhauer-Barrie J, Mortier K, Riordan J, Roberts CM. Pulmonary rehabilitation: An exercise in improvement. National Chronic Obstructive Pulmonary Disease (COPD) Audit Programme: Clinical and organisational audits of pulmonary rehabilitation services in England and Wales 2017. National report London report. London: RCP; 2018.
    1. Pulmonary Rehabilitation and Cardiovascular Risk in COPD, [].

Source: PubMed

3
구독하다